The Replacement Operation for CCP Programs

Marco Bertolino', Sandro Etalle?, and Catuscia Palamidessi®

1 SI.A.C. bertolino@siac.it
2 Universiteit Maastricht ealle@cs.unimaas.nl
3 Penn State University catuscia@cse.psu.edu

Abstract. The replacement is a very powerful transformation opera-
tion which — both within the functional paradigm as well as within the
logic programming one — can mimic the most common transformation
operations such as unfold, fold, switching, distribution. Because of this
flexibility, it can be incorrect if used without specific applicability con-
ditions.

In this paper we present applicability conditions which ensure the cor-
rectness of the replacement operation in the context of Concurrent Con-
straint Programs. Furthermore we show that, under these conditions,
the replacement generalizes both the unfolding operation as well as a
restricted form of folding operation.

1 Introduction

Concurrent constraint programming ([26]) (ccp, for short) is a concurrent pro-
gramming paradigm which derives from replacing the store-as-valuation concept
of von Neumann computing by the store-as-constraint model. The computational
model of ccp is based on a global store, represented by a constraint, which ex-
presses some partial information on the values of the variables involved in the
computation. The concurrent execution of different processes, which interact
through the common store, refines the partial information of the values of the
variables by adding (telling) constraints to the store. Communication and syn-
chronization are achieved by allowing processes to test (ask) if the store entails
a constraint before proceeding in the computation.

Central to the development of large and efficient applications is the study
of optimization techniques. To this end, while there exists a history and a wide
literature on transformations for sequential languages, ranging from theoretical
studies to implemented tools, there are only few and relatively recent attempts
to apply these techniques to concurrent languages. To the best of our knowl-
edge, the only papers addressing this issue are [10,11,29,23,14,17,13,9]. In our
opinion, this situation can be ascribed to the non-determinism and the syn-
chronization mechanisms present in concurrent languages, which substantially
complicate their semantics. In this context, transformation techniques have to
employ more sophisticated analysis tools.

The area closest to ccp with a large literature on transformation operations is
the area of Constraint Logic Programs (CLP). For this paradigm, the literature

on transformations can be divided into two main branches. On one hand we
find methods which focus exclusively on the manipulation of the constraint for
compile-time [18,19] and for low-level local optimization [15]. On the other hand
there are techniques such as the unfold/fold transformation systems, which were
developed initially for Logic Programs [28] and then applied to CLP [16, 1, 8] and
to ccp in [9]. These ones focus primarily on the declarative side of the program.

The Replacement is a program transformation technique flexible enough to
encompass both the above kinds of optimization: it can be profitably used to
manipulate both the constraint and the “declarative” side of a program. In fact
the replacement operation, which was introduced in the field of Logic Program-
ming by Tamaki and Sato [28] and later further developed and applied to CLP
in [16,1, 7], syntactically consists in replacing an agent in the body of a program
definition by another one. It is therefore a very general operation and it is able to
mimic many other transformations, such as thinning, fattening [3] and folding.
In the logic programming area, a lot of research [4,5,1,6,7,12,16,22,28,27] has
been devoted to the definition of applicability conditions sufficient to guarantee
the correctness of replacement w.r.t. several different semantics. See [21] for a
survey on transformation techniques for logic languages.

The goal of this paper is to provide some natural and relatively simple appli-
cability conditions which ensure the correctness of the replacement for ccp, i.e.
that the transformed program is equivalent to the original one. Of course, the
notion of equivalence depends on the semantics one refers to. In the case of ccp
programs the notion of semantics usually considered is the set of final stores,
i.e. the stores that can be obtained at the end of a computation (we say that
a computation ends when it cannot proceed anymore). These are often called
“observables”. Sometimes also the stores obtained as limit of the intermediate
stores in an infinite computation are considered part of the observables, but
in this paper we will not take them into account. In this paper we will actually
consider a stronger semantics, namely simulation equivalence, or reciprocal simu-
lation. The reason for this choice is that observables-equivalence, in a concurrent
context, is too weak for ensuring the correctness of transformation techniques
such as the replacement. Basically this is due to lack of compositionality. When
replacing an agent A with A’ we will require that the two agents be simulation-
equivalent. Ultimately, what we aim at is a set of conditions which guarantee that
the program resulting from the replacement operation is simulation-equivalent
to the original one, in which case we say that the operation is correct. Since
simulation-equivalence implies observables-equivalence, correctness implies that
the two programs are also observables-equivalent.

It turns out that the simulation-equivalence of the replacing and the replaced
agents alone is not sufficient to guarantee the correctness of the operation. In
fact, we will show that it guarantees only partial correctness i.e. that the re-
sulting program is simulated by the original one, but not vice-versa. In order

to guarantee total correctness we have to ensure that the replacement must not
introduce unwanted loops. Now, consider for example the contrived program:

p(z) - q(z)
q(z) - (ask(z =[]) — stop
+ a5k(3y,ys T = [ylys]) - EIy,ys tell(z = [ylyS]) Il p(ys))

Here, g(z) is clearly equivalent to p(x); but if we replace g(x) with p(x) in the
body of the first definition we obtain the definition p(x) :- p(x), which is certainly
not equivalent to the original one.

To avoid unwanted loops, in this paper we follow the inspiration of [4,7, 25]
(which focus on logic programs, CLP and functional programs, respectively),
and we individuate two situations in which the operation certainly does not
introduce any unwanted loop: The simplest one is (a): when the replacing agent
is independent from the definition that is going to be transformed. This is the case
in which the definition of the replacing agent does not depend on the definition
being transformed.

Clearly, this condition is sufficient to guarantee that no extra loops are intro-
duced by the transformation. For instance, it rules out the situation described
above, in which we replaced ¢(z) with p(x). Moreover, it is immediate to check.
The disadvantage is that it clearly does not allow to introduce recursion inside
a definition: For instance in the above example we might want to replace p(ys)
with ¢(ys). Notice that this replacement does introduce a loop in the form of a
direct recursion inside the definition of p. Such a step would be clearly forbidden
by the condition (a) above. In order to be able to perform also this second re-
placement we need an applicability condition alternative to (a). Here we provide
such an alternative condition, namely, (b): when the replacing agent is at least
as efficient as the replaced one. Referring to the simulation semantics this is the
case when the following holds: if the replaced agent can compute an “answer”
constraint ¢ with a transition sequence which uses n procedure expansions, then
the replacing agent can also compute the answer ¢ for the replacing one in m
procedure expansions with m < n. This is undoubtedly a desirable situation
which fits well in the natural context in which the transformation is performed
in order to increase program’s execution speed. Moreover, in the above example
we have that ¢(ys) is equivalent to p(ys) and more efficient than p(ys), because
it requires one procedure expansion less to “reach” the same answer. Thus con-
dition (b) is flexible enough to allow the above replacement and therefore to
introduce recursion, which can be seen as an example of wanted loop.

2 Preliminaries

In this section we briefly recall the definition of ccp. We refer to [26] for more
details. The language ccp is parametric w.r.t. a cylindric constraint system
C = (C, <, A, true, false, Var,3,5). Roughly speaking, such system represents
a set of logical formulas C (constraints) closed under conjunction (A) and ex-
istential quantifier (3). The relation <C C x C is an ordering relation whose

inverse represents the notion of logical entailment. Var, with typical elements
Z,Y,---, is the set of variables which can appear in the constraints. § is a func-
tion from Var x Var into constraints, which gives true on all the pairs of identical
variables (diagonal elements). Intuitively, d,, represents the equality constraint
between x and y. In the following, the notation x indicates a sequence of the
form x1,...,xn- The processes are described by the following grammar

Processes P ::=[D, A]
Declarations D ::=€ | p(%) - A| D, D
Agents A = stop | tell(c) | Y1 ask(c;) = A; | A|| A| 3, A | p(2)

The agent stop represents successful termination. The basic actions are given
by ask(c) and tell(c) constructs, where c is a finite constraint, i.e. an algebraic
element of C. These actions work on a common store which ranges over C. ask(c)
is a test on the current store and its execution does not modify the store. We
say that ask(c) is a guard and that is enabled in d iff ¢ < d. If d is the current
store, then the execution of tell(c) sets the store to ¢ A d. The guarded choice
agent Z:-L:l g; — A; selects nondeterministically one g; which is enabled, and
then behaves like A;. If no guards are enabled, then it suspends, waiting for
other (parallel) agents to add information to the store. Parallel composition is
represented by ||. The situation in which all components of a system of parallel
agents suspend is called global suspension or deadlock. The agent 3, A behaves
like A, with x considered local to A. Finally, the agent p(%) is a procedure call,
where p is the name of the procedure and Z is the list of the actual parameters.
The meaning of p(Z) is given by a procedure declaration of the form p(g) :- A,
where ¢ is the list of the formal parameters. A set of declarations constitutes a
program.

The operational model of ccp, informally introduced above, is described by a
transition system T = (Conf, —), where the set of configurations is defined as
Conf = Processes x C. Sometimes we will need to indicate the the number (0 or
1) of procedure expansions taking place during a transition. In that case we will
use the notation —,,, where n is the number of procedure expansions. Table 1
describes the rules of T'.

The guarded choice operator models global non-determinism (R2), in the
sense that it depends on the current store whether or not a guard is enabled,
and the current store is subject to modifications by the external environment
(R1). R3 and R4 describe parallelism as interleaving. To describe locality (R5)
the syntax has been extended by an agent 3% 4 in which z is local to A and d is
the store that has been produced locally on z. Initially the local store is empty,
ie. 3,4 = ElgmeA. The procedure expansion is modeled by R6. Ag stands for

024 Elg‘” and it is used to establish the link between the formal parameters § and
the actual parameters . The notation 65,4, a4,....a,, F€Presents the conjunction
of the constraints dz,q4,,---,0z,4,- LThe variables & are introduced in order to
avoid problems related to name clashes between and g; they are assumed to
occur neither in the procedure declaration nor in the procedure call.

Note that in a transition, only the agent part of the process is modified.
Namely, if ([D, A],c¢) — ([D', A'], '), then D' = D. However, in order to define

the notion of simulation, we find it convenient to have the program explicit in
the configuration.

R1 ([D,tell(c)],d) —o {[D, stop],c A d)
R2 ([D,> ", gi = Ail,d) —o {[D, A;],d) j €[1,n] and g; = ask(c) andc <d

([D, A],c) —n (D, A],)

3 D, B 4l,) —u (D, B[AT.d)

([D, 4],) —n ([D, A,)

R4 D, A Bl.o) = (D, A | BL.)

([DzA]:d/\ ch) —n ([D7 B]zdl>

R5 d d’ !
([D) EmA])c) —n ([Da Elm B]7C/\ 3od)

R6 ([D,p(@)],c) — (D, A3A],c) p(@ - A€D

Table 1. The transition system 7.

We describe now what we intend to observe about a process. Intuitively, for
every possible initial store (input) we want to collect the results (outputs) of all
possible finite computations.

Definition 1 (Observables). Given a process P, we define its observables as
follows:

O(P) = {{c,c') | there exists P' s.t. (P,c) —* (P,c') /—}

where #— denotes the absence of outgoing transitions and —* denotes the
reflexive and transitive closure of —». |

In some cases we will need to refer to the number of procedure expansions
taking place during a sequence of transitions. We will then use the notation
—+, where n > 0 represents such number. Formally:

(P,C) —>5 (P,C)
(Pyc) —yym (P,) if (Pc) —, (P",c") and (P",c") —7, (P!,)

m

3 Simulation

In this section we introduce the notion of simulation for ccp programs and agents.
This will be the key semantic concept throughout the paper, and will allow us
to characterize — among other things — whether a transformation is correct or
not.

The main reason why we introduce the notion of simulation is that it has
strong properties (like compositionality) that are crucial for proving the correct-
ness of the replacement. Moreover, simulation semantics is correct with respect
to the observables.

Our notion of simulation is inspired by the homonymous notion in theory of
concurrency, see for instance [30]. In process algebras like CCS simulation equiv-
alence is considered too weak, because it is not correct w.r.t. maximal trace
semantics, which is the standard notion of observables. Researchers in concur-
rency theory usually consider, instead, the stricter notion of bisimulation [20]. In
the case of ccp, however, the standard notion of observable (final stores) is more
abstract, and the asynchronous nature of communication allows us to maintain
a more abstract equivalence also when considering the issue of compositionality,
in the sense that less information is needed to achieve the closure under contexts.
Furthermore, being a weaker relation, simulation has the advantage of allowing
us to use transformation rules which are applicable in more cases.

In our definition of simulation for ccp, the main differences w.r.t. the classical
notion is that we consider the simulation at the level of the stores rather than
of the actions. This is because of the asynchronous nature of ccp communica-
tion: the relevant changes during a computations are those made in the store;
actions are relevant only for their effect on the store. This is reflected by the
definition of the transition system: the transition relation is unlabeled and the
configurations contain the store. In CCS, on the contrary, transitions are labeled
by actions and there is no concept of store. Another difference is that we impose
a condition on terminal configurations: when a process terminates we require
that the simulating process eventually terminates as well and produces the same
store. We introduce this condition, which has no analogous in the classical notion
of simulation, in order to achieve correctness w.r.t. the observables. Finally, we
require a simulation to be joint-closed (see below). Again, this condition has no
counterpart in CCS, and it is needed here to ensure compositionality.

Definition 2. A relation R C Confx Conf is joint-closed iff for every d € C and
every pair ({Proc, c), (Proc',c')) € R we have that ({Proc, cAd),{Proc',c'Ad)) €
R. O

Recall that a program is a set of declarations. In the sequel we indicate
programs by D, D' etc., and processes by P, P’ etc.

Definition 3 (Simulation on agents). A relation S C Conf x Conf is a sim-
ulation iff it is joint-closed, and for every pair ({{D1,A1],c1), (D2, As],c2)) in
S the following two conditions hold:

(i) If {[D1, A1],c1) — {[D1,A}],¢}), then for some AL, b, ([Da, As],c2) —*
([Da, Ab],c5), ¢ > ¢, and ({[D1, A], c1),{[D2, 43],¢5)) € S.

(44) If ([D1, A1],c1) #—, then for some Ay, ([D2, As], ca) —* ([D2, A5], 1) #—-

O

As a notational convention, if ({P,c), (P',¢')) € S for some simulation S, we
say that (P’,¢') simulates (P,c) and we write (P,c) < (P',¢'). Furthermore, we
say that the process P' simulates P, notation P < P, iff (P,true) < (P', true).
Note that, by joint-closedness, P < P’ implies that (P,¢) < (P’,c) for every
¢ € C.

The following proposition states the correctness of simulation w.r.t. the ob-
servables:

Proposition 4. If P < P, then O(P) C O(P').

Proof (Sketch) Let {¢,d) € O(P). Then there exist Py, P, ... P, and ¢o,c1, - - - Cn,
with n > 0, such that

(P,C) = <P0,Co) — <P1,01> —_— ... (Pn,cn) = (Pn,d> 7L>

Since P < P, one can show by induction on n that there exist Py, P[,... P, P},
and ¢j,c},...c, such that Vi € {1,...,n}, (P, ;) 9 (P/,¢c), ¢i < ¢, and

(P',c) = (Fy,co) —" (P,c}) —" ... —" (P, cp) —" (Pryq,d) /=
Hence we have {c,d) € O(P"). O

We extend now the definition of simulation to agents and to programs. The
first notion will provide the basis for the correctness of the replacement opera-
tion. The second notion will allow expressing a sufficient condition for correct-
ness: when a transformed program is reciprocally similar to the original one,
then we can be sure that the transformation is correct.

Definition 5 (Simulation and equivalence on agents and programs).
Let D, D' be two programs, and A, A' be two agents. We say that

— A’ simulates A in D, written A <p A', iff [D,A] < [D, A"].

— A’ is equivalent to A in D iff Adp A" and A’ <p A.

— D' simulates D, written D < D', iff for every agent A, [D, A] < [D', A].
— D is equivalent to D' iff D < D' and D' < D. d

Example 6. Consider the following programs

D :{p(z) - q(x) D":{p(z) - tell(x =a) D" :{p(z) - p().
q(z) - tell(z = a) } q(z) - tell(x = a) } q(z) - tell(z = a) }
It is straightforward to check that [D, p(z)], [D, ¢(z)], [D', p(z)], [D’, ¢(z)], [D", ¢(x)]
all simulate each other; moreover, they all also simulate [D", p(x)], while [D", p(z)]
does not simulate any of them. Consequently, p(z) simulates ¢(z) in D and in
D', but not in D", while ¢(z) simulates p(z) in all three programs. Finally, D
and D' are equivalent to each other and they both simulate D", while D" does
not simulate D nor D’. O

Simulation satisfies the following properties.
Proposition 7.

1. The relations < (on configurations, processes and programs) and <p are
reflexive and transitive.

2. The simulation between agents is preserved by contexts, that is, if A <p A’,
then C[A] <p C[A'] for any context C[] (compositionality). O

Proof

1.

2.

4

Immediate, by reflexivity and transitivity of the entailment relation of the
constraint system

By case analysis on the various operators. We illustrate here the case of the
parallel operator, which is usually the one which causes problems. For the
full proof we refer to [2]. Assume that [D, A] < [D,A’]. We want to show
that for any agent B, [D, A || B] < [D, A’ || B]. To this purpose, define

S ={{{[D, B || B],e1),{[D, Bz || B, ¢2)) | {[D; Bi];c1) < ([D, Ba], ¢a),

c1 < cp and B € Agents}

By definition, (([D, A || B], true), ([D, A" || B], true)) € S. We show now that

S is a simulation. It is easy to see that S is joint-closed. Further, let ({[D, B ||

Bl,c1),{[D,Bs || B],c2)) € S. We need to show that the properties (i) and

(ii) of Definition 3 are verified.

(i) Whenever we have a transition from ([D,Bj || B],c1), it is either a
transition of the form

(a) (D, B | B],a1) — ([D, B; || B),¢}) (i-e. By makes a step and B is
idle), or

(b) ([D, B || B],e1y — ([D, B || B'],c}) (i.e. B makes a step and By
is idle).

We consider the two cases separately.

(a) If it is By which makes the step, then we have also ([D, B1],¢1) —
([D, Bi], c}) and, by definition of S, we can derive {[D, Bs], c2) —*
([D, Bj], ch), with ¢} < ¢, and ([D,Bj],ci) < ([D,Bj],ch). Con-
sequently we have ([D,B, || B],cs) —* ([D,B) || B],c}) with
([D, By || Bl, c1),([D, By || Bl,c5)) € S and ¢) < ¢5.

(b) If it is B which makes the step, then let ¢ = ¢; A ¢’ for some
suitable ¢'. Since ¢; < ¢z, we will also have ([D, B || B],c2) —
([D,B2 || B'],ch) with ¢4 = 2 A ¢'. By the condition of joint-
closedness, ([D,Bj],c¢}) < ([D,B}],ch) holds. Furthermore ¢} =
ci AN < eaAe' = cy. Hence (([D, By || B'],c,),{[D, Bz || B'],c5)) € S
and ¢] < ¢

(ii) It <[D:Bl ” B],C1> 7L>7 then <[DJBl]Jcl 7L> and <[D,B],Cl> 7L> By
definition of S we have that ([D, Bs],c2) —* ([D, Bs],c1) #—, from
which we derive ([D, Bz || B],c2) —* ([D, B} || B],c1) /—-

The replacement operation and its partial correctness

Given a program D, the replacement operation consists in replacing a number
of agents {A1,...,A,} with new agents {A},..., AL} in the bodies of some of
the definitions of D. Here, what we are looking for are conditions sufficient to
ensure that the resulting program is equivalent to D. In this section we make
the first step in this direction by showing that if each A; simulates A} (in D)
then D simulates the program D' resulting from the transformation. In other
words, the transformation is partially correct.

As mentioned in Proposition 7, the property of “being simulated by” is car-
ried over through context, therefore when we replace A by A’ in the body of
the definition p(z) :- C[A], we can — without loss of generality — look at it as
if we were actually replacing its whole body, i.e. C[A] by C[A']. This simpli-
fies the notation of the following result, which is the main point of this section
and relates the notion of simulation between agents to the notion of simulation
between programs.

Theorem 8 (Partial Correctness). Consider the following ccp programs
D = {pi(%:) - Ai}icq,..ny U E
D' = {pi(%:) - Aj}icqr,ny U E

If, for each i € {1,...,n}, A, <p A; holds, then D' < D holds.

Proof Let S be the relation
S ={({[D", F],¢),([D, H],d)) | ([D, F],c) < ([D,H],d)}.

In order to prove the thesis it is sufficient to show that S is a simulation. It is
easy to see that S is joint-closed. We prove now that it satisfies the properties
(i) and (ii) of Definition 3.

Let ({[D', F],c),([D, H],d)) be a generic pair in S.

(i) Assume that
(D', Fl,c) — (D', F], ') (1)

We must prove that there exist H' and d' such that ([D, H|,d) —* ([D, H'],d)
with ¢/ <d' and (([D', F'],c'),{[D, H'],d')) € S. We consider two cases, de-
pending on whether the transition (1) contains or not a procedure expansion
in the part of D' which is different from D.

1. Assume that (1) contains no procedure expansions, or else they are con-
fined to the E part of D'. In this case the same transition can take place
also in D, i.e. we have ([D, F|,c) — ([D, F'],c'). By definition of S we
know that ([D,F],c¢) < ([D, H],d). Hence there exist H’', d' such that
([P, H],d) —* ([D, H'],d") with ¢ < d' and ([D, F'],c'} < ([D,H'],d').
By definition of S, we have (([D’, F'],c'},{[D, H'],d')) € S.

2. Assume now that (1) contains a procedure expansion in the subset
{pi(Z;) - Al}tieqr,...ny of D'. Then F must have the form C[p;(7)]
where C[] is some context and i € {1,...,n}. Hence F' = C[AYA]]
and ¢’ = c. If we consider the corresponding procedure expansion in
D, we have ([D, F],c) — ([D,G],c), where Let G = C[AYA;]. Since
Al dp A;, by Proposition 7 we have that (D, F'],¢) < ([D,G],c). Fi-
nally, by definition of S, we have ([D, F|,c) < ([D, H],d). Hence there
exists H' and d' such that ([D,H],d) —* ([D,H'],d') with ¢ < d'
and ([D,G],¢) < ([D,H'],d'). By transitivity of <, we deduce that
([D, F'],c) < ([D, H'],d'), which implies ({([D', F'],c),{[D,H'],d")) € S.

(ii) Assume that ([D', F],¢) /—. Then ([D, F],c) /- as well. By definition
of § we have ([D, F|,c) < {[D,H],d). Hence there exists H' such that

([D,H],d) —" ([D, H'],c) #=. 0

Theorem 8 ensures that if the replacing agents are simulated by the replaced
ones then the resulting program is simulated by the original one, i.e. the trans-
formation is partially correct. In order to achieve total correctness we also have
to find conditions which ensure that the resulting program simulates the original
one. For this purpose, it would be nice if the converse of the above result would
hold, namely, if 4; <p A} would imply D < D'. Unfortunately this is not the
case: Consider again the programs in Example 6, recall that p(z) simulates and
is simulated by ¢(z) in D. Now notice that D" is the result of replacing g(x) by
p(z) in the body of the first definition of D. The fact that D" is simulated by D,
but does not simulate D, shows that the converse of the above theorem does not
hold. Hence, in order to obtain applicability conditions for the total correctness
of the replacement operation we have to devise new additional tools.

5 Total Correctness by Independence

Example 6 shows a case of program transformation (from D to D") in which total
correctness is not achieved. If we look at the details of the transformation, we
note that the replacement of ¢(x) by p(z) introduces a loop in the program. As
we mentioned in the introduction, ensuring that no unwanted loops are brought
into the program is the crucial point of ensuring total correctness. In fact, the
easiest way to ensure total correctness for the transformation is to require that
the definition of the replacing agents does not depend on the definitions that are
about to be transformed. To formalize this concept, we introduce the following
definition.

Definition 9 (Dependency). Let D be a program, and p and q be predicate
symbols. We say that p refers to q in D if there is a a definition in D with p in
the head and q in the body. We say that p depends on q in D if (p,q) is in the
reflexive and transitive closure of the relation refers to. Finally, we say that an
agent A depends on p if in A occurs a predicate which depends on p. |

We can now state our first result on total correctness. Because of space rea-
sons, for its proof we refer to [2].

Theorem 10 (Total Correctness 1). Consider the following ccp programs

D = {pi(%;) - Ai}ic1,..ny U E
D' = {pi(%;) - Aj}icqr,ny U E
If, for each i € {1...n}, the following two conditions hold:

(1) A; is equivalent to A} in D,
(2) for every j € {1,...,n}, Al does not depend on p;.

then D is equivalent to D’. O

In other words, if condition (2) is satisfied, then the converse of Theorem 8 holds.
Condition (2) corresponds to the condition (a) mentioned in the introduction,
and it ensures, syntactically, that no loops are introduced by the transformation.
This confirms our claim that, as long as the replacing agents are equivalent to
the replaced ones, if the transformation is not correct then it is only because of
the introduction of some unwanted loop.

6 Total Correctness by Improvements

In this section we propose a second method for guaranteeing that no unwanted
loops are introduced. While the one seen in Theorem 10 is syntactic (based
on Condition (2)), the one we propose here is based on the semantics, and
formalizes the requirement (b) mentioned in the introduction. The resulting
approach is more complex than the one based on Theorem 10 but it is often
more useful for program optimization. The crucial concept here is the one of
improving simulation, which is a notion of simulation between agents that takes
into account the number of procedure expansions in the transitions.

Definition 11 (Improving simulation on configurations). A relation S C
Conf x Conf is an improving simulation iff it joint-closed and for every pair

({[D1, A1], 1), {[D2, As], c2)) € S the following two conditions hold:

(i) If{[D1, A1],c1) —n, {[D1,A1],c}) then for some Ay, ¢y, na, ([Da, Az], co)—>7,,
<[D27Al2]acl2)7 ni Z na, Cll S C‘IZ) and (<[D17All]acll)a <[D27Al2]aclz)) €S.
(i) If ([D1, A1],c1) #—, then for some A}, ([Da2, As], c2)—§([D2, A4], c1) #—.
O

As a notational convention, if ({P, c), (P',c')) € S for some improving simula-
tion S, then we say that (P’, ¢') improves on (P, c) and we write (P, c) < (P’ ¢').
Again, we further say that the process P’ improves on the process P (P < P')
iff (P, true) < (P',true).

Now, in order to present the other results concerning the total correctness of
the replacement operation, we need to extend the concept of improving simula-
tion to agents and programs.

Definition 12 (Improvement relation on agents and programs). Let D,
D' be two programs, and let A, A’ be two agents. We say that:

— A" improves on A in D, written A <p A', iff [D,A] X [D,A"].
— D' improves on D iff, for every agent A, [D, A] < [D', A]. a

The relation of improvement is strictly more restrictive than the one of sim-
ulation: if an agent (resp. process, program) improves on another one then it
certainly simulates it as well. Of course, the converse is not true. Consider again
the programs in Example 6. It is straightforward to check that:

— In D, g(z) improves on p(x), but not vice-versa;

— In D', q(x) improves on p(z), and vice-versa;

— In D", q(z) improves on p(z) but not vice-versa (p(z) does not even simulate
g(z) in D).

Furthermore, we also have that D' improves on D, while D simulates D' but it
is not an improvement on it. In fact in D’ the agent p(z) after a single procedure
expansion performs the action tell, while in D the same agent must perform two
procedure expansions before performing the tell action.

Proposition 7 applies to the improvement relation as well: all improvement re-
lations are reflexive and transitive. Moreover, the improvement relation between
agents is invariant under contexts.

We are now ready to state our main result.

Theorem 13 (Total Correctness 2). Consider the following ccp programs

D ={pi(:) - Aiticqr,.ny U E
D' ={pi(#:) - Al}ict,..ny U E

1. If, for each i € {1,...,n}, A; <p A} holds, then D' improves on D.
2. If, in addition, for each i € {1,...,n}, A} Ip A;, then D' is equivalent to
D.

Proof We prove only Part (1). Part (2) is a consequence of the combination of
Part (1) and Theorem 8.
Let S be the relation

§= {(([D,F],C),([DI,H],d)) | {[D, F],c) = ([D,H],d)}.

In order to prove the thesis it is sufficient to show that S is an improving simu-
lation. It is easy to see that S is joint-closed. We prove now that it satisfies the
properties (i) and (ii) of Definition 11.

Let ({[D, F],c),{[D', H],d)) be a generic pair in S.

(i) Assume that {[D, F],c) —, ([D, F'],c'), where n = 0 or n = 1. We must
prove that there exist H' and d' such that ([D', H],d) —, {[D',H'],d")
with m <n, ¢ <d', and (([D, F'],c),{[D',H'],d")) € S.

By definition of S we have ([D, F],c) < ([D, H],d), hence there exist H',
m and d' such that

([D, H],d) — (D, H'],d) (2)

with m <mn, ¢’ <d', and ([D, F'],d) < ([D,H'],d').

We consider two cases, depending on whether the transition sequence (2)
contains or not a procedure expansion in the part of D' which is different
from D.

1. Assume that (2) contains no procedure expansions, or else they are con-
fined to the E part of D'. In this case the same transitions can take place
also in D', i.e. we have (D', H|,d) —} ([D',H'],d'). Furthermore, by
definition of S, we have (([D, F'],c'),([D', H'],d")) € S.

2. Assume now that (2) contains a procedure expansion in the subset
{pi(Z;) - Ai}ieqs,...ny of D'. Since m can only be 1, then (2) must
be of the form

<[D=H]=d) _)3 <[D=G]7e> —1 <[DJL]76) _)3 ([D7H1]7d1>
where G = C[p;(;)] and L = C[Ag A;]. If we replace D by D' we obtain
(D', H],d) —5 {([D',Gl,e) — ([D', L] e)
where L' = C [Ag’ A}]. Furthermore, since A; <p A}, by Proposition 7 we
have that ([D, L],e) < {[D,L'],e). Hence
([D,L'],e) —5 ([D, H"],d")
with d' < d" and ([D, H'],d') <X {[D,H"],d"). Since there are no pro-
cedure expansions, the same sequence of transitions can be obtained in
D'
(D', L'],e) —5 (D', H"],d")
Finally, observe that, by transitivity of < we have ([D, F'],¢'y < ([D, H"],d").
Hence, by definition of S, we obtain ({[D, F'],c'),{[D', H"],d")) € S.

(ii) Assume that {[D, F],c) /—. By definition of S, ({[D, F],¢),{[D, H],d)) €
S, hence there exists H' such that ([D, H],d) — ([D,H'],c) #—. Since
there are no procedure expansions, the same sequence of transitions can be
obtained in D': {[D’, H],d) —¢ ([D', H'],c) #—. O

Two remarks are in order: First, when we apply the replacement operation
in order to improve the efficiency of a program it is natural to require that the
replacing agent be equivalent to and more efficient than the replaced one. The
above theorem shows the pleasing properties that under those circumstances the
replacement is always correct and that it yields a program which is an improve-
ment on the initial one. Secondly, from Proposition 4 it follows that, when the
above theorem applies, then also the semantics of the observables is preserved,
i.e. for any agent A, O([D’, A]) = O([D, A]) holds.

7 An extended example: minimum and maximum
element of a list

In order to illustrate some of the possible uses of the applicability conditions
formulated above, we use here a typical example of an unfold-fold transformation
system. Let D be the following ccp program

min(list,m) - (ask (Jz,w,zs list = [x,w|xs]) — 3. 2,25 (tell(list = [x|xs]) || min(xs,z)
| smaller(x,z,m))
+ ask (3, list = [x]) — Fo (tell(list = [x]) || tell(m = x)))

max(list,m) - (ask (Jo,w,zs list = [x,w,|xs]) = 3 2,25 (tell(list = [x|xs]) || max(xs,z)
|| greater(x,z,m)
+ ask (3 list = [x]) = Fo (tell(list = [x]) || tell(m = x)))

minmax(l,min,max) :- min(l,min) || max(l,max)

Where smaller and greater are defined in the obvious way. Here min(list,m) returns
in m the minimum value of the non-empty list list: in the first branch of the ask
choice, min checks if list contains more than one element, in which case is call
itself recursively. On the other hand, if list contains only one element x, then the
second branch is followed and m is set equal to x. max works in the same way,
and minmax reports both the minimum and the maximum of the values in the
list. Notice that the definition of minmax traverses the input list twice. This is
a source of inefficiency, which can be fixed via an unfold/fold transformation.
The first operation we encounter is the unfolding, which consists of replacing an
atom with the body of its definition. Consider the program

D = {di: q(§) - Cp(d)]
dy: p(z):- A }UE

then unfolding p(?) in di means replacing d; with d} : ¢(§) - C[AZA]. This
operation can be regarded as an instance of replacement. In fact, its correctness
follows in a straightforward manner from Theorem 13: it is easy to show that
in the above program AYA is equivalent to, and improves on p(9). By applying
twice the unfolding operation to the definition of minmax, we obtain the following
definition.

minmax(l,min,max) :-
(ask (Fz,w,es | = [x,w|xs]) = F:,z,2s (tell(l = [x|xs]) || min(xs,z) || smaller(x,z,min))
+ ask (Fz 1 = [x]) = o (tell(l = [x]) || tell(min = x)))

(ask (Elm’,w’,ms’ | = [X',W',|XS']) d
Forwr wsr (tell(l = [X'|xs7]) || max(xz’,2") || greater(x’,z’,max))
+ ask (For | = [X7]) = For (tell(l = [X]) || tell(max = x')))

Now, it is straightforward to prove that if a A b = false, then (((ask(a) —
A) + (ask(b) — B)) || ((ask(a) = C) + (ask(b) — D))) improves on (ask(a) —
(A]) + (ask(b) — (B || D)) and vice-versa. Thus, by Theorem 13, we can
safely apply a replacement operation which yields

minmax(l,min,max) :-
ask (Fz,w,0s | = [x,W|xs]) —
(Fie,ws (tell(l = [x|xs]) || min(xs,z) || smaller(x,z,min))
[a0 ,e (tell(l = [x'|xs]) || max(xs',z") || greater(x',z",max)))

+ ask (o I =[x]) = (T (tell(l = [x]) || tell(min = x)))
| 3u (tell(l = [x]) || tell(max = x'))

Now, with other (intuitively immediate) replacement operations whose correct-
ness is guaranteed by Theorem 13, we obtain the following definition.

minmax(l,min,max) :-
ask(Jz,w,as | = [xW[xs]) = 3, .1 405 (tell(l = [x|xs]) || smaller(x,z,min) || min(xs,z)
|| max(xs,z") || greater(x,z’,max))
+ ask(3z | = [x]) = Fz (tell(min = x) || tell(max = x) || tell(I = [x]))

We are now ready for the last operation, which corresponds to a folding one: we
replace min(xs,z) || max(xs,z') with minmax(xs,z,z’).

minmax(l,min,max) :-
ask(3z,w,zs | = [X,w[xs]) = 3, .1 4.0 (tell(l = [x|xs]) || minmax(xs,z,z)
|| smaller(x,z,min) || greater(x,z’,max))
+ ask(3, | = [x]) = F (tell(l = [x]) || tell(min = x) || tell(max = x))

Notice that this operation has made recursive the definition of minmax. As
we mentioned in the introduction, this is an example of a wanted loop. Clearly,
for this last operation we could have not applied Theorem 10

As the mimmax example shows, the applicability conditions we propose for
the replacement operation are flexible enough to let this operation mimic both
unfolding, folding and usual (yet not trivial) “cleaning-up” operations. (See Ap-
pendix A for a list of agents which can be interchanged). Actually, it is possible
to devise a fold-unfold transformation system whose proof of correctness is based
on Theorem 13. This has been done in [2]. Such a system is not quite as powerful
as a tailored folding operation such as the one presented in [9] (which, on the
other hand, ensure only a weaker form of correctness of the transformation), but
this accounts for the flexibility of the conditions we presented.

8 Concluding Remarks

For experts in transformations, the applicability conditions outlined in Theorem
13 are not fully surprising: similar concepts were first employed in Logic Pro-
gramming (for instance in [28,4,5,7]) and then applied to functional programs
in [24, 25]. However, this is the first time that they are applied to a concurrent
context. To the best of our knowledge, this is the first paper which treats the
notion of replacement in a concurrent language.

Acknowledgements We would like to thank the anonymous referees of LOP-
STR and of APPIA-GULP-PRODE for the useful suggestions.

References

1. N. Bensaou and I. Guessarian. Transforming constraint logic programs. Theoretical
Computer Science, 206(1-2):81-125, 1998.

2. M. Bertolino. Transformazione dei programmi concorrenti Tesi di Laurea, Dip.
Informatica e Scienze dell’ Informazione, Universita di Genova, Genova, Italy, 1997.

3. A. Bossi and N. Cocco. Basic Transformation Operations which preserve Com-
puted Answer Substitutions of Logic Programs. Journal of Logic Programming,
16(1&:2):47-87, 1993.

4. A. Bossi, N. Cocco, and S. Etalle. On Safe Folding. In M. Bruynooghe and
M. Wirsing, editors, Programming Language Implementation and Logic Program-
ming - Proceedings PLILP’92, volume 631 of Lecture Notes in Computer Science,
pages 172-186. Springer-Verlag, 1992.

5. A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs.
Journal of Logic and Computation, 6(1):79-120, February 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Cook and J.P. Gallagher. A transformation system for definite programs based
on termination analysis. In F. Turini, editor, Proc. Fourth Workshop on Logic
Program Synthesis and Transformation. Springer-Verlag, 1994.

S. Etalle and M. Gabbrielli. On the correctness of the replacement operation for clp
modules. Journal of Functional and Logic Programming, February 1996. available
at http://www.cs.tu-berlin.de/journal/jflp.

S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166(1):101-146, 1996.

S. Etalle, M. Gabbrielli, and M. C. Meo. Unfold/Fold Transformations of CCP Pro-
grams. In D. Sangiorgi and R. de Simone, editors, CONCUR98 — 1998 International
Conference on Concurrency Theory, LNCS 1466, pages 348-363. Springer-Verlag,
1998.

N. De Francesco and A. Santone. Unfold/fold transformation of concurrent pro-
cesses. In H. Kuchen and S.Doaitse Swierstra, editors, Proc. 8th Int’l Symp. on Pro-
gramming Languages: Implementations, Logics and Programs, volume 1140, pages
167-181. Springer-Verlag, 1996.

H. Fuyjita, A. Okumura, and K. Furukawa. Partial evaluation of GHC programs
based on the UR-set with constraints. In R.A. Kowalski and K.A. Bowen, edi-
tors, Logic Programming: Fifth International Conference and Symposium, volume
2, pages 924-941. Cambridge, MA: MIT Press, 1988.

P.A. Gardner and J.C. Shepherdson. Unfold/fold transformations of logic pro-
grams. In J-L Lassez and G. Plotkin, editors, Computational Logic: Essays in
Honor of Alan Robinson. MIT Press, 1991.

M. Gengler and M. Martel. Self-applicable partial evaluation for the pi-calculus. In
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM ’97), pages 36-46. ACM, 1997.

H. Hosoya, N. Kobayashi, and A. Yonezawa. Partial evaluation scheme for con-
current languages and its correctness. In L. Bougé et al., editors, Euro-Par’96 -
Parallel Processing, Lyon, France. (Lecture Notes in Computer Science, vol. 1123),
pages 625—632. Berlin: Springer-Verlag, 1996.

Niels Jgrgensen, Kim Marriott, and Spiro Michaylov. Some global compile-time
optimizations for CLP(R). In Vijay Saraswat and Kazunori Ueda, editors, Inter-
national Logic Programming Symposium, pages 420-434, San Diego, 1991. MIT
Press.

M.J. Maher. A transformation system for deductive databases with perfect model
semantics. Theoretical Computer Science, 110(2):377-403, March 1993.

M. Marinescu and B. Goldberg. Partial-evaluation techniques for concurrent pro-
grams. In ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM ’97), pages 47-62. ACM, 1997.

Kim Marriott and Harald Sgndergaard. Analysis of constraint logic programs. In
Saumya Debray and Manuel Hermenegildo, editors, Proceedings North American
Conference on Logic Programming. MIT Press, 1990.

Kim Marriott and Peter J. Stuckey. The 3 r’s of optimizing constraint logic pro-
grams: Refinement, removal and reordering. In POPL’93: Proceedings ACM SIG-
PLAN Symposium on Principles of Programming Languages, Charleston, January
1993.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proc. of the 5th GI conference, Lecture Notes in Computer Science, pages
167-183. Springer-Verlag, 1981.

A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. Journal of Logic Programming, 19,20:261-320, 1994.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. Proietti and A. Pettorossi. Synthesis and transformation of logic programs
using unfold/fold proofs. Journal of Logic Programming, 41(2-3):197-230, 1999.
D. Sahlin. Partial Evaluation of AKL. In Proceedings of the First International
Conference on Concurrent Constraint Programming, 1995.

D. Sands. Total correctness by local improvement in program transformation. In
Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL). ACM Press, 1995.

D. Sands. Total correctness by local improvement in the transformation of func-
tional programs. ACM Transactions on Programming Languages and Systems,
18(2):175-234, 1996.

V.A. Saraswat, M. Rinard, and P. Panangaden. Semantics foundations of concur-
rent constraint programming. In Proc. Eighteenth Annual ACM Symp. on Princi-
ples of Programming Languages. ACM Press, 1991.

T. Sato. Equivalence-preserving first-order unfold/fold transformation system.
Theoretical Computer Science, 105(1):57-84, 1992.

H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In
Sten-Ake Tarnlund, editor, Proc. Second Int’l Conf. on Logic Programming, pages
127-139, 1984.

K. Ueda and K. Furukawa. Transformation rules for GHC Programs. In Proc. Int’l
Conf. on Fifth Generation Computer Systems, pages 582-591. Institute for New
Generation Computer Technology, Tokyo, 1988.

R.J. van Glabbeek. The linear time - branching time spectrum. In J.C.M. Baeten
and J.W. Klop, editors, Proc. of CONCUR 90, volume 458 of Lecture Notes in
Computer Science, pages 278297, Amsterdam, 1990. Springer-Verlag.

A Appendix: Mutually replaceable Agents

In this appendix we present a list of mutually replaceable agents, that is, agents
which, under the reported applicability conditions, are equivalent to each others
(in all programs) and which improve on each other (in all programs). In virtue of
Theorem 13 these agents can (under the given conditions) be freely interchanged.
Hence the name “mutually replaceable”. The technical proofs are presented in
[2, Appendix 2].

Here, for the sake of simplicity, we write A = B as a shorthand for “A is

mutually replaceable with B”.

Properties of the parallel operator

— A stop= A
- A||B=BJ A
-Al@BlC)=@lB)[C

Properties of the tell operator

— tell(true) = stop
— tell(c) || tell(d) = tell(c A d)

Properties of the ask operator

— ask(true) - A= A
— ask(c) — (ask(d) — A) = ask(cAd) — A

Properties of the hiding operator

— 3, A = A provided that z ¢ FV(A)

— EI%EI%A = EI%EI%A provided that 3gd =d, Jze=¢
- EI%EI%A = EI%\EA provided that I3d = d

— 3gh3%A = 335" A provided that Jge = e

Mixed properties

— Jdztell(c) = tell(Fzc)

— Jz(tell(c) || A) = tell(Fze) || FZA

- 3z Y ask(c;) > A = Y1, ask(c;) — 33 A; provided that Iz¢; = ¢; for
every i € {1,...,n}

— ((ask(a) = A + ask(b) — B) || (ask(a) = C + ask(b) — D)) = ((ask(a) —
(A C)) + (ask(b) — (B || D))) provided that a A b= false

— tell(d) || Y, ask(c;) = A; = tell(d) || A; provided that ¢; < d and for
every k € {1,...,n},k#j = dAck = false

