
Real-Time Disk Scheduling in a Mixed-Media File System

Peter Bosch
CWI

peterb@cwi.nl

Sape J. Mullender
University of Twente
sape@cs.utwente.nl

Abstract

This paper presents our real-time disk scheduler called the
�L scheduler, which optimizes unscheduled best-effort disk
requests by giving priority to best-effort disk requests while
meeting real-time request deadlines. Our scheduler tries to
execute real-time disk requests as much as possible in the
background. Only when real-time request deadlines are en-
dangered, our scheduler gives priority to real-time disk re-
quests. The �L disk scheduler is part of our mixed-media file
system called Clockwise.

An essential part of our work are extensive and detailed
raw disk performance measurements. These raw performance
measurements are used by the �L disk scheduler for its real-
time schedulability analysis and to decide whether scheduling
a best-effort request before a real-time request violates real-
time constraints.

Further, the raw performance measurements are used by
a Clockwise off-line simulator where a number of different
disk schedulers are compared. We compare the �L sched-
uler with a prioritizing Latest Start Time (LST) scheduler and
non-prioritizing EDF scheduler. The �L scheduler is compa-
rable to LST in achieving low latencies for best-effort requests
under light to moderate real-time loads and better in achiev-
ing low latencies for best-effort requests for extreme real-time
loads. The simulator is calibrated to an actual Clockwise.

Clockwise runs on a 200 MHz Pentium-Pro based PC with
PCI bus, multiple SCSI controllers and disks on Linux 2.2.x
and the Nemesis kernel. Clockwise’s performance is dictated
by the hardware: all available bandwidth can be committed to
real-time streams, provided hardware overloads do not occur.

1 Introduction

Future file systems will store a mixed-media data set: a mix-
ture of data accessed by real-time applications and those that
only require delivery or storage of data – so called best-effort
applications. Examples of such systems are web servers with
digital audio and video and ordinary web pages, multi-media
databases, and ordinary workstations that are used for VCR

functionality and MP-3 playback while they are also used for
ordinary text-processing tasks.

Scheduling disk activity for a mixed workload is a chal-
lenging problem. While the basic issues of scheduling real-
time traffic have been addressed, this has usually been at the
expense of best-effort traffic – which is an important compo-
nent of a mixed workload. We have found that giving priority
to best-effort requests over real-time requests in such a way
that real-time requests do not miss their deadlines, signifi-
cantly improves the latency of the best-effort requests com-
pared to non-prioritizing scheduling techniques. We argue
that when slack time is available in the schedule – i.e., there
is time between any end of real-time request invocation and
its deadline – best-effort requests need to run before the real-
time requests.

We have developed a disk scheduler called the �L disk
scheduler that uses schedule slack time to prioritize best-effort
requests while guaranteeing real-time deadlines. This disk
scheduler pre-calculates the amount of schedule slack time
and based on this slack time the scheduler decides if execut-
ing a best-effort request before a real-time request violates
real-time constraints. If not, the best-effort request is given
priority. Our disk scheduler is a non-preemptive disk sched-
uler because disks cannot be preempted once they have started
executing a disk request. We have integrated the �L disk
scheduler in the Clockwise file system [3].

Real-time applications demand that data is stored or re-
trieved in a timely manner: data is produced or consumed at a
specific determined rate and the file server must keep up with
it. Video and audio data are obvious and common examples:
an MPEG-2 video stream can be compressed so that it requires
a continuous data stream of 8 Mb/s. When 1 MB buffers are
used by an MPEG player, the storage system must provide an
MPEG-2 buffer every second.

Best-effort applications are applications that have no timing
requirements; however, particularly on (synchronous) read
and write operations, applications usually block until the data
is delivered. Reducing the latency of best-effort file oper-
ations, therefore, has an immediate and obvious effect on
overall system performance. If, for example, a Linux EXT2
file system is scheduled concurrently with a number of real-
time video and/or audio data streams, then a scheduler that
gives priority to best-effort disk requests without causing real-
time deadline misses, gives a better performance compared

0-7695-0713-1/00 $10.00 � 2000 IEEE

to a scheduler that does not prioritize such best-effort disk
requests. Our �L disk scheduler prioritizes best-effort disk
requests when real-time deadlines are not jeopardized.

To build a mixed-media file system with support for real-
time and best-effort data requests, the file server’s disks must
be scheduled with real-time guarantees. If real-time behavior
is not guaranteed, applications can never rely on the on-time
availability of data. Given that one of the target applications
is audio and video recording and playback, client caching and
write buffering may lessen the real-time scheduling require-
ments. However, we argue for true real-time service to mini-
mize the amount of buffering that is required in the client and
the server and to reduce start-up latency.

Real-time disk scheduling is a particularly interesting prob-
lem for real-time file servers, because disk operations are not
pre-emptable while most real-time scheduling techniques rely
on the pre-emptability of a resource. Once a disk request has
started, it cannot be interrupted to service a higher-priority
request first and continue later. Although it is possible in the-
ory to break off a disk request, do another request and restart
the original request, our experience indicates that most SCSI

controllers do not react kindly to such treatment and require
a total shutdown and restart before they will do useful work
again.

Real-time streams are characterized by the interval between
read and write transfers, i.e. their period T , and the duration
of a stream request, the service time, C. Given n streams with
periods T1; : : : ; Tn and service times C1; : : : ; Cn, the utiliza-
tion imposed by these streams on the system is expressed as
U =

Pn

i=1 Ci=Ti.
Jeffay et al. [7] already proved that when a collection of n

streams, sorted in order of ascending Ti, is non-preemptively
schedulable then the following two conditions are fulfilled:

U � 1 (1)

8i; 1 < i � n;8L; T1 < L < Ti;

L � Ci +
Pi�1

j=1b
L�1
Tj
cCj

(2)

The first condition merely states that the aggregate load
may not exceed the available capacity. This condition is
identical to Liu and Layland’s preemptive EDF scheduling
test [10]. The second says that for every interval of length
L starting one unit of time after the start of task i, there must
be capacity to run task i itself (minus the one time unit) and all
tasks with periods less than L the required number of times.

They further showed that, if a collection of tasks is schedu-
lable, then it is always non-preemptively schedulable using
a deadline-dynamic scheduling algorithm (e.g. EDF schedul-
ing). Thus, provided a collection of real-time tasks remains
within its specification (i.e., no task i needs to run more fre-
quently than Ti or uses more than Ci resources when it runs)
and, provided tests 1 and 2 are passed, an EDF scheduler does
not cause requests to miss their deadlines.

What makes the application of these rules tricky is that the
rules do not take (unscheduled) best-effort traffic into account.
The scheduling theory that is presented in this paper addresses
this problem: how to schedule best-effort requests in slack
time with a non-preemptively scheduled disk.

The usage of slack time to execute best-effort jobs in a
real-time system has been used in other solutions as well.
Buttazzo [4] and Lehoczky [8] describe the concept of real-
time servers. The sole purpose of these servers is to peri-
odically run and to execute pending a-periodic requests. In
fact, Lehoczky’s slack-time stealing algorithm is a method to
execute a-periodic tasks in a fixed-priority preemptive envi-
ronment as quickly as is possible. The Earliest Deadline Late
(EDL) [4] algorithm can be considered a deadline-dynamic
version of the slack-time stealing algorithm. Our approach is
similar, except that we consider non-preemptively scheduled
resources (e.g. a disk).

Another approach is to schedule a mixed load through a
round-based disk scheduler, such as is done in the Tiger sys-
tem [2]. In a round-based disk scheduler each task is serviced
every round. However, we feel that round-based disk sched-
ulers are too inflexible for our purposes. If a task misses its
slot in the round, it needs to wait a full round period before
it is serviced again. A deadline-dynamic scheduler, instead,
makes sure that a request can be released and serviced before
its deadline if the actual task period is larger or equal than the
period with which a task is admitted. This means that with
this type of scheduling, one does not need to wait a full round
before a task can be serviced again and is therefore more flex-
ible.

Also, the use of a deadline-dynamic disk scheduler is not
new. The Symphony file system [12] is a mixed-media file
system that is capable of storing continuous-media and best-
effort data on the same set of disks. Symphony’s disk sched-
uler Cello [13] is a two level disk scheduler, where the main
class-independent scheduler employs a First Come First Serve
(FCFS) scheduling policy and a number of class dependent
disk schedulers schedule requests according to the applica-
tion’s needs. Several class schedulers exist, which order re-
quests for best-effort traffic, optimize for periodic/aperiodic
traffic and for throughput intensive applications.

Requests in Symphony move from the class dependent
queues to the class-independent queue in several ways. The
periodic and aperiodic requests move to the class independent
queue in a just-in-time manner: requests are first ordered in
scan-EDF order in the periodic/aperiodic request queues and
are then moved to the class independent queue at their latest
start time.

The class dependent best-effort scheduler in Symphony
uses a slack-time stealing policy to find the earliest execu-
tion time for the best-effort request. This scheduler inserts the
best-effort request into the class-independent queue whenever
it finds slack time in the class independent queue. Slack time

0-7695-0713-1/00 $10.00 � 2000 IEEE

is identified when the disk idles or when a real-time request
can be postponed for the duration of the best-effort request
without missing a deadline.

Executing Symphony’s Just In Time (JIT) scheduler to
schedule a mixed load may lead to deadline misses. Consider,
for example, that Symphony schedules a real-time task with
a period T of 200 ms and in every period the task needs to
read 1 MB worth of data from a Quantum Atlas-II disk. This
operation takes approximately 120 ms in the outer zone. If
at time t = 0 a best-effort job is started with a service time
of > 80 ms and at t = 1 the real-time job enters the system,
the real-time job misses a deadline. The situation worsens, of
course, when there are more real-time tasks in the system.

Another approach is taken by the User-Safe Disk (USD) [1].
USD partitions the available disk bandwidth in a number of
data streams that use the disk. Each stream requests a certain
Quality of Service (QoS) from the disk, which, when the re-
quest succeeds, ‘hands’ the disk bandwidth to the stream. The
novelty of USD’s approach is that each application is given a
guaranteed data stream to or from a disk with which it can do
whatever it wants. When multiple streams use USD concur-
rently, USD schedules the requests through an EDF scheduler.

However, since USD’s schedulability test does not consider
the case that disk requests cannot be preempted – it only uses
(1) as a schedulability test – USD cannot guarantee that it
meets request deadlines. However, this was never a design
goal of USD, nor is it considered to be a problem.1 Instead
USD relies on read-ahead and write-behind techniques to deal
with an occasional deadline miss.

There exist many other disk scheduling systems, but these
do not have direct relevance to the problem we are describing
in this paper. For an overview of these other systems, see
Chapter 2 of Bosch [3].

In this paper we start by describing Clockwise, our mixed-
media file system. The �L disk scheduling technique has
been integrated into this file system. Next, we describe the
�L scheduler in detail and we present an overview of some
of the measurements we have performed. For an in-depth
description of our approach and more measurements, see
Bosch [3].

2 Clockwise

For our real-time disk scheduling work, we use Clockwise as
storage platform. Clockwise is a storage system that is used
for the storage and retrieval of real-time continuous-media
data and best-effort conventional file-system data. The real-
time continuous-media part of the service is used to imple-
ment the digital equivalent of a home VCR for a group of peo-
ple, the best-effort part is primarily used to store conventional
UNIX (e.g. Linux EXT2) file systems.

1Personal communication with the University of Cambridge.

Figure 1: Clockwise structure.

Clockwise was first designed and implemented on the
Nemesis operating system, a continuous-media kernel [9] that
is developed as part of the Pegasus ESPRIT project. Nemesis
is conceived from the outset as a platform for experiment-
ing with continuous-media storage, scheduling and achieving
high throughput on commodity hardware. Later we also im-
plemented a Linux version of our system, but Linux lacks the
real-time capabilities of Nemesis.

Accurate disk service times are required to schedule a disk
in a real-time manner. Since both Clockwise and the disk
driver are scheduled by the CPU scheduler, it is important
to know how much CPU scheduling influences service times.
For Nemesis we know these timings, for Linux we do not.
However, in Linux we run the scheduling tasks under the
SCHED FIFO real-time scheduling regime with the hope that
CPU scheduling overhead is minimal.

Both the Nemesis and Linux version of Clockwise are
structured similarly. Figure 1 shows an overview of Clock-
wise. Clockwise is a layer between the operating system ker-
nel and the kernel’s device drivers. All I/O needs to pass
through Clockwise, which on its turns schedules the requests
with our �L scheduler on the real disk drivers. In the Figure,
Clockwise schedules two SCSI strings, each with two disks.
The Linux version of Clockwise is implemented as a pseudo
disk device driver, and Linux does not notice at all that it is not
communicating with a real disk driver. Clockwise provides an
external interface to set real-time scheduling parameters.

Clockwise itself consists of two major parts: storage space
maintenance in data structures called dynamic partitions and
the �L disk scheduler. This section describes dynamic parti-
tions, disk scheduling is described in Section 3.

0-7695-0713-1/00 $10.00 � 2000 IEEE

Dynamic partitions

The key data structure in Clockwise is a dynamic partition. A
dynamic partition is an ordered list of blocks that are possibly
stored on more than a single disk. The block size is definable,
but we have always used blocks of one megabyte2; this size
is chosen to achieve a reasonable balance between the time
it takes to seek to a block (� 10 %) and the time it takes to
read or write it (� 90 %). Dynamic partitions are dynamic
because they can grow or shrink dynamically and the structure
of dynamic partitions can be altered after a dynamic partition
has been created. Dynamic partitions are similar to partition
organization of Loge [6], Logical Disk [5], Veritas’ Volume
Manager, or CrosStor’s subdivisions.

From a user perspective a dynamic partition behaves like a
standard raw disk partition. It is implemented by a (possibly
long) list of disk sectors. Internally, however, logically con-
secutive disk blocks can be located at different parts of one
or more disks. The advantage of this approach is that without
having to change existing applications, such applications can
use multiple disks simultaneously or a dynamic partition can
be reorganized later for performance reasons.

We have elected to use a dynamic partition to hold a single
media file or a best-effort file system. This allows an audio
or video file to be read from, or written to disk efficiently,
and it prevents wasting space for best-effort files. An extra
advantage of mapping a best-effort file system to a dynamic
partition is that it allows us to use existing file-system code.

Since dynamic partitions can grow and shrink in size, one
does not have to be careful in requesting a dynamic partition
when a new media file is recorded. A dynamic partition that is
too large can be shrunk after the media file has been recorded.
When a recording application finds out that is has not reserved
enough disk space for a new media file, it can enlarge the
dynamic partition during recording under the same scheduling
contract as long as the newly allocated blocks are located on
the same zone and disk as the already allocated blocks.

When a dynamic partition is opened, a resource reserva-
tion can be made. Clockwise schedules operations accord-
ing to the reservations they belong to. Opening a dynamic
partition fails when the aforementioned admission test indi-
cates that there are insufficient resources to grant the required
reservation – admitting the new stream would violate guaran-
tees to already admitted streams. Best-effort opens do not re-
quire a reservation. Clockwise presents an API that allows the
applications to create a dynamic partition, to read/write data
from one with a user defined block size (synchronously or a-
synchronously), to set the size (making the dynamic partition
grow or shrink), or to reorganize the layout of the dynamic
partition on the set of disks. Read and write operations with
reservations are scheduled in real time, the other operations

2Note that dynamic partitions can be accessed and scheduled with any
block size, but the disk block size is fixed.

are always carried out on a best-effort basis.

3 The �L Scheduler

Disk requests are scheduled by Clockwise through the �L
scheduler. This scheduler consists of two parts: Jeffay et al.’s
nonpreemptive resource scheduler and a number of extensions
that allow the prioritized scheduling of best-effort requests.

3.1 Real-time request scheduling

Clockwise applications can request periodic service by speci-
fying a set of QoS parameters. For Clockwise the QoS param-
eters are user bandwidth, block size, dynamic partition range
and time span. The bandwidth parameter corresponds to the
expected or actual stream bandwidth and the block size pa-
rameter depends on the application itself (i.e., it depends on
the size of the user application’s buffer). The dynamic parti-
tion range describes which part of the dynamic partition needs
to be scheduled with real-time guarantees and the time span
describes when in time the requests need to be scheduled. The
latter parameters are important to deal with dynamic partitions
that are distributed to multiple disks. Consider a dynamic par-
tition that is stored on disk j and k. The first n blocks are on
disk j and disk k holds the remaining m blocks. An applica-
tion can request real-time bandwidth on disk j for the duration
of n blocks, and request bandwidth in advance for disk k to
playback the n’th to the (n+m)’th block.

Clockwise converts the requested bandwidth Bi and block
size bi to a task period Ti and service time Ci. The task pe-
riod Ti is calculated as follows: Ti = bi=Bi. To determine the
worst-case request service time Ci, Clockwise needs to know
the layout of data on disk before it can decide if a request
is schedulable. Clockwise determines Ci for an application
by analyzing the layout of the dynamic partition for which
real-time data transfers are requested and by combining this
information with the user block size bi. The service time for a
transfer from a dynamic partition is built up from three com-
ponents: the worst-case seek time, the worst-case data service
time and an extra rotational delay.

The worst-case seek and data service times are either pre-
measured or determined by the physical parameters of a disk.
Pre-measurements are performed separately from Clockwise:
before a disk is integrated in a Clockwise system, its I/O be-
havior and its influence on the performance of other disks is
analyzed. Based on this analysis, scheduling parameters are
derived for Clockwise. Chapter 4 of Bosch [3] elaborates on
the pre-measurements.

We learned that pre-measurements are vital: it is often diffi-
cult to predict service times for a block size by just analyzing
the physical parameters of a disk. The Quantum Atlas-II, for
example, can easily overload a Fast SCSI-2 bus for which it is
designed, and the Seagate Cheetah has a ‘funny’ track on the

0-7695-0713-1/00 $10.00 � 2000 IEEE

last head of each 16th cylinder. Both peculiarities only show
up through actual measurements.

When a multi-disk dynamic partition is used for real-time
transfers, each participating disk needs to admit a part of the
new task. Clockwise determines the period Ti for each par-
ticipating disk separately based on the layout of the data in-
side the dynamic partition and the requested dynamic parti-
tion range. Next, it executes the schedulability test for each
of the disks. If any of the participating disks fails to admit
its part of the new task, Clockwise cannot guarantee schedu-
lability according to the presented QoS parameters. It rejects
the entire real-time task.

Once Clockwise has admitted a real-time task on all partic-
ipating disks, it guarantees to meet all task request deadlines
provided: (1) the actual service time is less than or equal to
the pre-calculated (worst-case) service timeCi and (2) the ap-
plication’s actual request period is more than or equal to the
requested period Ti. The first condition mainly depends on
the quality of the service-time prediction. Meeting the sec-
ond condition means that the application must not release an
I/O request before the deadline of a previous request.

When a real-time application issues an I/O request, Clock-
wise assigns a release time and deadline to the request. The
release time is set to the time Clockwise expected the request,
or the time at which the request is released, whichever is later.
When requests arrive too slowly (i.e., the application does not
use all of its allocated resources), idle time is introduced in
the schedule. When requests arrive too quickly, release times
are assigned that are based on the expected release time and
such requests are scheduled to be executed in the future. The
deadline of a request is calculated through the assigned re-
lease time and the task’s period Ti for the disk servicing the
request.

Clockwise schedules the released requests through an EDF

scheduler. A released request is inserted in an EDF ordered
queue and Clockwise extracts the first request from the queue
that has been released. Requests that are not yet released (i.e.,
have future release times) can only be serviced on a best-effort
basis.

3.2 Slack-time scheduling

Best-effort requests are requests that have no release time and
deadline associated with them and tasks that generate best-
effort requests are not considered by Clockwise’s schedula-
bility analysis. Real-time requests that are scheduled to be
executed in the future are also considered best-effort requests.
Best-effort requests are scheduled by Clockwise in so-called
schedule slack time: either idle time or before real-time re-
quests when there are guaranteed not to miss a deadline by
the insertion.

The Clockwise �L scheduler pre-calculates the minimum
schedule slack-time from Jeffay’s non-preemptive schedula-

bility test. This slack time, called �L, is the minimum time
between the end of any executed real-time request and its
deadline. Since this �L is available after each request, it
can also be applied before each real-time request. Best-effort
requests are executed before real-time requests if they need
less than the available slack time, �L.
�L is defined as follows:

Definition 1. Assume a task set �1 : : : �n is sorted in non-
decreasing order by period. �L, the slack time of each real-
time request, is defined by:

M(L) = L�
Pn

j=1b
L
Tj
cCj

�Lm = minT1�L�Tn M

Q(i; L) = L� (Ci +
Pi�1

j=1b
L�1
Tj
cCj)

�Lq = min1<i�n;T1�L�Tn Q
�L = min(�Lm;�Lq)

Theorem 1 establishes that each real-time task invocation
completes at least �L before its deadline. The proof is based
on the schedulability proof of Jeffay et al.:

Theorem 1. If a task set is schedulable by a nonpreemptive
EDF scheduler, i.e. it satisfies (1) and (2), then each request
completes at least �L before its deadline.

The proof to this theorem follows directly from Theorem
(4.3) of Jeffay et al. It is established by deriving upper bounds
to the load for any distance L.

There are two cases to consider:
To determine the slack time of a set of requests that are

executed in deadline order, i.e., no low priority request pre-
cedes a high-priority request,3 the first case of the defini-
tion for �L is considered: �Lm. The maximum demand
for a period L is when all tasks release a request simultane-
ously:

Pn

j=1bL=TjcCj . The executed load at some instance
of Li = Ti; T1 � Ti � Tn consists of requests from tasks
�1 : : : �i. Since requests are executed in deadline order, the
last request that is executed is a request from task �i. Hence,
the slack time for the request from �i atLi is given by M(Li).
Other values for Li do not have to be considered to deter-
mine the slack time for a request from �i: larger values for Li
lead to higher slack times and when smaller values for Li are
considered, requests from �i do not contribute to the load in
M(Li). Since all possible values L are considered separately
for M(L), all requests from tasks �i; 1 � i � n are consid-
ered. Since �Lm is the minimum of all M(L), �Lm is the
minimum slack time when requests are executed in deadline
order.

The second case is when a low-priority request precedes
higher-priority requests. This case is considered separately
by Jeffay et al. in case 2 of the proof to their Theorem (4.3)
and is covered by the second part of the definition for �L:

3Remember that under EDF, the task with the earliest deadline has the
highest priority.

0-7695-0713-1/00 $10.00 � 2000 IEEE

�Lq. The proof to Jeffay’s Theorem (4.3) is based on de-
riving upper bounds to the load in any interval L given that
the start time of the low-priority request precedes one or more
high-priority requests by one instance. It is proven that the up-
per bounds to the load in distance L are a sufficient measure
for the schedulability of the task set.

Assume a request from task �i; 1 < i � n is invoked at
t = �1 and at t = 0 requests from all tasks with shorter
periods than Ti are released. The request from task �i cannot
be preempted. All requests from tasks �k; Tk < Ti that are
released at t = 0 are invoked after the request from �i finishes.
Hence, because of EDF scheduling, the minimum slack time
after the execution of a request from task �k to its deadline is
represented by Lk�(Ci+

Pk

j=1b(Lk�1)=TjcCj) and Lk =
Tk + 1, i.e., Q(i; Lk). Since the tasks are scheduled through
EDF, the request from task �k, having the largest period, is
also the last request that is executed.

Any of the tasks �k that can be hindered by the servicing of
a request from �i out of order has a period Tk that is at least
one instance shorter than the period of Ti. All tasks �i except
for task �1 are considered for out of order scheduling.4 The
minimum of Q(i; Lk) represents the minimum slack time af-
ter the invocation of a request from task �k when preceded by
any other request from task �i; Ti < Tk. Since �Lq iterates
over all tasks i and distancesL inQ(i; L), �Lq represents the
minimum time to a request deadline when any other request
is scheduled out of order.

Since �L is defined as the minimum of all possible slack
times of the two cases, each task request finishes at least �L
before its deadline.

To apply the �L scheduling technique, each disk in Clock-
wise maintains two parameters per disk: the slack time �L
and the remaining slack time �Lr. Whenever the remaining
slack time �Lr is larger than the expected service time of a
best-effort request, the best-effort request is given precedence
over real-time requests. Only when none of the best-effort re-
quests can be scheduled in slack time, real-time requests are
considered for execution. These real-time requests are, when
activated, executed in a long burst of requests. When the real-
time queue is empty again, or when only real-time requests
are queued that are scheduled to be executed in the future,
�Lr is replenished with �L.

While developing the�L technique, we learned that know-
ing the slack time �L is fundamental in scheduling a mixed
real-time and best-effort load non-preemptively. If a non-
preemptive deadline-dynamic scheduler does not use the �L
(or equivalent) technique, arbitrary real-time deadlines can be
missed.

4Requests from task �1 cannot be scheduled out of order.

3.3 Best-effort scheduling

It is not difficult to think of a task set that leads to a value
for �L of 0 (i.e., there is no slack time in the schedule). In
this case it is impossible to schedule best-effort requests and
such requests starve until one of the real-time tasks leave the
system. Even when the system is idle, i.e. no real-time task
has released a request, Clockwise cannot schedule best-effort
requests, because the moment a best-effort request is started,
a worst-case load may be released by the real-time tasks.

Best-effort requests can be scheduled by a simple periodic
real-time server [4] to avoid starvation. This real-time server
behaves much like a container for the best-effort requests:
scheduled best-effort requests are assigned a release time and
deadline in relation to the QoS guarantees that are given to the
periodic server. When a periodic real-time server is started,
it is given a slice and a period, much like the QoS guarantees
that are given to tasks through USD [1].

4 Performance

To understand the performance implications of a mixed-media
load that is scheduled on a set of disks, we carried out a set
of performance experiments on both a simulator and a real
Clockwise. The aim of the performance experiments was to
compare the latency for best-effort requests when a mixed-
media load is scheduled by three different deadline-dynamic
real-time disk schedulers. We compared our �L scheduler
to a scheduler that is loosely based on the Symphony disk
scheduler (the LST scheduler) [12, 13],5 and an EDF sched-
uler that does not prioritize best-effort I/O requests. The LST

scheduler calculates a latest-start time for a released request
and schedules a best-effort request before a real-time request
if it finishes at or before the real-time request.

We expected that using the LST scheduler would lead to
the lowest best-effort latencies at the expense of an occa-
sional deadline miss. We expected the EDF scheduler to yield
the worst best-effort latencies. In reality, however, there was
more nuance: for light to moderate real-time loads, the LST

and �L scheduler produced comparable performance results,
with a slight advantage for the LST scheduler. For high to ex-
treme real-time loads, the �L scheduler yielded (much) bet-
ter results compared to the other schedulers. Standard non-
prioritizing EDF yielded the worst results, with the exception
of extreme real-time loads: in this case EDF produced better
results than the LST scheduler. The reason for the bad LST

results for extreme real-time loads is primarily because of its
inefficient disk arm behavior. We never experienced a real-
time deadline miss because of the small best-effort request
sizes. In the remainder of this chapter we elaborate on the
experiments.

5Notice the word loosely: we have not compared our system with Sym-
phony!

0-7695-0713-1/00 $10.00 � 2000 IEEE

The performance experiments consisted of two parts: off-
line, trace-driven simulations and on-line measurements in a
true Clockwise. The off-line experiments allowed us to learn
of the long term behavior of a system that is scheduled by the
�L scheduler. The on-line experiments helped us validate the
simulation results in a real system.

The off-line performance experiments are performed in a
Clockwise simulator. This simulator implements dynamic
partitions and uses the Clockwise schedulability test and
scheduler to schedule simulated I/O requests. The back-end
consists of a software model of three parallel Quantum Atlas-
II disks, which are connected by separate SCSI-II buses to a
host machine. The simulated hardware behaves much like the
real hardware. The simulated disks simulates heads, tracks,
sectors, rotational speed and head positions. The SCSI part
simulates data transfers over the SCSI bus. Our simulator does
not simulate the Quantum Atlas-II’s disk cache.6

For the performance experiments, a real-time load was syn-
thesized based on Motion-JPEG video streams and CD-quality
audio streams. In particular, two types of Motion-JPEG com-
pressed video streams were used with average bandwidth
requirements of 817 KB/s and 245 KB/s. The audio stream
used 172 KB/s. Each audio and video stream was modeled
by a separate application inside the simulator that injected
I/O requests into the simulator whenever a request was due.
The modeled continuous-media applications operated inde-
pendently of each other. For each run of the experiments ei-
ther an 817 KB/s video stream or a 245 KB/s video stream was
added to the real-time task set. In all cases, each video stream
was accompanied by a CD-quality audio stream.

As Jeffay et al. already pointed out that ‘It is possible to
conceive of both schedulable task sets that have a processor
utilization of 1.0, and unschedulable task sets that have arbi-
trarily small processor utilization’ [7]. Especially when short
period tasks are combined with tasks that require a long ser-
vice time, the schedulability of a resource that is scheduled
non-preemptively quickly deteriorates. To prevent this from
happening in the experiments, continuous-media application
block sizes were chosen that lead to request periods that are
the same order of magnitude for all applications (� 1 second).

4.1 Block assignments and �L

Three different continuous-media file-block allocations were
simulated: ‘rotation’, ‘random’ and ‘memory optimized’. In
the ‘rotation’ assignment, continuous-media file blocks were
distributed to all three disks (i.e. striped) such that if block
n was assigned to disk d, block n + 1 was assigned to disk
(d + 1) mod 3. The continuous-media data itself was stored
on the fastest disk zones. The ‘random’ assignment also dis-
tributed file blocks to all disks, but did not store blocks con-

6A write disk cache cannot be used for real-time scheduling of a disk,
and given the size of the transfers, a read cache is of limited use [3].

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
el

ta
 L

 (
s)

Bandwidth (KB/s)

Rotation
Memory optimized

Memory optimized (large buffers)

Figure 2: Aggregate real-time load and�L.

secutively. Instead blocks were assigned to random loca-
tions to measure the influence of seeks on the overall per-
formance. The ‘memory optimized’ experiment was used to
measure the effect of a different type of block allocation on
the scheduling results. The ‘memory optimized’ file-block
assignment only used a single disk per dynamic partition for
storing the continuous-media file blocks.7 The performance
results from this memory-optimized experiment are omitted
here for brevity and are described in Bosch [3].

The user block sizes were fixed at 1 MB for the 817 KB/s
video stream, the other video stream and audio stream used
256 KB block sizes. Figure 2 shows the relation between the
available minimum slack time �L (on any of the disks) and
the used block size and file-block allocation policy.

Each disk in the ‘rotation’ file-block assignment only re-
quired service approximately every 3 seconds, so when only
a single stream is played, the minimum slack time is slightly
less than this 3 seconds. The ‘memory optimized’ assignment
required a disk to service a request every second, which means
that the �L slack time is considerably less than in the ‘rota-
tion’ experiment. The ‘memory optimized (large buffers)’ ex-
periment shows the �L slack-time implications when twice
as large buffers were used in the ‘memory optimized’ exper-
iment: since the period of a task doubled to approximately
2 seconds, the schedulability improved of the disks improved
and the available �L slack time doubled.

The figure shows that the three parallel Quantum Atlas-
II disks can service between 15.6 MB/s and 21 MB/s without
missing deadlines depending on the used application block
size and the file-block allocation. The maximum measured
sequential performance of the three parallel Quantum Atlas-
II disks is approximately 25.3 MB/s [3], so when scheduling
parameters are chosen right, a fairly large fraction of the avail-

7The experiment is called the ‘memory optimized’ experiment because it
has less memory requirements compared to the other experiments. Bosch [3]
elaborates on memory usage and data layouts.

0-7695-0713-1/00 $10.00 � 2000 IEEE

able bandwidth can be used to service real-time I/O requests.

4.2 Best-effort load

To measure the best-effort latencies in our environment, ear-
lier recorded disk traces were used to generate a best-effort
load on our simulator. The traces consists of a disk load from
real systems at HP Laboratories and UC Berkeley. The traces
were recorded between April and May 1992. For our experi-
ments, we used the disk traces from HP. In particular, we used
the traces from the machine CELLO since this was the busiest
machine.

The CELLO disk trace describes all disk requests for a set of
8 disks that were connected to the host file server by a SCSI-2
bus and FiberLink connections. The disks contained a NFS

file system, swap, news, source directories, and private user
directories. The file systems were used by a large group of
computer scientists. Throughout the entire trace period almost
30,000,000 I/O requests were executed, with an average of
0.67 request per second. More detailed information on the
traces can be found Ruemmler et al. [11]. To limit the trace
duration, we selected the busiest day from the CELLO trace.
On June 1st, 1992, a total of 801,007 requests were executed
on the 8 disks, with a peak loads of almost 3,000 I/Os per
minute.

Each disk from the CELLO trace was assigned a private
dynamic partition that was laid out on all three disks to dis-
tribute the best-effort load evenly across all (simulated) Quan-
tum Atlas-II disks. The best-effort dynamic partitions were
assigned to the slower disk zones, since the I/O time of a re-
quest is dominated by the seek and rotational delay rather than
raw disk performance. The best-effort applications first read
a trace record from the trace file, wait until the request is due
and inject the I/O request at the correct time into the simula-
tor. When the operation completes the latency of the request
is recorded in a statistics library. The best-effort application
ran concurrently with the real-time applications.

The three disk schedulers, EDF, LST and �L order the re-
quests in the same manner. Real-time requests are inserted in
the real-time queue based on their deadline.8 The LST sched-
uler also calculates the latest start time of a request by ana-
lyzing already queued real-time requests.

The three schedulers differ in the way requests are de-
queued. The standard EDF scheduler gives precedence to
real-time requests. The standard EDF scheduler considers
best-effort requests, only when there are no more real-time
requests available. The LST scheduler schedules best-effort
requests if the current time plus the expected service time of
the best-effort request is less than or equal to the latest start
time of the first queued real-time request. The �L scheduler
considers best-effort requests if there is slack time available

8For an overview of the complexity issues of the schedulers, see
Bosch [3]

10

100

1000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

B
es

t-
ef

fo
rt

 la
te

nc
y

(m
ill

is
ec

on
ds

)

Aggregate real-time bandwidth (KB/s)

EDF
Delta L

LST

10

100

1000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

B
es

t-
ef

fo
rt

 la
te

nc
y

(m
ill

is
ec

on
ds

)

Aggregate real-time bandwidth (KB/s)

EDF
Delta L

LST

Figure 3: From top to bottom: CELLO disk 0 measured best-effort
latencies vs. real-time load for the ‘rotation’ and ‘random’ block
assignments.

as noted by �Lr. When �Lr is exhausted, only queued real-
time requests are considered. As described before, �Lr is
replenished when the real-time queue is empty.

4.3 ‘Rotation’ and ‘random’

Figure 3 (top) shows the average best-effort request latency in
relation to the real-time load for the three schedulers with the
‘rotation’ block assignment. This figure shows the average
best-effort latency for only one of the eight available CELLO

disks, but is representative for all disks. The Y-axis represents
the average best-effort latency in milliseconds (on a logarith-
mic scale), the X-axis represents the aggregate real-time load.

The figure shows that when best-effort traffic is not pri-
oritized (the standard EDF scheduler), best-effort latencies
quickly increase. Clearly, not giving priority to best-effort
requests leads to long delays.

Both the LST and �L disk scheduler maintain low best-
effort latencies for low to moderate real-time loads. For both
schedulers there is sufficient schedule slack-time available to

0-7695-0713-1/00 $10.00 � 2000 IEEE

service all of the best-effort traffic before executing the real-
time requests. The reason why the LST scheduler behaves
slightly better than the �L scheduler for moderate real-time
loads is that LST allows more best-effort requests to be sched-
uled before real-time requests than �L. Since �L is the min-
imum of the available slack time, a real-time request may be
activated earlier by the �L scheduler than is indicated by the
request’s latest start time. However, the LST disk scheduler
may start to miss deadlines beyond a moderate real-time load
since it can start a best-effort request when there is no slack
time available.9 The �L scheduler is more conservative than
the LST scheduler, but this scheduler guarantees that it never
misses real-time deadlines.

For high real-time loads, the LST disk scheduler performs
worse than the �L scheduler and, to a lesser extent, worse
than the standard EDF scheduler. The reason for this is that
the LST uses slack-time inefficiently. In our version of the
LST scheduler, the latest start time of a request is calculated
by subtracting the worst-case execution time for a request’s
deadline or latest start time of the next request, whichever is
earlier. In practice, the actual service time is less than the
worst-case service time. So, when a real-time request com-
pletes, a small slack period remains until the next real-time re-
quest’s latest start time. This small slack period is just enough
to execute one or two best-effort requests. To execute such a
best-effort request, the disk arm needs to be repositioned on
the disk area that holds the best-effort data, and when the re-
quest has been executed, the arm needs to be repositioned on
the real-time area. The seek time fraction of the total request’s
service time is substantial.

The �L scheduler executes real-time requests and best-
effort requests in separate bursts. As long as �Lr has not
yet been exhausted, the �L scheduler keeps executing best-
effort requests on the best-effort data areas. When �Lr is
exhausted, all of the queued real-time requests are executed
in a single burst, simply because �Lr is not replenished until
all of the real-time requests are executed. Since the best-effort
data areas are clustered together for the experiment, the time
to perform two long seek operations to the best-effort zones
is divided over a larger number of best-effort requests.

We performed an experiment with randomly placed dy-
namic partition blocks. Given that the �L scheduler opti-
mizes for best-effort requests that are located close to each
other, a random block allocation must reduce the best-effort
performance differences between the LST scheduler and the
�L scheduler.

Figure 3 (bottom) presents the best-effort latencies of all
three schedulers versus the aggregate real-time load with the
random block assignment. There are three important effects

9We did not experience such occurrences during our simulations. The
best-effort requests we executed (UNIX disk I/O with requests of 4 KB each)
were too small to cause deadline misses. Only when large best-effort re-
quests were used, the LST scheduler missed deadlines.

to be noticed. The maximum schedulable load is less than for
the ‘rotation’ assignment, the best-effort latencies are in all
cases worse than in the ‘rotation’ assignment and the perfor-
mance differences between the LST and �L scheduler are in-
deed less pronounced. The reason that the maximum schedu-
lable load is less is because a random block placement policy
stores some of the continuous-media file blocks on the in-
ner (and slower) zones of the disk. Since Clockwise assumes
worst-case execution times for its schedulability test, it uses
the service times from the inner zones rather than the outer
zones; i.e., the disks can schedule fewer real-time tasks. The
best-effort latencies are in any case worse than the ‘rotation’
assignment because the disk needs to seek more to find the
best-effort data.

Since locality of reference disappeared, the �L scheduler
also needs to perform many seek operations, thereby wast-
ing precious slack time. The best-effort latencies of the �L
scheduler were almost identical to those of the LST scheduler,
with the remark that the LST scheduler still performed better
for moderate real-time loads for the aforementioned reasons.

4.4 On-line measurements

To learn of the performance of a system only through simu-
lations is dangerous. Subtle implementation details can influ-
ence final performance numbers, and wrong conclusions can
be drawn from the simulations.

We performed a reality check by re-executing a part of the
trace-driven off-line simulations on a real Clockwise. The
Nemesis version of Clockwise was set up, to match the con-
figuration that was used for the simulations. The continuous-
media dynamic partitions were laid out identically to the ‘ro-
tation’ assignment. The load from each CELLO disk is gener-
ated by separate Nemesis applications that issues I/O requests
at the correct time to Clockwise. The continuous-media ap-
plications are implemented as applications that periodically
issue (large) I/O requests to Clockwise.

To limit experimentation time, we selected only the busiest
part from the simulation trace with approximately 20 minutes
of best-effort I/O requests. Throughout this 20 minute period,
a total of 53,752 best-effort I/O requests were executed on
CELLO and the peak load was 207 I/Os per second. The reason
for only analyzing 20 minutes is because one needs to wait in
real-time for the results. Since we evaluated every scheduler
with 40 runs (i.e. 40 different real-time loads), we evaluated
a total of 40 hours of traces.

Figure 4 presents the performance differences between a
real and a simulated Clockwise. In all cases the performance
of the real Clockwise only differs minimally from the simu-
lated version, which implies that for this particular combined
load the earlier conclusions are valid. The performance differ-
ences are caused by short-cuts that we took in the disk simula-
tor. The reason why the figures do not resemble the measured

0-7695-0713-1/00 $10.00 � 2000 IEEE

1

10

100

1000

10000

0 5000 10000 15000 20000

B
es

t-
ef

fo
rt

 la
te

nc
y

(m
se

cs
)

Aggregate real-time bandwidth (KB/s)

Real EDF
Simulated EDF

1

10

100

1000

10000

0 5000 10000 15000 20000

B
es

t-
ef

fo
rt

 la
te

nc
y

(m
se

cs
)

Aggregate real-time bandwidth (KB/s)

Real LST
Simulated LST

1

10

100

1000

10000

0 5000 10000 15000 20000

B
es

t-
ef

fo
rt

 la
te

nc
y

(m
se

cs
)

Aggregate real-time bandwidth (KB/s)

Real DeltaL
Simulated Delta L

Figure 4: Measured and simulated performance on CELLO disk 0. From top to bottom: the EDF, LST and �L scheduler.

latencies as are shown in Figure 3 (top-left) is because we
only compared the best-effort latencies for a short and busy
period from June 1st.

5 Summary and concluding remarks

We have presented Clockwise and �L scheduling. Clock-
wise is a QoS-aware logical volume manager, a data structure
that we have called a dynamic partition. The �L deadline-
dynamic scheduler makes sure that all real-time tasks that
are admitted by Clockwise’s schedulability test, meet their
request deadlines. Also, the �L scheduler gives prece-
dence to (unscheduled) best-effort requests when there is pre-
computed schedule slack time available. It does this in such
a manner that none of the real-time requests miss a deadline.

Clockwise’s performance has been measured in both a sim-
ulator and in a real system. It is shown that when the best-
effort latencies of three schedulers are compared (standard
EDF, LST and �L), both the LST and �L scheduler main-
tain reasonably low latencies for best-effort requests for light
to moderate real-time loads (with a slight advantage for the
LST scheduler at the expense of not being able to guaran-
tee deadlines. For extreme real-time loads, however, using
the �L scheduler leads to (much) lower best-effort latencies
when compared to the LST scheduler. This is because the
LST scheduler wastes much slack time on seek operations.
By showing that the simulated performance matches the per-
formance in an actual system, the simulation results are vali-
dated.

The Linux version of Clockwise is publicly available
through our web-site.10

References
[1] Paul Barham. A Fresh Approach to Filesystem Quality of Ser-

vice. 7th International Workshop on Network and Operating
System Support for Digital Audio and Video (St. Louis, Mis-
souri, USA), pages 119–128, May 1997.

10http://www.huygens.org/�peterb/clockwise.html

[2] Willian J. Bolosky, Robert P. Fitzgerald, and John R. Douceur.
Distributed Schedule Management in the Tiger Video File-
server. Proceedings of 16th ACM Symposium on Operating
Systems Principles (Saint-Malo, France). Published as Oper-
ating Systems Review, 31(5), October 1997.

[3] Peter Bosch. Mixed-media file systems. PhD thesis. University
of Twente, 25 June 1999.

[4] Giorgio C. Buttazzo. Chapter 6, Dynamic Priority Servers. In
Hard Real-Time Computing Systems, pages 149–81. Kluwer,
1997.

[5] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh.
Logical disk: a simple new approach to improving file system
performance. Technical report IR-325. Dept. of Mathematics
and Computer Science,Vrije Universiteit, Amsterdam, 1993.
Also MIT/LCS/TR-566 at MIT.

[6] Robert M. English and Alexander A. Stepanov. Loge: A Self-
Organizing Disk Controller. USENIX Conference Proceedings
(San Francisco, CA), pages 237–52. USENIX, Winter 1992.

[7] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On
Non-Preemptive Scheduling on Periodic and Sporadic Tasks.
Real-Time Systems Symposium, IEEE TC Real-Time Systems,
pages 129–139, 1991.

[8] John P. Lehoczky and Sandra Ramos-Thuel. An Optimal Al-
gorithm for Scheduling Soft-Aperiodic Tasks in Fixed-Priority
Preemptive Systems. Real-Time Systems Symposium, IEEE TC
Real-Time Systems, pages 110–23, 1992.

[9] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe,
Paul Barham, David Evers, Robin Fairbairns, and Eoin Hyden.
The Design and Implementation of an Operating System to
Support Distributed Multimedia Applications. IEEE Journal
on Selected Areas in Communication, 14(7):1280–97, 1996.

[10] C.L. Liu and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Jour-
nal of the ACM, 20(1):46–61, January 1973.

[11] Chris Ruemmler and John Wilkes. UNIX Disk Access Pat-
terns. 1993 Winter Usenix conference (San Diego, CA), pages
405–20. Usenix Association, January 1993.

[12] Prashant J. Shenoy, Pawan Goyal, Sriram S. Rao, and Har-
rick M. Vin. Symphony: An Integrated Multimedia File
System. http://www.cs.utexas.edu/users/dmcl. University of
Texas at Austin, 1996.

[13] Prashant J. Shenoy and Harrick M. Vin. Cello: A Disk
Scheduling Framework for Next Generation Operating Sys-
tems. http://www.cs.utexas.edu/users/dmcl. University of
Texas at Austin, 1996.

0-7695-0713-1/00 $10.00 � 2000 IEEE

