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Abstract. In this paper we define a sequent calculus to formally specify,
simulate, debug and verify security protocols. In our sequents we distin-
guish between the current knowledge of principals and the current global
state of the session. Hereby, we can describe the operational semantics of
principals and of an intruder in a simple and modular way. Furthermore,
using proof theoretic tools like the analysis of permutability of rules, we
are able to find efficient proof strategies that we prove complete for spe-
cial classes of security protocols including Needham-Schroeder. Based
on the results of this preliminary analysis, we have implemented a Pro-
log meta-interpreter which allows for rapid prototyping and for checking
safety properties of security protocols, and we have applied it for finding
error traces and proving correctness of practical examples.

1 Introduction

Cryptographic protocols are the essential means for the exchange of confidential
information and for authentication. Their correctness and robustness are crucial
for guaranteeing that a hostile intruder can not get hold of secret information
(e.g. a private key) or to force unjust authentication. Unfortunately, the design
of cryptographic protocols appears to be rather error-prone. This gave impulse
to research on the formal verification of security protocols see e.g. [13, 6,20, 23,
18,28,29]. In this setting several approaches are based on Dolev and Yao’s [13],
where it is proposed to test a protocol explicitly against a hostile intruder who
has complete control over the network, can intercept and forge messages. By
an exhaustive search, one can establish whether the protocol is flawed or not
as shown, e.g., in [23,21, 8,16]. Clearly, a crucial aspect in this approach is try
to limit the search space explosion that occurs when modelling the intruder’s
behaviour . To this end, many solutions have been employed, ranging from hu-
man intervention to the use of approximations. In recent work [15,30,22], this
problem has also been tackled by reducing the intruder’s action to a constraint
solving problem.



The origin of this paper was our intention to investigate the possible appli-
cation of existing logic programming systems for debugging and verification of
security protocols. Logic programming tools provide natural built-in mechanisms
like backtracking to explore the search space generated by a transition system. A
direct implementation of a protocol simulator, however, would suffer from prob-
lems like state explosion, infinite-derivations, etc. To tackle these problems, in
this paper we use a combination of techniques stemming from proof theory and
program transformation. Proof theory allows us to formally specify the protocol
and intruder behaviours. Here, a systematic study of the structure of the result-
ing proofs serves as formal justification for an interesting series of optimizations.
Via sound and complete transformation, we will derive specialised rules that
form the core of the simulator we implemented in Prolog. Our techniques also
allows us to isolate a class of protocols, we called fully-typed for which, in case
of finite-number of sessions, forward exploration is guaranteed to terminate.

The reason we have chosen to specify protocols using sequent calculus is
based on the following observation. During the execution of a protocol stage two
kind of changes take place: a change in knowledge that is monotonic, as it is
not modified during later stages, and a change of state that is non-monotonic
(e.g. the presence of messages on the network). In our approach the knowledge
is modelled by a first-order theory, and the state by a multiset of first order
atoms. A protocol can be specified in a natural way by a multi-conclusion proof
system in which every proof rule corresponds uniquely to a legal protocol action.
In this setting a proof corresponds to a protocol trace. In addition to this, the
proof system allows to model a potential intruder by adding few rules modelling
its behaviour. It is then possible to check if the intruder has a way of breaking
the protocol.

Via a natural translation of our specialised proof system into Horn clauses,
we obtained a working prototype that we used in some practical experiments.
The prototype is written in Prolog, and allows the user to formally specify a
cryptographic protocol, by writing Prolog rules defining it. We want to mention
that the Prolog prototype employs in a crucial way the notion of delay decla-
rations. Specifically, delay declaration are used to make the intruder generate
on-demand messages that are partially instantiated: only the pattern expected
by one of the other principals must be explicitly generated, the remaining part
of the message can be represented via existentially quantified variables.

Plan of the paper. In Section 2, we present the language (formulae and sequents)
used to describe security protocols and safety properties. In Section 3, we present
additional proof rules for modelling the intruder. In Section 4, we analyse the
resulting proof system, and we introduce the notion of fully-typed protocols. In
Section 7, we briefly describe our Prolog implementation of a automated prover
for our logic, some experimental results, and, finally, address related works.

2 Proof Theoretic Specification of Security Protocols



The Needham-Schroeder Protocol As a working example, we will consider
the security protocol based on public-key cryptography proposed by Needham
and Schroeder in [25]. The protocol allows two principals, say Alice and Bob, to
exchange two secret numbers, that might be used later for signing messages. At
first, Alice creates a monce N, and sends it to Bob, together with its identity.
A nonce is a randomly generated value. The message is encrypted with Bob’s
public key, so that only Bob will be able to decipher the message. When Bob
receives the message, he creates a new nonce N,. Then, he sends the message
(Ng, Np) encrypted with the public key of Alice. Alice deciphers the message,
and sends back the nonce NN, encrypted with the public key of Bob. At this
point, Alice and Bob know both N, and N,. Following the notation commonly
used to describe security protocol [6], the protocol has the following rules.

1.A— B:{A Ny}, 2.B— A:{Ny, Np} i, 3. A— B:{Np}k,

2.1 The Proof System

Using a proof system for representing a protocol is natural if one considers that
at each protocol transaction two kind of changes occur in the system: First,
a change in the knowledge of the agents involved in the transaction, that is
typically persistent and thus monotonic; secondly, a change in the state of the
agents and of the network, that is typically non-monotonic. In our approach,
knowledge (which includes the specification of the protocol rules) is modelled
by a first order theory, denoted by A, and states are modelled via multisets of
atomic formulae, denoted by S. We then define multi-conclusion sequents having
the form A — &, that will be used to represent (instantaneous) configurations
during a protocol execution. The advantage of this approach wrt either coding
immediately the whole system in Prolog (as in the NRL analyser [21]), is that
in this way we can more easily prove properties of the whole system such as
Theorems 4, 5 and 7. We will use compound proof rules to specify the behaviour
of the principals. A compound proof rule has the form

Ab¢ AN — S

A— S

where S and 8’ are multisets, A and A’ are first-order theories, ¢ is a first-order
formula and F is a given provability operator. When A, A" — S’ is absent
from the premise we call it a closing rule. Here, A, A’ denotes the set AU A'.
Each protocol transaction is modelled via a compound rule where S and A
are respectively the global state and knowledge before the transaction is fired;
¢ models the conditions under which the transaction can be fired; S’ is the
state of the system after the transaction is completed; A’ is the new knowledge,
acquired during the transaction. In the rest of the paper A and A’ will be sets
of Horn Clauses, i.e. universally quantified implicational formulae indicated as
a < by A ... A\ b, where a, by, ..., b, are atoms. We allow b; to be an equality or an
inequality ¢ # s, other than this, negation is not involved, and no other tests are



allowed (like <, etc.). For the moment, the relation - will denote the provability
relation built on top of ground (variable-free) resolution. A (partial) protocol
execution starting from the state Sp and knowledge Ay (i.e., in the configuration
Ay — Sp) and ending in the configuration A,, — S,, is thus represented via
a (partial) proof tree (here and in the sequel we omit the proof trees for - when
possible) A proof is successful if each premise is satisfied. We will use non-closing
rules to specify the protocol and the intruder and a closing rule to specify the
(reachability) properties we wish to demonstrate or refute. Thus, by modifying
the closing rules of the proof system one can modify its meaning.

Knowledge and State Description Language The global state of the system
is described via a multiset containing agent states and messages. A Agent State
is an atom agent (ID,Role,Step) where ID is the agent’s identifier, Role is its
role in the protocol (e.g., initiator or responder), and Step is a counter denoting
the current step of the protocol the agent is at. In presence of parallel sessions,
some agent ID may occur more than once in the global state, in particular, it
may occur while having different roles (agent “a” could be at the same time
initiator of one protocol session and responder in another session). On the other
hand, Messages contain lists of objects (keys or nonces), that may in turn be
encrypted. We use enc (K,M) to represent a message encoded with the (public)
key K. More precisely, the set M of messages is defined by the following syntax
(symmetric encryption is omitted for brevity): keys and nonces are represented
as key(I) and nonce(I) where I is an integer; objects are either keys, nonces
or terms like enc(K,M); list of contents are either empty [], or [0IM] where
0 is an object, and M is a list of contents; finally a message is a term msg(M).
Knowledge is encoded in Horn clauses. Knowledge can be roughly be divided into
global knowledge, that is common to all principals (like the rules for describing a
protocol, explained in the next section) and the agents’ private knowledge, that
is encoded in unit clauses of the form knows (ID,D), where ID is the identifier of
the agent that possesses it, and D is a term such as keypar(k1,k2), key(k3),
nonce(n) and (overloading the notation) msg(m), where k1, k2, k3, n are objects,
m is a message, and the function symbols keypar, key, nonce, msg can be seen as
labels, that serve as place-holders for facilitating the retrieval of stored values.

Protocol Specification A protocol specification allows us to describe all traces
starting from a given initial state. Formally, a protocol specification is a pair
(Ap, Sp) consisting of the initial knowledge A, and the initial global state Sp.
In turn, the initial knowledge Ag can be seen as the union of A, s (the rules
that specify the protocol) and Agpowieage (the agents’ initial knowledge).

The Protocol Rules, A,yes- The rules of a generic protocol are always defined
according to a fixed pattern: an agent receives a message, removes it from the
communication media, composes a new one, and adds it to the communication
media. In order to model a protocol rule like A — B : M, we simply need
to specify which messages an agent expects or composes at a given step of the



protocol. For this purpose, we use a special predicate, namely compose, to de-
scribe the behaviour of the sender A as well as the structure of the message
M, and a special predicate, namely expect, to describe the behaviour of the
receiver B. The synchronisation of the agents can be left as part of the oper-
ational semantics defined via our proof system. expect has the following fixed
signature: expect(ID,Role,Step,Message,Knowledge). One can think of the
first four argument as being input arguments, while the last one is an output
one. The query expect (ID,Role,Step,Message,Knowledge) should succeed in
the current global knowledge whenever agent having identifier ID and role Role
at step Step can receive message Message; Knowledge is the list of facts the
agent learns during the transaction, represented by a list of terms of the form
identifier(valuey, . . . ,value, ). For instance, Bob’s role in the first transaction is
specified by:

expect (ID,responder,1,msg(enc (key (Pkb) , [key (Pka) ,nonce(Na)])),Info) : -
knows (ID,keypar(_,Pkb)) ,knows (ID,key(Pka)),
Info = [other_nonce(Na),other_key(Pka)].

here Info is used by the responder to memorise the reception of nonce Na
from the agent having public key Pka. The predicate compose is used to com-
pose new messages. In compose(ID,Role,Step,Nonce,Message,Knowledge),
one can think of the first four argument as being input arguments, while the
last two are output. The extra input argument Nonce is used for passing a fresh
nonce to the rule, in case that it is needed for composing a message. The query
compose (ID,Role,Step,Nonce,Message,Knowledge) succeeds when agent ID
in role Role at step Step can produce message Message, possibly using the
nonce Nonce, and Knowledge is the list of facts the agent learns during the
transaction. In expect and compose we only allow equalities and inequalities
between free variables but not relations like > (less than). Summarising, A, yes
is the logic program that contains the definitions of expect and compose.

The Initial Knowledge. It describes the initial knowledge of each agent via
a set of unit clauses. For a single session of Needham-Schroeder, it can con-
sists of the set of atoms: { knows (a,keypar (ska,pka)) ., knows(_,key(pka)) .,
knows (b, keypar (skb,pkb) ., knows (_,key (pkb)) ., } where the underscore _ is
the anonymous variable: knows (_,key(pka)) indicates that every agent knows
the public key of a; here “a” and “b” are the identifiers of the agents involved.

Initial Global State. Sy is the multiset of agents in their initial state. It de-
termines which agents are present and their role. Therefore, it determines also
how many parallel sessions we investigate (by doing so, we allow only a finite
number of parallel sessions). For the single session of Needham-Schroeder, the
initial global state is S = {agent(a,initiator,1), agent(b, responder,1)}. If
we wanted to analyse two sessions of this protocol, in which agent a has role
initiator in one session and role responder in the other session, all we needed to
change is the initial state, which would be: Sy = {agent(a, initiator, 1), agent(b,
responder, 1), agent(a, responder, 1), agent(c, initiator, 1)}.



Proof Rules Once we have a protocol specification (Ag, Sp), we need to embed
it in a proof system, whose interleaving operational semantics will model the
protocol behaviour.

Definition 1 (Proof System for a Protocol Specification). The (com-
pound) proof system derived from a protocol specification (Agy,So), consists of
the following two rules

A& compose(id, role, st,n,m,K) A, A" — agent(id, role, st + 1), msg(m),S

send
A — agent(id, role, st),S
provided n does not occur in A and S; A" = {knows(id, k) | k € K}.
A& expect(id, role, step, m, K) A, A" — agent(id, role, step + 1),S
recetve

A — agent(id, role, step), msg(m),S

provided that A" = {knows(id, k) | k € K}.

Where agent(id, role, step + 1), msg(m),S indicates the multiset consisting of
agent(id, role, step+ 1), msg(m) and the element of the multiset S. Notice that
these rules depend on the predicates expect and compose that are defined in
A. The side condition of the send requires n to be a fresh nonce. Actually, the
above rule applies when send needs at most one fresh nonce. Rule for where
more nonces are needed are obtained via a straightforward generalisation.

The Safety Property I1 Intuitively, our objective is to answer questions like: is it
possible to reach a final state in which the intruder has got hold of the nonces N,
and Ny ? For this purpose, we interested in safety properties that can formulated
in terms of reachability properties (if a given unwanted situation is not reachable,
then the system satisfies the safety property). To describe the state to be tested
for reachability we use a special query closing(S), whose definition is given in
a separate program IT (to be added to A) and we add to the proof system the

following closing rule.
AF closing(S)

A— S

final

For instance, to check if two agents can actually reach the end of the protocol
while exchanging each others nonces, we need the following program I71

closing(S):- subset([agent(ID1,initiator,4),agent(ID2,responder,4)],S),
knows (ID2,other_nonce(N_a)) ,knows(ID1,other_nonce(N_b)),
knows (ID2,my_nonce (N_b)) ,knows (ID1,my_nonce(N_a)) .



Proofs as Traces The proof system allows us to formally describe all possible
traces of an (interleaving) execution of the principals. A trace can be viewed in
fact as a single threaded proof for the —-sequents leading to a final state, and
in which all auxiliary conditions are satisfied. Formally, a proof is a sequence
of sequents Ag — Sp,..., Ay — Sk where A; — §; and A; 11 — S;41
correspond respectively to the lower and upper sequent of an instance of one
of the proof rules receive, and send, in which all auxiliary sequents of the form
@ | ¢ are provable for each 0 < i < k. Finally, Ay — Sk is the lower sequent
of an instance of the final rule in which all premises are satisfied. The following
property then holds.

Proposition 2 (Soundness). Given a protocol specification (Agy,Sp), and a
safety property specification II, every proof for the sequent Ay, II — Sy cor-
responds to a trace that from the initial state of the protocol leads to a final
configuration A — S in which a closing rule of I can be fired.

3 Modelling an Intruder

In order to test a protocol specification against a malicious intruder, we assume
the existence of a new agent, called Trudy, that has complete control over the
network. The task of Trudy is to get hold of secret information and/or to spoil
the communication between the honest principals, for instance by letting them
believe they have correctly exchanged nonces, while they have not. Our system
can be used for checking if such a malicious intruder is actually able to fulfil its
objectives. This is achieved by providing the following fixed rules for specifying
Trudy’s behaviour

A T(A,m)— S A& contrive(m) A — msg(m), R
intercept forge
A — msg(m),S A— TR

where 7(A,m) = {knows(trudy,n) | A b decompose(m,n). In the rule for
intercepting a message, the set of facts 7 (A, m) represents the closure of the
knowledge of the intruder with respect to what Trudy can decipher using the
predicate decompose. Following from this definition, given a message m (i.e. a
ground term), 7 (A, m) always consists of a finite set of facts. Trudy can also
create a message in order to try to cheat the other principals. Starting from her
current knowledge, Trudy uses the predicate contrive to generate a random
message of arbitrary size. This message is placed in the global state via the forge
rule. Clearly, Trudy has to possess at least a public-private key pair, and a cer-
tain number of random numbers (nonces) with which it contrives messages (if the
knowledge of Trudy is empty, Trudy is not able to contrive anything). Thus, an
intruder is a set of clauses containing the rules for decompose and contrive to-
gether with a set of facts each one storing a new nonce, knows(trudy, nonce(n)),
where n is a fresh integer, or a pair of keys, i.e., knows(trudy, keypar(sk, pk))
where sk, pk are fresh terms. We can now analyse the protocol traces in pres-
ence of Trudy. The extended proof system derived from a protocol specification



(Ap, So), a safety property specification IT and combined with an intruder spec-
ification Ayyyqy consists of the rules intercept and forge, together with the rules
send, receive and final. Now, we can describe all possible traces of an interleaving
execution of the principals and of Trudy as stated in the following theorem.

Proposition 3 (Soundness). Given a protocol specification (Ag, Sp), a safety
property specification II, every proof for the sequent Ag, I1, Aypyyqy — Sp cor-
responds to a trace of an interleaved execution of the principals and an intruder
A¢rudy that from Sy leads to a final configuration A — S that satisfies the
condition specified by II.

For example, it is possible that after the protocol has completed Trudy got hold
of one of the secret nonces. This is done by taking IT to be the following program.

closing(S) :- subset([agent(ID1,initiator,4),agent(ID2,responder,4)],S),
knows (ID2,other_nonce(N_a)), knows(ID1,other_nonce(N_b)),
knows (ID2,my_nonce(N_b)), knows (ID1,my_nonce(N_a)),
(knows (trudy,object (N_a)) ;knows (trudy,object (N_b))) .

4 Analysis and Tuning of the Proof System

During a protocol execution, Trudy can generate an arbitrary number of mes-
sages, and at any step Trudy can generate a message of arbitrary size. Thus, the
search space is infinite. In this section we show that by proof theoretic analysis
we can drastically reduce the search space, and identify a large class of proto-
col specification for which the search space is finite. First, we have to solve the
problem of the initial knowledge of the intruder. In fact Proposition 3 depends
on a specific intruder Ay,.,qy, that can be arbitrarily large. The following (new)
result shows that it is possible to build a (small) A4, which suffices:

Theorem 4. Given a protocol specification (Ao, So), and a safety property spec-
ification II then there exists an intruder I'a, ;p such that for any other intruder
Apruay: If there exists a proof for Ao, II, Aypyay — So then there exists a proof
Jor Ao, II, I'ng,.m — So-

Secondly, we have to avoid possibly infinite branches. It is straightforward to
check that this can only be achieved by bounding the number of the forge rule
in a proof. We show now that each proof is equivalent to a proof in which the
number of forge rules is equal to the number of expect rules (which is bounded
by definition). We start by noting that we can move and remove some occurrence
of the forge rule, preserving equivalence. Our proof system enjoys, in fact, the
following properties. (a) The rule forge always permutes up with send: e.g. by
permuting two adjacent send and forge rule, one obtains an equivalent proof. (b)
The rule forge permutes up with intercept and receive whenever the contrived
message is different from the intercepted or expected message. (c) An occurrence
of the forge rule which is followed by the rule final can be removed provided
we assume that the presence of messages in S does not influence the result



of the query closing(S). (d) The rule forge and intercept cancel each other out
whenever they are defined on the same message. In this case Trudy first contrives
a new message m using her current knowledge in A and then intercepts it and
decomposes it using again her current knowledge. It is not difficult to prove that
in this case we can prune both rule instances form the proof.

The above properties demonstrate that we can restrict to proofs in which each
forge rule is followed by (i.e. is just below) a receive rule, that reads the message
generated by contrive. Since the description of a protocol is finite, there might
be only a finite number of receive rules in a proof. Thus, if we disregard the
steps needed to prove -, such proofs are of bounded depth; in practice we can
now restrict to bounded traces.

The third and last source of nontermination comes from the fact that, declar-
atively speaking, A F contrive(m) might have an arbitrarily large proof. Op-
erationally, contrive might generate an arbitrarily large message. In order to
deal with this we need one last transformation operation. Consider the following
schema

At expect(i,r,m,s,K) A, A" — agent(i,r,s'),S

receive
A& contrive(m) A — msg(m), agent(i,r,s),S

forge
A — agent(i,r,s),S

where s’ = s+ 1, A’ = {knows(id, k) | k € K}. Thus, we derive the rule

At contrive(m) A expect(i,r,s,m,K) A, A" — agent(i,r,s'),S

forge-receive
A — agent(i,r,s),S

This transformation alone does not guarantee termination: we have to combine

it with a suitable search strategy. We do this in the next section. The following

property summarises what we achieved so far.

Theorem 5 (Proof Normalisation). Given a protocol (Ag, Sp), and a prop-
erty 11, any proof 7 for the sequent Ay, I1, I'a,,; — Sp is equivalent to a proof
7' that makes use of the derived rule forge-receive and in which there are no
occurrences of forge.

Proofs in which the forge rule does not occur are called normal proofs.

4.1 Completeness of Normal Proofs for Fully-typed Protocols

The derived rule forge-receive is still nondeterministic and this can be an obstacle
when trying to automatically build a proof. The problem is that contrive might
still generate arbitrarily large messages. We note however that in protocols like
Needham-Schroeder the predicate expect puts severe limitations to the non-
determinism of contrive. The crucial point here is that if expect(id,r,s,m,k)
succeeds, then the shape of m is uniquely determined by id and s. This inspires
the following definition of fully-typed protocol.



Definition 6 (Fully-Typed Protocol). A protocol (Ao, So) is fully-typed if
for any agent knowledge A, if Ag, A + expect(id,r,s,my,i1) and if Ay, A F
expect(id,r, s,ma,i2), then the m; is equal my modulo renaming of constants
terms.

If the protocol is fully typed, given id and s, each expected message has a fixed
term structure in which only constant symbols are allowed to vary. By using
abstract interpretation one can effectively check if a protocol is fully typed.

Fully-typed protocols allow for an effective use of the forge-receive rule by
a guided generation of messages. The idea is to interleave the Prolog execution
of expect and contrive: after extracting the pattern of an expected message
using expect(id,r,s,m,1i), contrive simply has to check whether the message
is “contrivable” (e.g., that it is not encrypted using a key that is not known
to Trudy) and to fill all remaining holes using new nonces or keys and nonces
Trudy has stored in previous steps. This can be naturally done within any Prolog
implementation that allows the presence of delay declarations. This renders finite
the search space, and leads us to the following completeness result.

Theorem 7 (Completeness of Normal Proofs). Given a fully typed pro-
tocol specification (Ag, Sp), and a property specification IT, there exists an
implementation F such we can decide whether or not there exists a proof for
Ao,H, FAO,H — 80.

5 Implementation

We now show how we can literally translate the proof system presented in the
previous section into Prolog. However, we want to stress that the framework
so far developed is amenable to different implementation methodologies (e.g.,
bottom-up instead of top-down). First, one needs to eliminate functions ap-
plication in the top-left side of the sequent. Special care has to be taken for
mathematical expressions. After this operation, rule ezpect becomes

A& expect(id,r,s,m,K)As" is s+1 AUA — agent(id,r,s'),S

A — agent(id, r,s), msg(m),S

Where A’ = {knows(id, k) | k € K}. Then, we have to build a Prolog rule for
modelling it. We use lists in order to model multisets, and — in order to benefit
from the control predicates offered in Prolog — we decided not to write a meta-
interpreter, but to incorporate A into the actual program (the same program
expect and compose are defined in), and realise the changes that have to occur
in A by means of assert and retract actions. It is worth mentioning that for
our first prototype we did build a meta-interpreter, but we eventually decided
to change methodology mainly for debugging reasons: our system is also meant
for simulation and testing of (security) protocols. To this end, it is important
that bugs in the protocol be promptly traceable. By avoiding the use of a meta-
interpreter, we could benefit directly from the (alas, not astonishing) debugging
tools offered by the Prolog implementation. As it turned out, using a non-meta
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program has another advantage which is invaluable for our purposes: namely the
direct use of coroutining tools such as delay declarations.

Each rule of the proof system, once modified according to the first step above
is translated into a Prolog clause defining the predicate state/1, according to
the following schema: the rule

AFG AU {knows(id,c1),...,knows(id, c)} — $1,...,8;,S

A— t1,...,tk,8
is transformed into the clause

state(State) : - substate([{1,...,fx], State, Rest_of_state),G,
add_knowledge(id, [C1,...,Cm]), state([51,...,5;|Rest_of_state]).

Where the over-lining is a straightforward mapping that takes care of trans-
lating atoms and terms according to Prolog’s naming conventions (variables in
uppercase, terms in lowercase, etc.). The predicate add_knowledge takes care of
adding the appropriate clauses to the program. It has to behave in such a way
that the clauses are removed upon backtracking (we need backtracking to be
able to explore the search space of the traces in presence of an intruder). Since
the clause we need to add are always ground, then we can undo an assert(c)
simply by performing a retract(c).

6 Coroutining

As we have seen, the logical nature of Prolog allowed us to find an almost literal
translation from the proof system into Prolog. The correctness of such translation
is evident. Completeness is guaranteed provided that we avoid non-terminating
derivations, which is always a risk, considering that Prolog selection rule is not
fair. Fortunately, Prolog allows for a number of control methods; in our particular
case, delay declarations allow for a very efficient execution, which is terminating
for a large class of protocol’s specification. We now show why. The crucial rule
in this respect is forge-receive, which is translated as follows:

state(State) :- substate([agent(Id,Role,Step)],State,Rest),
contrive (M) ,expect(Id,Role,Step,M,Info) ,NStep is Step +1,
add_knowledge(Id,Info),state([agent(Id,Role,NStep) |[Rest]).

This rule models Trudy forging a message via contrive (M), and trying to send
it to the agent whose identifier is Id. If expect(Id,Role,Step,M,Info) suc-
ceeds, then the honest principal has accepted the contrived message as a legal
one. The problem here is that contrive(M) has an infinite SLD tree (the in-
truder is allowed to contrive arbitrarily large and random messages). In order
to avoid nontermination we can force contrive to generate only those messages
that can be accepted by the corresponding expect; for this we can profitably
exploit the availability of logical variables. For instance, if the definition of ex-
pect does not employ negation then we can simply call expect before calling
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contrive; expect will (partially) instantiate M to the message the agent Id is
actually expecting, and contrive only needs to check if that message is contriv-
able, eventually “filling the gaps” that M presents: i.e. instantiating the still free
variables appearing in M with values the intruder knows. This makes the rule
terminating. More in general, we can enforce an optimal execution strategy also
without atom’s reordering and without the limitation to specifications that do
not employ inequalities. The definition of contrive is

contrive(msg(M)) :- contrive_content(M).

contrive_content ([H,H2|T]):- contrive_token(H),contrive_content ([H2|T]).
contrive_content ([H]) :- contrive_token(H).
contrive_content (enc(key(K) ,M1)) :-

( knows_object(trudy,K), contrive_content(M1)

; knows (trudy,msg(enc(key(K),M1)))).

contrive_token(M) :- (M=nonce(N) ;M=key(N)), knows_object(trudy,N).

Where knows_object is an obvious predicate such that knows_object (trudy,K)
succeeds if K is an object (key or nonce) Trudy is aware of (either because it
had invented it in advance, or because it had intercepted it). In order to let it
be terminating (and efficient), we simply have to add the declarations

delay contrive(X) until nonvar (X)
delay contrive_content(X) until nonvar(X)
delay contrive_token(X) until nonvar(X)

With these declarations, contrive will only generate messages that are readable
by the other agent involved in the communication. It is worth noticing that this
optimisation is possible thanks to two factors. The first is that we are not using
any longer a ground resolution method. Declaratively, a ground semantics, is
perfectly suitable. However, a direct implementation of such a semantics would
unavoidably be very inefficient. The second is that we use (bidirectional) logical
variables in a non-trivial way.

7 Conclusions

The contribution of this paper is threefold: (1) a proof-theoretic method for
specifying security protocols. (2) a proof-theoretic methodology for specialising
the proof system wrt the underlying protocol. It is worth mentioning that part of
the specialisations we presented in Section 4 and in Section 6, were also present
in previous papers, but only as “rule of thumb”; this is the first paper in which
such optimizations ore proved correct, by means of rule transformations. (3) An
implementation in Prolog of the system, which is now a tool allowing to specify,
simulate and thus debug security protocols. In addition, it allows to verify safety
properties of protocols, and in this we proved that it achieve completeness when
protocols are fully-typed.

Theorem 7 applies when we consider a bounded number of parallel execu-
tion of the same protocol. The tool we have developed can be easily extended
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to cover also unbounded number of sessions, but completeness would be lost: if
no attack exists the tool might run forever (Durgin et al. showed in [14] that
the problem of finding an attack in presence of unbounded number of sessions
is undecidable). Our future work focus on finding safe approximations for guar-
anteeing the termination of the tool also in presence of unbounded number of
parallel sessions.

Lowe has tackled this problem in an orthogonal way. In [19] he demonstrates
that if the protocol satisfies certain conditions, a parallel attack exists if and
only if an attack exists within a single run of the protocol. For such protocols,
demonstrating absence of attacks in a single session (which can be done with
our tool) is sufficient for demonstrating absence of attacks in parallel sessions.

In [27], Paulson models a protocol in presence of an intruder as an inductively
defined sets of traces, and uses Isabelle and HOL to interactively prove the
absence of attacks. Paulson’s approach works on an infinite-state search space.
In our approach we use instead proofs structured as trees to represent protocol
traces. Our approach is closer to Basin’s method [3], where lazy data structures
are used to generate the infinite-search tree representing protocol traces in a
demand-driven manner. To limit state explosion Basin applies however heuristics
that prune the generated tree. In our work we get similar results via a formal
analysis of the proof system: in this way we only generate proofs without useless
steps of the intruder. Trace semantics were also used for model-checking based
analysis. In this context, we find the work of Lowe [17,18], who first identified
and fixed the flaws in the Needham-Schroeder protocol, and the work of Mitchell
et al. [24]. As pointed out e.g., in [16], these approaches require ad-hoc solutions
for limiting the search space. In contrast, our approach allows for a finite search
space for all fully-typed protocols.

Our approach combines aspects related to the multiset rewriting-based ap-
proach of [7,8] and the declarative way of specifying protocols using logic pro-
grams taken in [2, 12]. A multiset rewriting formalism has also been used by Rusi-
nowitch et al. by implementing it in OCAML in the CASRUL system [9], and, in
the later [16] by processing the rewrite rules in the theorem-prover daTac. Con-
ceptually, our system shares some features with that developed (independently)
by Chevalier and Vigneron [11,10]. As in [11, 10], we deal with communication
in a constraint-based way, in which the intruder only checks if he is able to gen-
erate a certain message. Differently from the previous approaches, we separate in
clear way knowledge and state and, thus we reason about knowledge and specify
every principal using very simple Horn programs. In our opinion, this makes our
framework more suitable for a specification tool.

Recently, a few works have appeared that employ constraint-solving tech-
niques, possibly in combination with traces [15,22,30]. Typically, the task of
the intruder is brought down to that of checking whether certain messages are
contrivable. In a way, these work have something in common with our approach
in that the transformation we performed by combining the receive and the forge
rule aims at reducing the task of the intruder to check whether he is able to gen-
erate a certain message. Differently from us, [15,22,30] do this in a more radical
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way, and the checking phase is postponed after that the whole trace has been
completed (while we check it after the next protocol step has been carried out).
An advantage of our approach is that it permits to define a prototype for the
simulation and fast prototyping of security protocols. In fact, our model allows
to simulate all traces of a protocol, including thus those leading to failure. This
is of course crucial when debugging a protocol. Because of their symbolic nature,
this would not be possible using the models of [15, 22, 30].

Logic programming languages have been applied to specify security proto-
cols in several different ways. Meadow’s NRL Protocol Analyser [21] performs
a reachability analysis using state-enumeration enriched by lemmata proved by
induction. This way, NRL can cope with a potential infinite search space. Our
approach differs from this previous work firstly in that NRL explores the search
space in a backward fashion. Secondly, using proof theory we can formally reason
on class of proofs and protocols for which finite-state exploration is both sound
and complete. Furthermore, Prolog is used in our approach to declaratively spec-
ify each principal. In [2], Aiello and Massacci use a logic programming language
but using a different perspective, i.e., with stable semantics, to specify and de-
bug protocols. In this setting knowledge, protocol rules, intruder capabilities and
objectives are specified in a declarative way. Finally, Blanchet [5] uses Prolog to
specify conservative abstractions that can be used to prove security protocols
free from attacks. Intuitively, Horn clauses are used here as constructors and
deconstructors for the messages exchanged on the net and intercepted by the
intruder. In [1] Abadi and Blanchet relate this approach to that of using types
for guaranteeing the secrecy of communication, an approach substantially dif-
ferent from ours. The verification procedure combines aspects of unfolding and
bottom-up evaluation (following, however, a depth-first strategy).
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