
.

Parallel Handling of Integrity Constraints
on Fragmented Relations

Paul W.P.J. Grefen Peter M.G. Apers
University of Twente

Abstract

Integrity constraint handling is considered an important issue in rela-

tional database management systems. Many studies were already con-
ducted in this area. Little attention has been paid however to the influ-
ence of relation fragmentation and parallelism on constraint handling.
This paper shows how relation fragmentation complicates matters on
the one hand, but how parallelism can help to get better efficiency in

enforcing constraints on the other hand. The ideas as presented in this
paper are used in the context of the PRISMA database machine; they

have a more general applicability though.

1 Introduction

Integrity constraints are an essential part of a data model. Es-
pecially in the relational model they are necessary to model the
semantics of the applications; the growing complexity of modern
applications further increases the need for powerful constraint
handling mechanisms. There has been much research in this field
already for centralized and traditional distributed database sys-
tems, e.g. [Ston75,Simon85,Simon87,Morg84]. Nowadays com-
plex applications for database systems have led to high require-
ments in the field of system performance. One of the ways
to deal with this requirement is the use of relation fragmen-
tation and parallelism in multiprocessor database systems. A
large amount of research has been devoted to this issue, e.g.
[Cope88,DeWi%,Brat89]; this research focuses mainly on the
parallel execution of queries. Little attention has been paid
however, to the combination of a powerful integrity enforcement
mechanism on the one hand and fragmentation and parallelism
on the other hand. T,his paper combines the theory of integrity
constraint handling with the theory of query execution in par-
allel database systems, and adds some new ideas to obtain a

The work reported in this document was conducted as part of the
PRISMA project, a joint effort with Philips Research Laboratories Eind-
haven, partially supported by the Dutch “Stimuleringsprojectteam Informat-
icaonderzoek (SPIN)”

full fledged integrity constraint handling mechanism for parallel
database systems with fragmented relations.

In the PRISMA project [Kers87,Apers88], a parallel rela-
tional database machine is developed, that supports integrity
constraints. The research in the field of integrity constraints fo-
cuses on the problems that relation fragmentation brings to con-
straint handling in general, and the use of parallelism for improv-
ing the efficiency of constraint enforcement within the context of
the PRISMA DBMS. Further, attention is paid to a modular
design of the constraint handling subsystem to obtain flexibility
and extendibility.

This paper is structured as follows. The remainder of this
introduction gives a short introduction to the important aspects
of the PRISMA DBMS and to the notation and terminology used
in this paper. In Section 2 we will show how integrity constraints
formulated in terms of global relations can be translated into a
fragmented form. Section 3 discusses the strategy for constraint
enforcement at a conceptual level. The implementation issues for
this strategy are discussed in Section 4. The paper ends with a
conclusion and a look into the future of the project with respect
to integrity constraints.

This paper does not intend to give a full description of all algo-
rithms used in our approach to integrity constraints, but it rather
aims at highlighting the interesting aspects of the integrity con-
straint handling mechanism and giving the reader a good flavour
of the underlying ideas and concepts. To illustrate these concepts
we will use two important and well known examples of integrity
constraints; the proposed algorithms are applicable to a much

larger class of constraints though. A more elaborate description
of our approach can be found in [GreI89].

1.1 The context : PRISMA/DB

PRISMA/DB is a parallel, main memory relational database
management system, employing horizontal relation fragmenta-
tion [Apers88,Kers87]. The system is designed to run on a shared-
nothing multi-processor [Bron87]. Figure 1 shows a simplified
architecture of PRISMA/DB; parts of the system that are not

CH2895-1/90/0000/0138$01 .OO 0 1990 IEEE
138

.
QO l=+

L
DD

1 OFM 1

Figure 1: Simplified Architecture of PRISMA/DB

relevant to this paper are left out. The figure shows the config-
uration for one user session; most components are replicated for
every session.

Within a session, the SQL parser (SQL) takes care of data
manipulation and data definition in SQL. Data manipulation
statements are translated into the internal relational language
of PRISMA/DB, called extended relational algebra (XRA), and
sent to the query optimizer. Data definition statements are har-
dled in cooperation with the data dictionary; this includes the
definition of integrity constraints. The SQL parser operates on
relations; fragmentation is transparent here.

The query optimizer (QO) translates queries formulated in
terms of global relations into queries formulated in terms of frag-
ments. As such, the QO is the interface between relation and
fragment level in the DBMS for data manipulation operations.
Further, it removes views and optimizes queries. Output XRA is
sent to the transaction manager (TM) for execution.

The data dictionary (DD) stores all central system informa-
tion, including relation and fragment descriptions. Integrity con-
straint definitions received from the SQL parser are translated
from the relation to the fragment level and optimized, as will be
shown later in this paper. The DD is thus the interface between
relation and fragment level for data definition operations. The
DD uses special purpose data structures for efficient access to its
contents.

The transaction manager (TM) takes care of the execution
control of a transaction; the TM operates fully at the fragment
level of the system. It ensures transaction serializability, atom-
icity and correctness. For the latter it makes use of informa-
tion about integrity constraints in the data dictionary. The TM
manages the dynamic infrastructure created for the execution of
specific relational operations.

The one-fragment manager (OFM) stores fragment data and
performs relational operations on it. OFMs can be created and

disposed of dynamically; the transaction manager controls this
process according to the requirements of the transaction to be
executed. OFMs come in two kinds: the first kind is used for the
storage of permanent data (base OFMs), the second kind is used
for the processing and storage of intermediate results of queries.

As lined out above and depicted in figure 1, there is a
clear separation between the relation and fragment level in
PRISMA/DB.

1.2 Notation formalism

Given a database schema Q =< R1, . . . , R, >, we use the fol-
lowing notation:

. D of type 2, is a database extension or state of V;

. R of type ‘R is a relation extension or state of 72;

. V’=< 7rlR1,... ,x,72, > is a partial database schema;
Ri is a simple projection on the type of a relation;

. D' of type V* is a partial state of D.

Now we define an integrity constraint as a pair I = [t,~], with
the following elements:

l t c T is the set of triggers of I; T is the set of all triggers,
this is the set of all possible combinations of an update
operation type and a relation in D;

l T is a function of type V’ 4 bool; T is called the rule of 1.

The semantics of I is as follows: when one of the triggers oft is
activated, rule T is evaluated on state D' of that moment; if this
evaluation results false, the transaction is aborted; otherwise,
there is no action. The evaluation of the rule and the conditional
transaction abort are called the enforcement of the constraint.

Notice, that this way of desribing integrity constraints com-
bines a functional description (the rule), with operational seman-
tics (the triggers). This description of constraints is formulated at
the relation level of the database; an analogous description with
obvious semantics can be used for the fragment level. A compara-
ble approach of explicitly stating triggers and rules in constraint
definitions can he found in the QBE language [Zloof78].

The following example expresses a referential integrity con-
straint from attribute i of relation R, denoted as R.i, to attribute
j of relation S [Date81]:

I = [t,r]
t = (INS(R),UPD(R),DEL(S),UPD(S)}
r = (Vz E R.i 1 z # nvll)(3y E S.j)(z = y)

In the remainder of this paper we shall assume the existence of
two relations R and S, both horizontally fragmented into frag-
ments RI,. . . R, resp. &, . . . , S, for illustration of constraint
handling.

2 Translating constraints

Constraints defined by the user are formulated in terms of rela-
tions. Because enforcement of constraints takes place at the frag-
ment level of the system, a translation is necessary. The transia-
tion is performed statically, which means at constraint definition

139

time; this prevents the overhead of translating constraints every
time they are to be enforced. Further, the translation needs to be
redone in case of a change in the fragmentation of the involved re-
lations. In PRISMA/DB, translated constraints are stored in the
data dictionary of the system for use by the transaction manager.

The translation of constraints is comparable to the transla-
tion of queries from the relation to the fragment level [Ceri84].
The objective of the entire translation is to obtain a specifica-
tion of the constraints that can StraightforwardIy be used for
constructing efficient enforcement algorithms for the constraints.
The constraint translation is accomplished in three sequential
steps:

.

.

.

2.1

translation of the constraint at the relation level into canon-
ical form; this step brings the definition of the constraints
from the external specification level (stated in terms of re-
lations) to the internal level (stated in terms of fragments);

distribution of the canonical form to the fragments; this
step makes the semantics of the constraint fragment ori-
ented; the result of this step is a set of constraints;

optimization of the distributed fragment form; this step
tries to obtain possibilities for a more efficient enforcement
of the constraints.

Relation level

We will use two examples in this paper: a domain constraint
I1 and a referential integrity constraint 12; an elaboration of a
uniqueness constraint can be found in [Gref89]. These examples
are illustrative for a much larger class of constraints.
At the relation level the domain constraint is defined as follows:

IL,1 = [&l, TLd]
t1 rel = (INS(R), UPD(R)}

T2rei = (Vs E R.i)(c(r))

in which c(z) is some boolean condition over 2. The referential
integrity constraint definition is:

I&d = [&dr 7-%d]
t2 rei = {INS(R),UPD(R),DEL(S),UPD(S))
T&d = (VT E R.i 1 5 # null)(3y E S.j)(z = y)

In this definition, S.j is a key (unique attribute) of relation S.

2.2 Canonical form

Translation of a constraint I = [t, T] from relation level to canon-
ical form at the fragment level is accomplished as follows:

l replace each trigger in t defined on relation R by the set of
equivalent triggers defined on all fragments of R;

l replace each occurrence of a global relation R in T with the
algebraic reconstruction expression of that relation out of
its fragments.

This process applied to the two examples defined above results
in the following canonical definitions at the fragment level:

~~~~;~~j:l..,INS(R,), 
UPD(R&‘.-,UPD(R,)) 

(Vz E (R1.i u.. . u Rm.i))(c(s)) 

~~~~(~~j:I..,INS(R~), 
UPD(Rl),...,UPD(R,),
DEL(&),--.,DEL(S,),
UPD(&),.-+,UPD(S,)}

(Vz E (Rl.iu ... u R,.i)) z # null)
(3y E (S1.j u-‘.U S,.j))(r = y)

2.3 Distributed form

Although the canonical constraint is formulated in terms of frag-
ments, the semantics is still relation oriented: both the trigger
set and the rule of the constraint are specified with respect to the
reconstruction of global relations. To obtain fragment-oriented
semantics, the canonical form is translated into the so-called dis-
tributed form. To obtain this form, the following two steps are
made:

s replace the canonical constraint by a set of local (fragment)
constraints; the number of local constraints is equal to the
number of fragments used in the trigger set of the con-
straint; the trigger set of each local constraint is a subset
of the trigger set of the canonical constraint, in which each
trigger is defined in terms of the same relation fragment;
the rule of a local constraint is equal to the rule of the
canonical constraint;

l simplify the rule of each local constraint where possible to
prevent unnecessary access to other fragments.

To distribute domain constraint II, we replace the canonical con-
straint with its trigger set defined in terms of m fragments of
relation R, by the set of constraints CSl = {11~~] 1 5 L 5 m};
each constraint in this set has its trigger set defined on only one
fragment of R:

11R, = [tlRk, TlR,]

tlRli = {INS(R~),UPD(R~)}
TlRI. = (Vz E R/J(c(zc))

It is clear, that the definition of the rule of the canonical con-
straint can be simplified to the above, because the rule can be
evaluated on every value in Rk individually. Each constraint
IIn, is thus defined completely in terms of only one fragment of
the involved relation; this type of constraint we call completely

distributable.
Referential integrity constraint 12 is defined in terms of two

relations R and S. Therefore, 12 is replaced by two sets of local
constraints CS2R = (12~~] 1 5 k 5 m} and CS2.s = (12~~]
1 5 k 5 n.}:

140

12R, = [t2Rk, T2Rk]
t2RI, = IINS(UPWRk))
7+Rk = (Vx E Rk.i 1 x # nd2)

(3y E (S1.j u .. . lJ Sn.j))(z = Y)

ms, = [%i, 79&I
Qs, = {DEL(Sk), UPD(Sk))
es, = (Vz E (RI .i u . . . u R,.i) 1 z # null)

(3y E (S1.j u . . u &.j))(x = y)

The rule of 12~~ cannot be simplified in the general case, due
to the fact that referenced values from Sk may be inserted again
into another fragment of S within the same transaction.

Note that we require that the fragmentation of a relation
is always consistent. This means, that updates on fragments
may cause tuple migration: tuples that violate the fragmentation
constraint of the fragment they reside in, migrate to the fragment
they belong to. This migration process can cause the triggering
of more local constraints.

2.4 Optimized form

The distributed form of constraints as discussed above is still very
inefficient with respect to constraint enforcement in most cases.
Therefore, we consider various ways to optimize the distributed
form of constraints presented above:

s restriction of the amount of data to be checked;

l applying algebraic manipulation to the rule;

o using knowledge of relation fragmentation to simplify rules.

2.4.1 Restriction of the amount of data

We can restrict the amount of data to be checked by only check-
ing those parts of fragments that have been changed in a rele-
vant way. This method is already described as differential test
[Simon85,Simon87,Gard89]. Using differential tests requires the
definition of the following two concepts:

l R+ denotes tuples inserted into R and new values of tuples
modified in R;

. R- denotes tuples deleted from R and old values of tuples
modified in R.

As will be clear, domain constraints have to be checked only
with respect to new values in the fragments; therefore, we can
reformulate our definition of CSl into CSldiff:

IlR, = [tl~~, ~1~~1
tlR* = {INS(Rk), UPD(Rk))
TIRli = (Vz E R;.i)(c(x))

The same technique can be applied to the definition of the refer-
ential integrity constraint CS2, leading to the differential defini-
tion CS2d;ff:

(32 E u;:;” Rk)(C(x)) + vk;“((jX E Rk)(c(x)))

Applied to the referential integrity constraint set CS2di,f we ob-
tain a form CS2,,, in which the union of fragments of a relation
is removed; we only need to construct a union for differential sets
in the definition of 12~~:

12Rk =
t2& =
r2& =

[t2Rk, 7-2R,]

I2s, =
t2&, =
r2.$, =

[th., fh 1
{DJ-(Sk),UPD(Sk))
(Vy E (5Ti.j - (.sy.ju ... u S,+.j)))

(A:Z~((V~ E Rtd(x # ~1))

I2R, = [t2R,, , ‘-2Rk1
t2R* = (INS(h), upg(&)}
f-2Rk = (Vx E R;.i) z # null)

(3YE (Sl.jU~~~US,.j))(Z = y)

kt = [t2S,,r2s,l
t2s, = (DEL(Sk), upD(sk)}
r2sk = (Vy E (.q.j - (S,+.j u . . . u S,+.j)))

(Vx E (R1.i u . . . u R,.i))(x # y)

Note that the form of the rule of 12~~ had to be modified to use
the concept of differential tests. Informally, the rule states: all
values that have been deleted from the referenced attribute of
fragment Sk and that have not been inserted again in any of the
fragments of S, may not be in the referencing attribute of any
of the fragments of R. The restriction of R.i to non-null values
is not strictly necessary in this rule, since S.j (being a key) may
not contain null values.

2.4.2 Rule manipulation

In query optimization it is very common to rewrite expressions
to optimize the execution of the expression. For fragmented
databases, one of the most used techniques is pushing opera-
tions through unions to obtain computations that are local to the
fragments. A comparable approach can be applied to the rules
of integrity constraints. Here we can push a quantifier through a
union operator using the following rewriting rules:

(VX E uk=;l &)(C(X))
km

+ /\k=l ((VX E Rk)(C(X)))

Notice that the rules above have quantified expressions at the
lowest level in the expressions. This means that these computa-
tion intensive tasks have been distributed across fragments of a
relation, thus giving possibilities for employing parallelism. We
will show later, that our approach makes good use of these pos-
sibilities.

2.4.3 Usage of fragmentation knowledge

We can use fragmentation knowledge in the optimization of con-
straints in the same way as this knowledge can be used in query

I41

optimization [Ceri84]. In query optimization, branches of query
trees are removed that can never give any result; in constraint op-
timization, branches in the rule expression are removed that are

known to be always satisfied. The following example illustrates
this.

If relation R is fragmented using fragmentation constraints
defined only on attribute R.i, and relation S is fragmented us-
ing the same fragmentation constraints defined only on S.j, we
know that references from Rk are always to Sk; therefore, we
can simplify the referential integrity constraint cS&;ff to the
following:

12R, = [t2Rb, 79R,]
t2R* = {INS(&), UPD(&))
7%lt = (VZ E R;.i 1 z # ndq~y E sk.j)(z = Yj

a, = [G*, T&J
t2sk = {DEL(Sk), upD(sk))
T&i = (Vy E Si.j)(Vjr E &.i)(z # y)

It is clear, that enforcement of this constraint is much easier (and
cheaper) than the enforcement CS2diff. This leads to the obser-
vation, that integrity constraints should be taken into account in
relation fragmentation design.

3 Enforcing constraints

In the previous section we have shown how constraints specified
at the relation level, can be translated to the fragment level and
manipulated to obtain a form that is fit for straightforward im-
plementation of constraint enforcement algorithms. In this sec-
tion we will show how these constraint specifications can indeed
be mapped into extended Relational Algebra (XRA) expressions
that implement the rules of the constraints. The next section dis-
cusses implementation and execution of these XRA expressions.

The use of XRA as an enforcement vehicle gives several im-
portant advantages over specialized ad hoc algorithms:

. XRA provides an abstraction level that makes straightfor-
ward translation of constraints into enforcement algorithms
possible;

. the use of XRA makes use of modular building blocks for
the enforcement algorithms, thus ensuring flexibility and
extendibility;

l using XRA means using software building blocks that are
already used for regular query processing to a large extent;
this minimizes implementation overhead for integrity con-
straints on the one hand, and maximizes the use of parallel
algorithms on the other hand.

The remainder of this section first discusses the most important
XRA operators for describing integrity enforcement algorithms.
Next, attention is paid to the mapping of constraint definitions
onto XRA expressions.

3.1 XRA constructs

For constraint enforcement in XRA, we will make use of the reg-
ular relational algebra operators, such as union and difference.
Further, we make use of a few extensions to the normal relational
algebra. Apart,from one, the alarm operator, all these extensions
are used for normal query processing in PRISMA/DB.

We have two operators in XRA that take care of distribut-
ing tuples of a source operand to several destination operands;
these operators are functionally equivalent to a combination of
regular relational algebra operators, but, as will be shown in
the next section, operationally extremely important for obtain-
ing parallelism. The first of these operators, copy, copies the
source operand to each of the destination operands:

copy(src, dstl,. . . , d&J

This operation is functionally equivalent to the following sequence
of assignments:

dstl t src

dst, +- STC

The second distributing operator, split, splits up the source operand
over the destination operands given the fragmentation constraints
of the destination operands:

split(src,dstl,condl, dst2,cond2, ... ,dst,, cond,)

In this operation, all conditions condi are mutually disjoint and
together complete with respect to the source relation src; in
other words, the conditions define a partition of the source rela-
tion. This operation is functionally equivalent to the following
sequence of assignments:

dst, + ucond, SW

dst, + ~cond,=c

Finaly, we have an operator that has as its sole functionality that
it causes a transaction abort if its operand is not empty:

alarm(oper)

3.2 Mapping constraints to XRA

In this section we will show how constraint definitions as dis-
cussed in the previous section can be mapped to XRA expres-
sions. It is not our goal to give rules that describe this mapping
for arbitrary constraints. Instead we will show the process for
some representative cases. In these cases we will use the trans-
formation rules as shown below; these rules show how a specific
logic construct as appearing in the constraint definitions can be
mapped onto an XRA construct.

142

(Vr E R)(3y E S)(x = y) +
alarm(unigue(R) - S)

(2)

(Vx E R)(VLPY E Si)(X = Y)) -+
copy(unique(R),Tl,. . ., T,,)
aZarm((Tl - Sl) n . . . n (T,, - S,))

(3)

(Vx E RPY E S)(x z Y) +
alarm(R f~ S)

(4)

(VX E R)(AL(VY E 5)(x # Y)) +
COPY(R,TI,..~,T,)
aZarm(Tl Cl Sl)

(5)

alarm(T, rl S,)

Domain constraint CSI&ff is taken as a first example; the defi-
nition of this constraint is:

11R, = WRY, 71~~1
tlRI. = {~~S(Rk),UPD(Rdl
f-l& = (VZ E R:.i)(c(z))

The rule of this constraint can easily be mapped onto the follow-
ing XRA construct using transformation 1 as shown above:

alarm(a,,(,)(*i(R~)))

We take the first case of referential integrity constraint CS2,,,
as discussed in section 2.4.2 as a second example:

I2R, = [t2R,r79Rk]
t2Rr = {INS(&))
79Rt = (VZ E R:.i 1 x # ndI)

WfX(3Y E sLJ.d(~ = Y)))

Using transformation 3 as listed above, we can map the rule of
this constraint onto the following XRA construct:

copy(~nique(a;(o;2,,lr(R:))), templ,... ,temp,)
aZarm((templ - Kj(Sl)) n . . . n (temp, - Kj(S,)))

Note, that the copy operator takes care of ditributing the dif-
ferential set of &; this is used to obtain pipeling parallelism,
as discussed in the next section. If we know that relation S
is fragmented on attribute S.j using fragmentation constraints
fCl,-..rfC*, we can change the XRA construct above as follows:

split(~niq~e(Ki(ai#~~rr(R~))), t-m, fcl, . .-,tempn,f4
alarm(tempr - nj(S1))

alarm(temp, - rj(S,))

The second case of CS2,,, can be mapped onto XRA in a com-
parable way using transformation 5; the constraint definition is
the following:

I%, = WSk > 7%,1
G.k = {DEL(&), UPD(Sk))
T%li = (Vy E (S,.j - (Sf.j u . . . u S,+.j)))

(A:~~(@‘~ E Rv.i)(x # ~1))

The matching XRA construct is:

COpy((lrj(S~) - (Tj(S:) U--.lJ ifj(S,+))),templ,...,temp,)
alarm(templ n T;(R1))

alarm(temp, n Ki(Rm))

4 Implementation issues

The XRA constructs used for constraint enforcement as presented
in the previous section can straightforwardly be implemented us-
ing XRA execution infrastructures in PRISMA/DB. This section
discusses the way this is realized and the possibilities for paral-
lelism in this method.

4.1 Building the infrastructure

The infrastructure for constraint enforcement at the OFM level
consists of three types of building blocks:

l permanent OFM : used for the storage of fragments of per-
manent relations;

l temporary OFM : used for execution of relational operators

l channels : used for the transportation of tuples between
OFMs

The permanent OFMs contain the fragment data on which in-
tegrity constraints must be enforced. These OFMs contain logic
to automaticaly maintain the differential sets; this means that
these sets are already constructed during transaction execution
on a local basis in the fragments. The temporary OFMs are used
for the execution of the XRA operators needed for the constraint
enforcement structures. These OFMs can be created dynamicaly
by the transaction manager when needed. The channels are used
as communication means to transport tuples from one OFM to
another. Both OFMs and channels are designed to make optimal
use of pipelining in executing XRA execution [Wils89,Wils90].

To obtain a complete transaction model, all constraints are
enforced at commit time in PRISMA/DB; note, that the tech-
niques as presented in this paper can be used for other approaches
equaly well. Enforcing constraints at the end of a transaction
consists of two phases:

. setup phase: in this phase the transaction manager builds
the execution infrastructure needed for constraint enforce-
ment; actually, this phase can already start during trans-
action execution;

l ezecution phase: in this phase the execution infrastructure
processes the data to be checked; similar to the execution
of regular user queries, this operates in a fully parallel,
pipelined fashion [WilsSO].

143

Figure 2: XRA execution infrastructure I

I I
1

diff

I

PM

The setup phase makes use of the same mechanisms that are
used for setting up normal query execution infrastructures in
PRISMA/DB; this implies that constraint enforcement does not
require any architectural changes at the execution level (TM-
OFM). Especially, the transaction manager does not have to deal
with any part of the database extension, thus avoiding a possible
bottleneck in the enforcement algorithms.

The previously presented example of the XRA construct used
for enforcement of the insert case of referential integrity rule
cs2,,,:

can straightforwardly be implemented by the execution infras-
tructure as shown in Figure 2.

If several fragments of relation R have to be checked, it is not
necessary to duplicate the complete infrastructure; this would
lead to excessive overhead if the fragmentation degree is high.
The same infrastructure can be used, if Rk+ is replaced by the
union of all fragments involved; in this way, sharing of resources
is used to be able to control the overhead involved.

4.2 Parallelism in constraint enforcement

We have seen that constraint emforcement is executed by a XRA

infrastructure. The relational operators in these infrastructures
are all independent processes, so parallelism can be employed
easily. Within the constraint enforcement mechanism we can
distinguish three types of parallelism [Wils89]:

l several independent constraints can be checked at the same
time; this is possible because after the setup phase, the en-
forcement process is fully asynchronous; at the enforcement
level, we can consider this a kind of multi-tasking;

l at the same level in a XRA infrastructure, several OFMs
operate on the data of several fragments in parallel; in the
example of figure 2 we can see that alI difference operators
can work in parallel; this kind of parallelism is called task
spreading;

l because all operators operate in a pipelined fashion, several
stages of the XRA infrastructure can work in parallel too;
we call this pipelining parallelism.

Because PRISMA/DB is designed to run on a multi-processor
with many nodes (the prototype has 100 nodes), paralleIism
at the logical level can easily be made operational by assign-
ing OFMs to nodes in the system. We expect that the use of
parallelism will reduce response times in constraint enforcements
strongly, thereby taking away one of the largest obstacles for the

widespread use of constraints in relational databases.

5 Conclusion and Look into the Future

In this paper we have given an outline of a way to combine in-
tegrity constraint handling on the one hand and relation fragmen-
tation and parallelism on the other hand in a relational DBMS.
The way constraints are handled in PRISMA/DB is of a gen-
eral and modular structure, thereby giving easy ways for mod-
ification and extention. The constraint handling mechanism in
PRISMA/DB consists of two subsystems:

. a translation mechanism that translates constraints from
the relation level to the fragment level and optimizes these;
this can be seen as the static part of the subsystem; this
mechanism is located in the data dictionary of the DBMS;

. an enforcement mechanism that enforces the constraints as
produced by the translation mechanism using XRA execu-
tion infrastructures; this is the dynamic part of the subsys-

144

tern; this mechanism is located in the transaction manager
of the DBMS.

Although relation fragmentation complicates constraint handling,
it also allows for a high degree of parallelism in the enforcement
algorithms, thereby giving good possibilities to reduce response
times, comparable to the gains obtained by using parallelism in
normal query execution.

We think that the constraint handling mechanism as proposed
in this paper contributes to the use of integrity constraint han-
dling in parallel database systems; the proposal both addresses
the complications of relation fragmentation and the benefits of
parallelism. To the best of our knowledge, there have not been
any proposals that cover this topic.

A prototype implementation of PRISMA/DB is operational
now. We plan to enhance this prototype with integrity constraint
handling as lined out in this paper. This prototype will support
at least the structural constraint classes of the relational model
[Gard89]:

l domain constraints

l nonnull constraints

0 uniqueness constraints

0 referential integrity constraints

Using this prototype experiments will be conducted to measure
the response time benefits of using parallelism in constraint en-
forcement.

Acknowledgements

We wish to thank the PRISMA project members for provid-
ing a challenging environment and productive cooperation with
the teams from Philips Research Laboratories Eindhoven, the
University of Amsterdam and the Centre for Mathematics and
Computer Science Amsterdam in the development of our DBMS.
In particular, we wish to thank dr. A.J.Nijman for bringing
academia and industry together, dr. H.H.Eggenhuisen for provid-
ing good project management and for stimulating the interaction
between the various subprojects.

References

[Apers88] P.M.G.Apers, M.L.Kersten,
H.C.M.Oerlemans; PRZS’MA Database Machine: A
Distributed Main Memory Approach; Proceedings In-
ternational Conference on Extending Database Tech-
nology; Venice, Italy, 1988.

[Brat891 K.Bratbergsengen, T.Gjelsvik; The Development of
the CROSS8 and HC16-186 Parallel (Database) Com-
puters; Proceedings of the 6th International Work-
shop on Database Machines; Deauville, France, 1989;

[Bron87] W.J.H.J.Bronnenberg, L.Nijman,
E.A.M.Odijk,R.A.H.v.Twist; DOOM: A Decentral-
ized Object-Oriented Machine; IEEE Micro; October
1987.

[Ceri84] S.Ceri, G.Pelagatti; Distributed Databases, Principles
and Systems; McGraw-Hill, 1984.

[Cope881 G.Copeland et al.; Data Placement in Bubba; Prc+
ceedings of the 1988 SIGMOD Conference; Chicago,
USA, 1988.

[Date811 C.J.Date; Referential Integrity; Proceedings of the
7th Conference on Very Large Data Bases; Cannes,
France, 1981.

[DeWi88] D.J.DeWitt et al.; A Performance Analysis of the
Gamma Database Machine; Proceedings of the 1988
SIGMOD Conference; Chicago, USA, 1988.

[Gard89] G.Gardarin, P.Valduriez; Relational Databases and
Knowledge Bases; Addison- Wesley, 1989.

[Gref89] P.W.P.J.Grefen; Integrity Constraint Handling in a
Parallel Database System; Memorandum INF 89-59;
University of Twente, The Netherlands, 1989.

[Kers87] M.L.Kersten et al.; A Distributed Main Memory
Database Machine; Proceedings of the 5th Interna-
tional Workshop on Database Machines; Karuizawa,
Japan, 1987.

[Morg84] M.Morgenstern; Constmint Equations: Declamtive
Expression of Constraints with Automatic Enforce-
ment; Proceedings of the 10th Conference on Very
Large Data Bases; Singapore, 1984.

[Simon851 E.Simon, P.Valduriez; Integrity Control in Ditributed
Database Systems; MCC Technical Report Number
DB-103-85; MCC, Austin, USA, 1985.

[Simon871 E.Simon, P.Valduriez; Design and Analysis of a Re-
lational Integrity Subsystem; MCC Technical Report
Number DB-015-87; MCC, Austin, USA, 1987.

[Ston75] M.Stonebraker; Implementation of Integrity Con-
stmints and Views by Query Mofijication; Proceed-
ings of the 1975 SIGMOD Conference; San Jose, USA,
1975.

[Wils89] A.N.Wilschut, P.W.P.J.Grefen, P.M.G.Apers,
M.L.Kersten; Implementing PRZSMA/DB in an
OOPL; Proceedings of the 6th International Work-
shop on Database Machines; Deauville, France, 1989.

[WilsSO] A.N.Wilschut, P.M.G.Apers; Pipelining in Query Ez-
ecution; Proceedings of the ParBase’ Conference;
Miami Beach, USA, 1990.

[Zloof78] M.M.Zloof; Security and Integrity within the Query-
by-Example Database Management Language; IBM
RC 6982; Yorktown Hts., USA, 1978.

145

