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Abstract 

Integrity constraint handling is considered an important issue in rela- 

tional database management systems. Many studies were already con- 
ducted in this area. Little attention has been paid however to the influ- 
ence of relation fragmentation and parallelism on constraint handling. 
This paper shows how relation fragmentation complicates matters on 
the one hand, but how parallelism can help to get better efficiency in 

enforcing constraints on the other hand. The ideas as presented in this 
paper are used in the context of the PRISMA database machine; they 

have a more general applicability though. 

1 Introduction 

Integrity constraints are an essential part of a data model. Es- 
pecially in the relational model they are necessary to model the 
semantics of the applications; the growing complexity of modern 
applications further increases the need for powerful constraint 
handling mechanisms. There has been much research in this field 
already for centralized and traditional distributed database sys- 
tems, e.g. [Ston75,Simon85,Simon87,Morg84]. Nowadays com- 
plex applications for database systems have led to high require- 
ments in the field of system performance. One of the ways 
to deal with this requirement is the use of relation fragmen- 
tation and parallelism in multiprocessor database systems. A 
large amount of research has been devoted to this issue, e.g. 
[Cope88,DeWi%,Brat89]; this research focuses mainly on the 
parallel execution of queries. Little attention has been paid 
however, to the combination of a powerful integrity enforcement 
mechanism on the one hand and fragmentation and parallelism 
on the other hand. T,his paper combines the theory of integrity 
constraint handling with the theory of query execution in par- 
allel database systems, and adds some new ideas to obtain a 
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full fledged integrity constraint handling mechanism for parallel 
database systems with fragmented relations. 

In the PRISMA project [Kers87,Apers88], a parallel rela- 
tional database machine is developed, that supports integrity 
constraints. The research in the field of integrity constraints fo- 
cuses on the problems that relation fragmentation brings to con- 
straint handling in general, and the use of parallelism for improv- 
ing the efficiency of constraint enforcement within the context of 
the PRISMA DBMS. Further, attention is paid to a modular 
design of the constraint handling subsystem to obtain flexibility 
and extendibility. 

This paper is structured as follows. The remainder of this 
introduction gives a short introduction to the important aspects 
of the PRISMA DBMS and to the notation and terminology used 
in this paper. In Section 2 we will show how integrity constraints 
formulated in terms of global relations can be translated into a 
fragmented form. Section 3 discusses the strategy for constraint 
enforcement at a conceptual level. The implementation issues for 
this strategy are discussed in Section 4. The paper ends with a 
conclusion and a look into the future of the project with respect 
to integrity constraints. 

This paper does not intend to give a full description of all algo- 
rithms used in our approach to integrity constraints, but it rather 
aims at highlighting the interesting aspects of the integrity con- 
straint handling mechanism and giving the reader a good flavour 
of the underlying ideas and concepts. To illustrate these concepts 
we will use two important and well known examples of integrity 
constraints; the proposed algorithms are applicable to a much 

larger class of constraints though. A more elaborate description 
of our approach can be found in [GreI89]. 

1.1 The context : PRISMA/DB 

PRISMA/DB is a parallel, main memory relational database 
management system, employing horizontal relation fragmenta- 
tion [Apers88,Kers87]. The system is designed to run on a shared- 
nothing multi-processor [Bron87]. Figure 1 shows a simplified 
architecture of PRISMA/DB; parts of the system that are not 
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Figure 1: Simplified Architecture of PRISMA/DB 

relevant to this paper are left out. The figure shows the config- 
uration for one user session; most components are replicated for 
every session. 

Within a session, the SQL parser (SQL) takes care of data 
manipulation and data definition in SQL. Data manipulation 
statements are translated into the internal relational language 
of PRISMA/DB, called extended relational algebra (XRA), and 
sent to the query optimizer. Data definition statements are har- 
dled in cooperation with the data dictionary; this includes the 
definition of integrity constraints. The SQL parser operates on 
relations; fragmentation is transparent here. 

The query optimizer (QO) translates queries formulated in 
terms of global relations into queries formulated in terms of frag- 
ments. As such, the QO is the interface between relation and 
fragment level in the DBMS for data manipulation operations. 
Further, it removes views and optimizes queries. Output XRA is 
sent to the transaction manager (TM) for execution. 

The data dictionary (DD) stores all central system informa- 
tion, including relation and fragment descriptions. Integrity con- 
straint definitions received from the SQL parser are translated 
from the relation to the fragment level and optimized, as will be 
shown later in this paper. The DD is thus the interface between 
relation and fragment level for data definition operations. The 
DD uses special purpose data structures for efficient access to its 
contents. 

The transaction manager (TM) takes care of the execution 
control of a transaction; the TM operates fully at the fragment 
level of the system. It ensures transaction serializability, atom- 
icity and correctness. For the latter it makes use of informa- 
tion about integrity constraints in the data dictionary. The TM 
manages the dynamic infrastructure created for the execution of 
specific relational operations. 

The one-fragment manager (OFM) stores fragment data and 
performs relational operations on it. OFMs can be created and 

disposed of dynamically; the transaction manager controls this 
process according to the requirements of the transaction to be 
executed. OFMs come in two kinds: the first kind is used for the 
storage of permanent data (base OFMs), the second kind is used 
for the processing and storage of intermediate results of queries. 

As lined out above and depicted in figure 1, there is a 
clear separation between the relation and fragment level in 
PRISMA/DB. 

1.2 Notation formalism 

Given a database schema Q =< R1, . . . , R, >, we use the fol- 
lowing notation: 

. D of type 2, is a database extension or state of V; 

. R of type ‘R is a relation extension or state of 72; 

. V’=< 7rlR1,... ,x,72, > is a partial database schema; 
Ri is a simple projection on the type of a relation; 

. D' of type V* is a partial state of D. 

Now we define an integrity constraint as a pair I = [t,~], with 
the following elements: 

l t c T is the set of triggers of I; T is the set of all triggers, 
this is the set of all possible combinations of an update 
operation type and a relation in D; 

l T is a function of type V’ 4 bool; T is called the rule of 1. 

The semantics of I is as follows: when one of the triggers oft is 
activated, rule T is evaluated on state D' of that moment; if this 
evaluation results false, the transaction is aborted; otherwise, 
there is no action. The evaluation of the rule and the conditional 
transaction abort are called the enforcement of the constraint. 

Notice, that this way of desribing integrity constraints com- 
bines a functional description (the rule), with operational seman- 
tics (the triggers). This description of constraints is formulated at 
the relation level of the database; an analogous description with 
obvious semantics can be used for the fragment level. A compara- 
ble approach of explicitly stating triggers and rules in constraint 
definitions can he found in the QBE language [Zloof78]. 

The following example expresses a referential integrity con- 
straint from attribute i of relation R, denoted as R.i, to attribute 
j of relation S [Date81]: 

I = [t,r] 
t = (INS(R),UPD(R),DEL(S),UPD(S)} 
r = (Vz E R.i 1 z # nvll)(3y E S.j)(z = y) 

In the remainder of this paper we shall assume the existence of 
two relations R and S, both horizontally fragmented into frag- 
ments RI,. . . R, resp. &, . . . , S, for illustration of constraint 
handling. 

2 Translating constraints 

Constraints defined by the user are formulated in terms of rela- 
tions. Because enforcement of constraints takes place at the frag- 
ment level of the system, a translation is necessary. The transia- 
tion is performed statically, which means at constraint definition 

139 



time; this prevents the overhead of translating constraints every 
time they are to be enforced. Further, the translation needs to be 
redone in case of a change in the fragmentation of the involved re- 
lations. In PRISMA/DB, translated constraints are stored in the 
data dictionary of the system for use by the transaction manager. 

The translation of constraints is comparable to the transla- 
tion of queries from the relation to the fragment level [Ceri84]. 
The objective of the entire translation is to obtain a specifica- 
tion of the constraints that can StraightforwardIy be used for 
constructing efficient enforcement algorithms for the constraints. 
The constraint translation is accomplished in three sequential 
steps: 

. 

. 

. 

2.1 

translation of the constraint at the relation level into canon- 
ical form; this step brings the definition of the constraints 
from the external specification level (stated in terms of re- 
lations) to the internal level (stated in terms of fragments); 

distribution of the canonical form to the fragments; this 
step makes the semantics of the constraint fragment ori- 
ented; the result of this step is a set of constraints; 

optimization of the distributed fragment form; this step 
tries to obtain possibilities for a more efficient enforcement 
of the constraints. 

Relation level 

We will use two examples in this paper: a domain constraint 
I1 and a referential integrity constraint 12; an elaboration of a 
uniqueness constraint can be found in [Gref89]. These examples 
are illustrative for a much larger class of constraints. 
At the relation level the domain constraint is defined as follows: 

IL,1 = [&l, TLd] 
t1 rel = (INS(R), UPD(R)} 

T2rei = (Vs E R.i)(c(r)) 

in which c(z) is some boolean condition over 2. The referential 
integrity constraint definition is: 

I&d = [&dr 7-%d] 
t2 rei = {INS(R),UPD(R),DEL(S),UPD(S)) 
T&d = (VT E R.i 1 5 # null)(3y E S.j)(z = y) 

In this definition, S.j is a key (unique attribute) of relation S. 

2.2 Canonical form 

Translation of a constraint I = [t, T] from relation level to canon- 
ical form at the fragment level is accomplished as follows: 

l replace each trigger in t defined on relation R by the set of 
equivalent triggers defined on all fragments of R; 

l replace each occurrence of a global relation R in T with the 
algebraic reconstruction expression of that relation out of 
its fragments. 

This process applied to the two examples defined above results 
in the following canonical definitions at the fragment level: 

~~~~;~~j:l..,INS(R,), 
UPD(R&‘.-,UPD(R,)) 

(Vz E (R1.i u.. . u Rm.i))(c(s)) 

~~~~(~~j:I..,INS(R~), 
UPD(Rl),...,UPD(R,), 
DEL(&),--.,DEL(S,), 
UPD(&),.-+,UPD(S,)} 

(Vz E (Rl.iu ... u R,.i)) z # null) 
(3y E (S1.j u-‘.U S,.j))(r = y) 

2.3 Distributed form 

Although the canonical constraint is formulated in terms of frag- 
ments, the semantics is still relation oriented: both the trigger 
set and the rule of the constraint are specified with respect to the 
reconstruction of global relations. To obtain fragment-oriented 
semantics, the canonical form is translated into the so-called dis- 
tributed form. To obtain this form, the following two steps are 
made: 

s replace the canonical constraint by a set of local (fragment) 
constraints; the number of local constraints is equal to the 
number of fragments used in the trigger set of the con- 
straint; the trigger set of each local constraint is a subset 
of the trigger set of the canonical constraint, in which each 
trigger is defined in terms of the same relation fragment; 
the rule of a local constraint is equal to the rule of the 
canonical constraint; 

l simplify the rule of each local constraint where possible to 
prevent unnecessary access to other fragments. 

To distribute domain constraint II, we replace the canonical con- 
straint with its trigger set defined in terms of m fragments of 
relation R, by the set of constraints CSl = {11~~ ] 1 5 L 5 m}; 
each constraint in this set has its trigger set defined on only one 
fragment of R: 

11R, = [tlRk, TlR,] 

tlRli = {INS(R~),UPD(R~)} 
TlRI. = (Vz E R/J(c(zc)) 

It is clear, that the definition of the rule of the canonical con- 
straint can be simplified to the above, because the rule can be 
evaluated on every value in Rk individually. Each constraint 
IIn, is thus defined completely in terms of only one fragment of 
the involved relation; this type of constraint we call completely 

distributable. 
Referential integrity constraint 12 is defined in terms of two 

relations R and S. Therefore, 12 is replaced by two sets of local 
constraints CS2R = (12~~ ] 1 5 k 5 m} and CS2.s = (12~~ ] 
1 5 k 5 n.}: 

140 



12R, = [t2Rk, T2Rk] 
t2RI, = IINS( UPWRk)) 
7+Rk = (Vx E Rk.i 1 x # nd2) 

(3y E (S1.j u .. . lJ Sn.j))(z = Y) 

ms, = [%i, 79&I 
Qs, = {DEL(Sk), UPD(Sk)) 
es, = (Vz E (RI .i u . . . u R,.i) 1 z # null) 

(3y E (S1.j u . . u &.j))(x = y) 

The rule of 12~~ cannot be simplified in the general case, due 
to the fact that referenced values from Sk may be inserted again 
into another fragment of S within the same transaction. 

Note that we require that the fragmentation of a relation 
is always consistent. This means, that updates on fragments 
may cause tuple migration: tuples that violate the fragmentation 
constraint of the fragment they reside in, migrate to the fragment 
they belong to. This migration process can cause the triggering 
of more local constraints. 

2.4 Optimized form 

The distributed form of constraints as discussed above is still very 
inefficient with respect to constraint enforcement in most cases. 
Therefore, we consider various ways to optimize the distributed 
form of constraints presented above: 

s restriction of the amount of data to be checked; 

l applying algebraic manipulation to the rule; 

o using knowledge of relation fragmentation to simplify rules. 

2.4.1 Restriction of the amount of data 

We can restrict the amount of data to be checked by only check- 
ing those parts of fragments that have been changed in a rele- 
vant way. This method is already described as differential test 
[Simon85,Simon87,Gard89]. Using differential tests requires the 
definition of the following two concepts: 

l R+ denotes tuples inserted into R and new values of tuples 
modified in R; 

. R- denotes tuples deleted from R and old values of tuples 
modified in R. 

As will be clear, domain constraints have to be checked only 
with respect to new values in the fragments; therefore, we can 
reformulate our definition of CSl into CSldiff: 

IlR, = [tl~~, ~1~~1 
tlR* = {INS(Rk), UPD(Rk)) 
TIRli = (Vz E R;.i)(c(x)) 

The same technique can be applied to the definition of the refer- 
ential integrity constraint CS2, leading to the differential defini- 
tion CS2d;ff: 

(32 E u;:;” Rk)(C(x)) + vk;“((jX E Rk)(c(x))) 

Applied to the referential integrity constraint set CS2di,f we ob- 
tain a form CS2,,, in which the union of fragments of a relation 
is removed; we only need to construct a union for differential sets 
in the definition of 12~~: 

12Rk = 
t2& = 
r2& = 

[t2Rk, 7-2R,] 

I2s, = 
t2&, = 
r2.$, = 

[th., fh 1 
{DJ-(Sk),UPD(Sk)) 
(Vy E (5Ti.j - (.sy.ju ... u S,+.j))) 

(A:Z~((V~ E Rtd(x # ~1)) 

I2R, = [t2R,, , ‘-2Rk1 
t2R* = (INS(h), upg(&)} 
f-2Rk = (Vx E R;.i ) z # null) 

(3YE (Sl.jU~~~US,.j))(Z = y) 

kt = [t2S,,r2s,l 
t2s, = (DEL(Sk), upD(sk)} 
r2sk = (Vy E (.q.j - (S,+.j u . . . u S,+.j))) 

(Vx E (R1.i u . . . u R,.i))(x # y) 

Note that the form of the rule of 12~~ had to be modified to use 
the concept of differential tests. Informally, the rule states: all 
values that have been deleted from the referenced attribute of 
fragment Sk and that have not been inserted again in any of the 
fragments of S, may not be in the referencing attribute of any 
of the fragments of R. The restriction of R.i to non-null values 
is not strictly necessary in this rule, since S.j (being a key) may 
not contain null values. 

2.4.2 Rule manipulation 

In query optimization it is very common to rewrite expressions 
to optimize the execution of the expression. For fragmented 
databases, one of the most used techniques is pushing opera- 
tions through unions to obtain computations that are local to the 
fragments. A comparable approach can be applied to the rules 
of integrity constraints. Here we can push a quantifier through a 
union operator using the following rewriting rules: 

(VX E uk=;l &)(C(X)) 
km 

+ /\k=l ((VX E Rk)(C(X))) 

Notice that the rules above have quantified expressions at the 
lowest level in the expressions. This means that these computa- 
tion intensive tasks have been distributed across fragments of a 
relation, thus giving possibilities for employing parallelism. We 
will show later, that our approach makes good use of these pos- 
sibilities. 

2.4.3 Usage of fragmentation knowledge 

We can use fragmentation knowledge in the optimization of con- 
straints in the same way as this knowledge can be used in query 
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optimization [Ceri84]. In query optimization, branches of query 
trees are removed that can never give any result; in constraint op- 
timization, branches in the rule expression are removed that are 

known to be always satisfied. The following example illustrates 
this. 

If relation R is fragmented using fragmentation constraints 
defined only on attribute R.i, and relation S is fragmented us- 
ing the same fragmentation constraints defined only on S.j, we 
know that references from Rk are always to Sk; therefore, we 
can simplify the referential integrity constraint cS&;ff to the 
following: 

12R, = [t2Rb, 79R,] 
t2R* = {INS(&), UPD(&)) 
7%lt = (VZ E R;.i 1 z # ndq~y E sk.j)(z = Yj 

a, = [G*, T&J 
t2sk = {DEL(Sk), upD(sk)) 
T&i = (Vy E Si.j)(Vjr E &.i)(z # y) 

It is clear, that enforcement of this constraint is much easier (and 
cheaper) than the enforcement CS2diff. This leads to the obser- 
vation, that integrity constraints should be taken into account in 
relation fragmentation design. 

3 Enforcing constraints 

In the previous section we have shown how constraints specified 
at the relation level, can be translated to the fragment level and 
manipulated to obtain a form that is fit for straightforward im- 
plementation of constraint enforcement algorithms. In this sec- 
tion we will show how these constraint specifications can indeed 
be mapped into extended Relational Algebra (XRA) expressions 
that implement the rules of the constraints. The next section dis- 
cusses implementation and execution of these XRA expressions. 

The use of XRA as an enforcement vehicle gives several im- 
portant advantages over specialized ad hoc algorithms: 

. XRA provides an abstraction level that makes straightfor- 
ward translation of constraints into enforcement algorithms 
possible; 

. the use of XRA makes use of modular building blocks for 
the enforcement algorithms, thus ensuring flexibility and 
extendibility; 

l using XRA means using software building blocks that are 
already used for regular query processing to a large extent; 
this minimizes implementation overhead for integrity con- 
straints on the one hand, and maximizes the use of parallel 
algorithms on the other hand. 

The remainder of this section first discusses the most important 
XRA operators for describing integrity enforcement algorithms. 
Next, attention is paid to the mapping of constraint definitions 
onto XRA expressions. 

3.1 XRA constructs 

For constraint enforcement in XRA, we will make use of the reg- 
ular relational algebra operators, such as union and difference. 
Further, we make use of a few extensions to the normal relational 
algebra. Apart,from one, the alarm operator, all these extensions 
are used for normal query processing in PRISMA/DB. 

We have two operators in XRA that take care of distribut- 
ing tuples of a source operand to several destination operands; 
these operators are functionally equivalent to a combination of 
regular relational algebra operators, but, as will be shown in 
the next section, operationally extremely important for obtain- 
ing parallelism. The first of these operators, copy, copies the 
source operand to each of the destination operands: 

copy(src, dstl,. . . , d&J 

This operation is functionally equivalent to the following sequence 
of assignments: 

dstl t src 

dst, +- STC 

The second distributing operator, split, splits up the source operand 
over the destination operands given the fragmentation constraints 
of the destination operands: 

split(src,dstl,condl, dst2,cond2, ... ,dst,, cond,) 

In this operation, all conditions condi are mutually disjoint and 
together complete with respect to the source relation src; in 
other words, the conditions define a partition of the source rela- 
tion. This operation is functionally equivalent to the following 
sequence of assignments: 

dst, + ucond, SW 

dst, + ~cond,=c 

Finaly, we have an operator that has as its sole functionality that 
it causes a transaction abort if its operand is not empty: 

alarm( oper) 

3.2 Mapping constraints to XRA 

In this section we will show how constraint definitions as dis- 
cussed in the previous section can be mapped to XRA expres- 
sions. It is not our goal to give rules that describe this mapping 
for arbitrary constraints. Instead we will show the process for 
some representative cases. In these cases we will use the trans- 
formation rules as shown below; these rules show how a specific 
logic construct as appearing in the constraint definitions can be 
mapped onto an XRA construct. 
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(Vr E R)(3y E S)(x = y) + 
alarm(unigue(R) - S) 

(2) 

(Vx E R)(VLPY E Si)(X = Y)) -+ 
copy(unique(R),Tl,. . ., T,,) 
aZarm((Tl - Sl) n . . . n (T,, - S,)) 

(3) 

(Vx E RPY E S)(x z Y) + 
alarm( R f~ S) 

(4) 

(VX E R)(AL(VY E 5)(x # Y)) + 
COPY(R,TI,..~,T,) 
aZarm(Tl Cl Sl) 

(5) 

alarm(T, rl S,) 

Domain constraint CSI&ff is taken as a first example; the defi- 
nition of this constraint is: 

11R, = WRY, 71~~1 
tlRI. = {~~S(Rk),UPD(Rdl 
f-l& = (VZ E R:.i)(c(z)) 

The rule of this constraint can easily be mapped onto the follow- 
ing XRA construct using transformation 1 as shown above: 

alarm(a,,(,)(*i(R~))) 

We take the first case of referential integrity constraint CS2,,, 
as discussed in section 2.4.2 as a second example: 

I2R, = [t2R,r79Rk] 
t2Rr = {INS(&)) 
79Rt = (VZ E R:.i 1 x # ndI) 

WfX(3Y E sLJ.d(~ = Y))) 

Using transformation 3 as listed above, we can map the rule of 
this constraint onto the following XRA construct: 

copy(~nique(a;(o;2,,lr(R:))), templ,... ,temp,) 
aZarm((templ - Kj(Sl)) n . . . n (temp, - Kj(S,))) 

Note, that the copy operator takes care of ditributing the dif- 
ferential set of &; this is used to obtain pipeling parallelism, 
as discussed in the next section. If we know that relation S 
is fragmented on attribute S.j using fragmentation constraints 
fCl,-..rfC*, we can change the XRA construct above as follows: 

split(~niq~e(Ki(ai#~~rr(R~))), t-m, fcl, . .-,tempn,f4 
alarm(tempr - nj(S1)) 

alarm(temp, - rj(S,)) 

The second case of CS2,,, can be mapped onto XRA in a com- 
parable way using transformation 5; the constraint definition is 
the following: 

I%, = WSk > 7%,1 
G.k = {DEL(&), UPD(Sk)) 
T%li = (Vy E (S,.j - (Sf.j u . . . u S,+.j))) 

(A:~~(@‘~ E Rv.i)(x # ~1)) 

The matching XRA construct is: 

COpy((lrj(S~) - (Tj(S:) U--.lJ ifj(S,+))),templ,...,temp,) 
alarm( templ n T;( R1 )) 

alarm(temp, n Ki(Rm)) 

4 Implementation issues 

The XRA constructs used for constraint enforcement as presented 
in the previous section can straightforwardly be implemented us- 
ing XRA execution infrastructures in PRISMA/DB. This section 
discusses the way this is realized and the possibilities for paral- 
lelism in this method. 

4.1 Building the infrastructure 

The infrastructure for constraint enforcement at the OFM level 
consists of three types of building blocks: 

l permanent OFM : used for the storage of fragments of per- 
manent relations; 

l temporary OFM : used for execution of relational operators 

l channels : used for the transportation of tuples between 
OFMs 

The permanent OFMs contain the fragment data on which in- 
tegrity constraints must be enforced. These OFMs contain logic 
to automaticaly maintain the differential sets; this means that 
these sets are already constructed during transaction execution 
on a local basis in the fragments. The temporary OFMs are used 
for the execution of the XRA operators needed for the constraint 
enforcement structures. These OFMs can be created dynamicaly 
by the transaction manager when needed. The channels are used 
as communication means to transport tuples from one OFM to 
another. Both OFMs and channels are designed to make optimal 
use of pipelining in executing XRA execution [Wils89,Wils90]. 

To obtain a complete transaction model, all constraints are 
enforced at commit time in PRISMA/DB; note, that the tech- 
niques as presented in this paper can be used for other approaches 
equaly well. Enforcing constraints at the end of a transaction 
consists of two phases: 

. setup phase: in this phase the transaction manager builds 
the execution infrastructure needed for constraint enforce- 
ment; actually, this phase can already start during trans- 
action execution; 

l ezecution phase: in this phase the execution infrastructure 
processes the data to be checked; similar to the execution 
of regular user queries, this operates in a fully parallel, 
pipelined fashion [WilsSO]. 
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Figure 2: XRA execution infrastructure I 
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The setup phase makes use of the same mechanisms that are 
used for setting up normal query execution infrastructures in 
PRISMA/DB; this implies that constraint enforcement does not 
require any architectural changes at the execution level (TM- 
OFM). Especially, the transaction manager does not have to deal 
with any part of the database extension, thus avoiding a possible 
bottleneck in the enforcement algorithms. 

The previously presented example of the XRA construct used 
for enforcement of the insert case of referential integrity rule 
cs2,,,: 

can straightforwardly be implemented by the execution infras- 
tructure as shown in Figure 2. 

If several fragments of relation R have to be checked, it is not 
necessary to duplicate the complete infrastructure; this would 
lead to excessive overhead if the fragmentation degree is high. 
The same infrastructure can be used, if Rk+ is replaced by the 
union of all fragments involved; in this way, sharing of resources 
is used to be able to control the overhead involved. 

4.2 Parallelism in constraint enforcement 

We have seen that constraint emforcement is executed by a XRA 

infrastructure. The relational operators in these infrastructures 
are all independent processes, so parallelism can be employed 
easily. Within the constraint enforcement mechanism we can 
distinguish three types of parallelism [Wils89]: 

l several independent constraints can be checked at the same 
time; this is possible because after the setup phase, the en- 
forcement process is fully asynchronous; at the enforcement 
level, we can consider this a kind of multi-tasking; 

l at the same level in a XRA infrastructure, several OFMs 
operate on the data of several fragments in parallel; in the 
example of figure 2 we can see that alI difference operators 
can work in parallel; this kind of parallelism is called task 
spreading; 

l because all operators operate in a pipelined fashion, several 
stages of the XRA infrastructure can work in parallel too; 
we call this pipelining parallelism. 

Because PRISMA/DB is designed to run on a multi-processor 
with many nodes (the prototype has 100 nodes), paralleIism 
at the logical level can easily be made operational by assign- 
ing OFMs to nodes in the system. We expect that the use of 
parallelism will reduce response times in constraint enforcements 
strongly, thereby taking away one of the largest obstacles for the 

widespread use of constraints in relational databases. 

5 Conclusion and Look into the Future 

In this paper we have given an outline of a way to combine in- 
tegrity constraint handling on the one hand and relation fragmen- 
tation and parallelism on the other hand in a relational DBMS. 
The way constraints are handled in PRISMA/DB is of a gen- 
eral and modular structure, thereby giving easy ways for mod- 
ification and extention. The constraint handling mechanism in 
PRISMA/DB consists of two subsystems: 

. a translation mechanism that translates constraints from 
the relation level to the fragment level and optimizes these; 
this can be seen as the static part of the subsystem; this 
mechanism is located in the data dictionary of the DBMS; 

. an enforcement mechanism that enforces the constraints as 
produced by the translation mechanism using XRA execu- 
tion infrastructures; this is the dynamic part of the subsys- 
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tern; this mechanism is located in the transaction manager 
of the DBMS. 

Although relation fragmentation complicates constraint handling, 
it also allows for a high degree of parallelism in the enforcement 
algorithms, thereby giving good possibilities to reduce response 
times, comparable to the gains obtained by using parallelism in 
normal query execution. 

We think that the constraint handling mechanism as proposed 
in this paper contributes to the use of integrity constraint han- 
dling in parallel database systems; the proposal both addresses 
the complications of relation fragmentation and the benefits of 
parallelism. To the best of our knowledge, there have not been 
any proposals that cover this topic. 

A prototype implementation of PRISMA/DB is operational 
now. We plan to enhance this prototype with integrity constraint 
handling as lined out in this paper. This prototype will support 
at least the structural constraint classes of the relational model 
[Gard89]: 

l domain constraints 

l nonnull constraints 

0 uniqueness constraints 

0 referential integrity constraints 

Using this prototype experiments will be conducted to measure 
the response time benefits of using parallelism in constraint en- 
forcement. 
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