
MODULES

PROGRAM STRUCTURES

and the

STRUCTURING OF OPERATING SYSTEMS

C. Bron

Department of Electrical Engineering

Twente University of Technology

P.O. Box 217, Enschede, Netherlands

Abstract

In this paper some views are presented on the way in which complex systems, such as

Operating Systems and the programs to be interfaced with them can be constructed, and

how such systems may become heavily library oriented. Although such systems have a

dynamic nature, all interfacing within and among modules can be checked statically.

It will be shown that the concepts presented are equally valid for single user

systems, multi-programming systems and even distributed systems. The ideas have been

spurred by the implementation of a modular version of Pascal and a supporting

Operating System, currently nearing completion at Twente University of Technology,

The Netherlands.

136

I. Co-operating Modules

1.! Modules

The basic progra~ing tool we consider in this paper is a module. This concept is

incorporated in several recent languages (ADA[I] (where it is called "package"),

Concurrent Pascal[61 (where it is called "classY'), Pascal Plus[17], LIS[13],

MESA[15], Modula[19~, Modula-2[20~ and many others). Although details may differ

from one language to another, the following description should suffice for the sake

of this paper:

A module is a set of related (type-)definitions, data declarations, operation

declarations (viz. procedures and/or functions) and a section describing the

initialization (sometimes also the finalization~ as in Pascal Plus) of the module's

local data.

In order that programs (or systems) may be composed from co-operating modules some of

the declarations within modules may have to be mede accessible outside these modules.

We will say that these declarations are exported from these modules. Conversely, the

use of items declared in other modules will be called "importing". If a program is

composed from several modules, then the rules according to which modules may be

interconnected determine the accessibility and scope of the objects within the

program. It needs no arguing that the visibility structure that can be obtained in

this way may well differ from the scope ru3es one encounters in classical, block

structured languages (of which Pascal may be considered an example). A judicious use

of the interconnection rules between modules may lead to a simple, but, nevertheless

very powerful means of structuring systems, and in particular: Operating Systems.

This we hope to show in the sequel.

1.2 Interdependency of Modules

In the following we postulate that each module specifies from which other modules it

wishes to import items. Thus a program (composed from modules) may be modelled by a

directed graph, where the modules are the vertices and the relation "imports from"

determines the (directed) arcs of the graph. (Classical block=structure would limit

the structure of such graphs to trees.)

If knowledge of the total set of modules is only used when the program is composed

from a set of object modules, as is the case in traditional systems with "independent

compilation", it can hardly be checked that the arguments supplied for a procedure

137

called from a certain module, are type-correct with regard to the definition of such

a procedure in another module. Such organizations discard most of the advantages

that are generally recognized as to be obtained from full type-checking. In this

respect it should be noted that the same insecurity was originally present in Pascal

with regard to the arguments of formal procedures. (Fortunately, this flaw has been

mended in the forthcoming Pascal standard[2].)

On the other hand, if during compilation of a module, the source texts of all modules

from which it imports are available, the full power of type-checking can be

maintained. Obviously we n~st be able to guarantee that the vital part of the

exporting modules is not changed later, to invalidate the type checking performed

previously. We will return to this consistency issue in 1.4.

Often, it may not be necessary to have available the full source text of an exporting

module. E.g. in order to check an actual parameter list for type consistency only

the heading of the called procedure (even without formal identifiers) is necessary.

In several of the languages mentioned in 1.1. we find such excerpts from modules as

language entities. (E.g. definition modules in Modula 2, Mesa.) The best term for

such entities seems to be "interface modules"°

1.3 Further ordering imposed on co-operating modules

If interface modules are present it seems well possible to compile importing modules,

when the implementation of the modules which do the corresponding exporting is not

yet given. When the latter is given it only needs to be checked that it complies

with its own interface module. Furthermore the same consistency restriction will

have to be observed as mentioned in 1.2. Although a scheme with interface modules

seems to offer the greatest flexibility, there are arguments in favour of not

separating interface modules from their implementation.

Note that the scheme without separately defined interface modules enforces a partial

ordering on the compilation of modules, i.e. the directed graph must be acyclic.

The most important advantage is the observation that acyclicity of a program's graph

guarantees the existence of an instantiation order of modules, such that during

initialization of a module it has at its disposal all items imported from other

modules, for these modules can be forced to be instantiated first.

As a drawback of this scheme it should be noted that mutual recursion between

procedures from different modules is impossible unless at least one of them has been

passed as a procedure parameter. In the latter way a procedure defined in an

importing module can be made available in an exporting module.

138

1.4 Partial recompilation, Time-stamping

In this section we discuss some aspects of our current effort in building modular

systems. More details are given in [7, 8].

Interface modules as described in the previous chapter are not part of the language,

but are produced as a by-product of the compilation of an (exporting) module. They

are called specification files. Compilation of a module requires the existence of

the specification files of all imported modules. Obviously these files will be the

most up-to-date versions and therefore consistency at the time of compilation is

guaranteed. However, it must be checked, at the time modules are instantiated, that

no exporting module has changed its "outward face" after compilation of

correspondingly importing modules. This could be achieved by time-stamping all

object modules and checking these time-stamps when the modules of a program are about

to be instantiated.

In the case of compiler produced specification files, a considerable relaxation is

possible: Instead of attaching time-stamps to object modules, we attach time-stamps

to specification files. If - as a by-product of recompilation of a module - the new

specification file is identical to the old one, the old one, including it___ss

time-stamp, is maintained. We do r~t give details of the conditions under which

specification files remain unaffected, but the major benefit is derived from the fact

that neither procedure bodies, nor the initialisation part influence the

specification file.

It will be readily seen that in most cases small changes to large systems affect one

module only and can be brought about by the recompilation of a single module with the

conservation of the benefits of type-checking. We stress - again - that when the

modules of a program are instantiated the partial ordering of the modules must be

observed by the ordering of the time-stamps of these modules. In other words: for

any pair of modules A and B, where B imports A, the time-stamp of the specification

file of A must be older than the time-stamp of the object file of B.

(As an aside - at this point - we mention the value of partial compilation for small

mini- and micro-based computer systems where the size of the addressing space may

create an obstacle to the compilation of large programs and systems as a whole.)

I. 5 A model for sequential program execution

In a program (composed from a number of modules) one particular module, the export of

which - if at all present - is not used by any other module, can always be identified

139

as the "main program" (or: "main module"). It may be considered as the root of the

directed graph. One might say that the external effects of the program are the side

effects of that particular module's initialisation. Now let us look at the way such

a program's execution might proceed. As will be made more explicit in 2.1, we want

the lifetimes of modules to be strictly nested, so this nesting also holds for the

data of these modules. Therefore, a stackwise allocation scheme for module data must

be implemented. This will be accomplished in a handsome manner by a set of nested

procedure activations, as will be described now.

First consider a linear ordering of the vertices of the graph in such a way that the

partial ordering is obeyed. The main module of the program is at the top, and some

module that does not import from any other module will be at the bottom. Given this

ordering, and considering each module as a procedure, the environment (usually called

the "Operating System") invokes the bottom module, and each module in turn invokes as

its last action (i.e. after it has performed its initialisation) the next module in

the sequence. It would carry too far - at this point to describe how modules

invoke other modules that are "unknown" to them. After all, the direction of

invocation is the direction of exporting, whereas visibility is always in the

direction of importing. We leave it at the remark that this instantiation scheme can

be accomplished by passing to each module its successor module as a

procedure-parameter. Obviously the root module will eventually be invoked with a

successor having an empty body. In chapter 2 we will show that the "Operating

System" itself may have been instantiated in a manner fully analogous to the

instantiation mechanism just described.

Note that this scheme is equally applicable for the "envelopes" of Pascal Plus[17],

where each module consists of an initialisation part and a finalization part. At the

borderline of the two, the successor module may be invoked.

The reader will have noticed that by instantiating programs in this way, the local

data of modules are allocated in a stackwise fashion, and there is therefore no need

to treat the data segments of modules in a way that differs from procedural data

frames.

1.6 Addressing structure and context switching

In the previous chapter we discussed a trivial scheme for the allocation and

initialis&tion of module data. In this chapter we discuss the addressing of objects

across module boundaries. Not only for the sake of brevity but also because this is

by far the most interesting aspect, we limit the discussion to the invocation of

procedures in other modules: "external call".

140

We associate with each module (and allocate in its local data space) a table

containing one entry for each imported module: the "environment display". Each

entry contains the 'base-address" of the local data of the corresponding module (note

the similarity with the display concept to administer statically nested blocks.)

Because the instantiation order obeys the partial ordering of the vertices of the

program-graph, all the addresses to be filled in in the environment display are

available at the moment a new module is to be instantiated.

External call may be compared to the mechanism for calling a formal procedure which

also has the property that the calling context and the called context may have

nothing in cor~mon. External call is even simpler, since the procedure to be

activated can only be declared at the outer block level of a module and therefore the

addressing environment that has to be created is extremely simple.

It will be evident that an external procedure can be activated by accessing the

display element corresponding to the module in which the procedure is declared and

providing the code-location of the procedure relative to its code-segment-base. The

calculation of the actual code-address implies one simple addition of the

code-segment-base which may be stored in a fixed position of the new module's data

frame.

In addition to the return information that has to be stored for any procedure callg

the address-base of the module being left must be saved (and restored upon return).

(For the PDP11 the full call/return mechanism takes approximately 8 instructions.) It

may be superfluous to remark that the communication of parameters and function

results may proceed in a normal, stackwise fashion.

It may seem unnecessary to spend so many words on such a simple context switching

mechanism, but even today there is evidence that procedure calls are burdened by the

implementation to such an extent that programmers tend to shy from procedures like

the plague, and compilers do their utmost to substitute in-line code for procedure

calls where ever this is defendable[18].

Having presented the mechanism for external call in its most simple form, it seems

worthwhile to remark that the concept of module switching can be used in a variety of

ways. For instanceq in a system with an addressing space smaller than the memory

space, the point of module switching may be used to adapt the address map such that

the new module appears Ln the code addressing space (a single map register wDuld do,

provided each code segment is located in contiguous memory locations). In our case

we exploit the external call/return mechanism slightly further by adding a test on

presence of the invoked module's code segment. If not present, it will be loaded

141

from backing store. Notice that, in essence, this provides a low overhead virtual

memory mechanism for program code. Suitable hardware or microcode to perform the

above simple call/return operations would reduce the overhead to become negligible.

I42

2. ~rating Systems composed from Modules

2.1A basic operating system structure

Having discussed at length how a program may be composed out of modules, we postulate

that an operating system may display exactly the same structure. It may contain

modules that provide service to the system itself (c.q. terminal i/o and filing

services) as well as to any programs to be run "on top" of the operating system.

The only difference being that the operating system "main program" does not terminate

and that - in order to maintain the analogy with the instantiation of program modules

- some form of bootstrap (at least for the bottom module(s) of the system) must be

devised. We propose that the main task of the operating system is the administration

of modules. The modules in the system maybe divided in two groups: the active

modules which - currently - are participating in the system, and the passive modules

which reside in the file system. We now consider the "running" of a program as the

shift of those modules constituting the program and not already active (!!) from the

passive state to the active state, by instantiating each of these modules in an

allowed order. Modules are therefore implicitly shared by different programs. In

particular the O.S. calls on its own services in exactly the same way as a "user"

program does. In fact, there is no distinction between Operating System and

application. At any instant in time, the system as a whole may be viewed as a set of

co-operating modules, sometimes expanding on account of RUN('A program'), at other

times shrinking, on account of the termination of 'A program'.

In order to prepare the chapters that are to follow~ we describe the concept of RUN

in more detail. The argument of RUN is the (unique) name of a module. (Possibly a

file-name.) Central in our description is a structure we will call the "load-table",

containing relevant data of all currently active modules, in their instantiation

order. Let, for the basic system, the structure of the load-table be given by

fig. I, and consider the activation of

P(importing: D, E, A), where

E(importing: D)

D(importing: "nothing ~')

(In the diagram, the import relations are given by downward arrows.)

The action RUN(~P') proceeds in two phases. First the load-table is extended, to

become (see fig. 2):

143

current

fig. I fig. 2

new

current

Next "current" is moved up, instantiating each module it passes on its way until

current equals "new". This process has been described in a different terminology in

1.5.

If the procedure RUN is exported from its defining module, which is our explicit

intention(!), there is nothing that prevents module P from instantiating another

program on top of itself. We believe that in this way the sharing of program modules

can be carried to its extremes. E.g. all programs within such a system may share

the same routines for binary/decimal conversion. Different versions of a compiler

may share the majority of their modules. Although this seems a natural approach, it

has not been accomplished in several, otherwise attractive operating systems:

(Burroughs MCP, DEC TOPS 10).

The above will also make clear, how the system bootstrap can be accomplished. The

initial system-structure is given by fig. 3. Now the second phase of RUN can be

started. This scheme makes clear that only one module needs to be loaded in a

non-standard way, viz. 'Boot', and that the load-table, its initial contents, and

the procedure RUN must be implemented in that module. A very modest implementation

of the module O.S. might look like the following:

144

program OS(importing: A t Br Hoot);

var name: filename;

begin loop readmodulename{name); {/O.S.~ ~ new

RUN (name)

end

an_~d.

fig. 3 ~ ~ current

2.2 Structure of the load-table, linking of modules

The load-table is the central structure in the modular system. It contains one entry

for each module that is active or about to be activated. Each entry consists of the

unique name of the module, its data address base (only for those modules up to and

including "current")~ the backing store address of the module's code segment if

segments are to be dynamically loaded, or the primary code address if modules have

been loaded into memory on account of the first phase of expanding the load-table.

Based on this structure we require the existence of a procedure which yields the data

address base of a module in exchange for that module's name. The traditional role of

"linkage editing" now shrinks to the following:

Each module builds its environment-display (see 1.6) by calling the above procedure

once for every module it imports. Note that such calls take place only for modules

which have already been instantiated, the address base of which is therefore already

defined.

AS a complementary obligation, each module must define~ in its own load-table entry,

its data address base_ before it instantiates the ne~t module.

145

3. Parallel Processes and Distributed Systems

3.1 Spawning of parallel processes

We now turn our attention to an environment with parallel processes, based on the

same structuring principles as discussed before. Very briefly we relate an

experience with parallel processing in a purely sequential language environment. We

will not dwell on the complications that arise for memory management when separate

stacks for parallel processes have to be allocated:

Parallel processes can be implemented with the aid of two "extra-ordinary" routines.

One is needed to set up the initial data space for a process (much in the same way as

must be done for the initial system bootstrap), which needs detailed knowledge of the

mapping of the language on the target machine (register usage, stack-layout etc.). A

second routine will be responsible for process switching, i.e. the current status of

the target machine must be saved in the data space of the process being switched

from, and the new status must be (re)loaded from the data space of the process being

switched to. (In some machines this routine can be recognized as a hardware

instruction [Burroughs B6700: MOVE STACK].)

On top of the above, process queueing may be

queues and a CPU queue. Within this

(run-to-blocked, time-slicing (if a clock

implemented [10].

organized, implementing logical wait

organization any form of scheduling

is available), priorities) may be

How does parallel processing fit in the system's module structure discussed so far?

We propose an analogon to the procedure RUN, say FORK('A module'). Fork may be

described as we did for RUN, with regard to the instantiation of new modules.

However, the module responsible for FORK remains active as a process itself. In a

pictorial representation Fork is indicated by an oblique line in stead of a vertical

one. (See fig. 4)

146

fig. 4

J

As a result of FORK(~Y ~) in X, Y and X may share all modules up to and including X in

the !oad-table~ but whether they actually do so is dependent on the import structure

of Y (and X)° Let us consider a producer/consumer pair as a concrete example. The

role of either one could be played by X or Y in the above example, but for reasons of

symmetry, we prefer a second spawning of a process. The spawning module could be the

module 'buffer ~ , exporting the operations "get" and "put", whereas the consumer and

producer, both importing buffer, would be able to communicate via the shared module

'buffer'. Obviously, any synchronization required for this co-operation would have

to be programmed explicitly in the buffer module.

It will be obvious how this scheme can be exploited if - for instance - more than one

consumer/producer pair has to be instantiated:

FORK('buffer~}; FORK('buffer')

The presence of the concept of "FORK" forces the structure of the load-table to

become a tree~ but to each individual process, only the underlying path to the root

of the tree is directly or indirectly accessible, that is: as viewed from a module

the relevant part of the load-table still behaves as a linear LIFO-list.

(The actual implementation of the load-table as a tree will have to be somewhat more

complicated if one wants visibility control to follow the above scheme, but - at the

same time - one wants to accomplish the sharing of code segments even between

instances in parallel branches of the tree.)

147

One might argue that implicit sharing of modules is not always desirable and that

there should be a way to indicate that additional module instances have to be set up

in the same path of the load-table. The counter argument is, that procedure

activations are the objects which are implicitly non-shared. Since procedure bodies

are in no way restricted in comparison to module bodies, the desired effects of

multiple module instances can be obtained by nested procedure activations.

To illustrate this, let us consider the UNIX shell (command interpreter) [16]. Let

this shell be a procedure declared in the shell module (which should have no local

data in this case). The "shell", being a con~nand interpreter, may RUN or FORK a

program. This program in turn can invoke the "shell" as a procedure, provided it

imports the shell module. And so we obtain multiple instances in a very natural

manner, at the same time sticking to our principle of maximal sharing of modules.

3.2 synchronization of parallel processes

It is our view that the decisions to be made about the synchronization of parallel

system components are not part of the system structure described here, and have to be

taken at another level of the system design. We have, also, serious doubts whether

uniform (language-enforced) decisions on synchronization structure are desirable.

Among all proposals for synchronization made and investigated so far, there is no

clear-cut favourite [4, 5, 9, 14].

The viability of a particular mechanism is too often dependent on t~e characteristics

of the application. E.g. when producer/consumer relations have to be implemented (a

not infrequent occasion: spoolers, pipes, ...) P and V operations are still at the

top, whereas they are rather impractical when complicated logical expressions control

the synchronization of processes. Similarly, one might think of the buffer module

described in 3. I as a Concurrent Pascal monitor, but the mutual exclusion thus

imposed on "get" and "put" may be much more restrictive than is actually desirable.

So we conclude that we should implement only very primitive operations for process

synchronization end scheduling, and leave it to the system designer to build other

mechanisms on top of the primitive ones, as the situation requires.

It is the implementor's obligation to design modules that are intended to be shared

by parallel activities in such a way as to avoid conflicts. The fulfillment of this

obligation does not affect the system structure. If we take the file administration

as an example, it will be clear that more safe-guards have to be built in in a

parallel environment than in a purely sequential environment. Nevertheless, the

interface the file administration presents to importing modules may remain the same,

and even should remain the same if one wants potential parallelism to be transparent

to i~mporting modules~

148

3.3 Distributed system~

We now carry our principles for structuring systems one step further and apply them

to distributed systems. To this end we postulate a third basic system building

operation which we will call FORK REMOTE.

The arguments~ this time~ are the (unique) name of a module and the (unique)

identification of a node in a distributed system. The effect of this operation is

comparable to that of FORK, but for the fact that the branch of the load-table to be

spawned will be physically located in the node identified as an argument (fig. 5).

figs 5

All that will be needed ~ addition to what we already have for a parallel system is

a procedure calling mechanism across the link, possibly restricted with regard to the

kinds of arguments that can be passed in such a call. E.g. var-parameters may have

to make way for a value/result form of parameter passing.

The picture sketched above is an oversimplification~ since; in the spawning node of

the network, we need a process that acts as the extension of the spawned branch, and

which is willing to accept the requests for procedure calls and to transmit the

results back to the calling node. Note that the structure of such an extension

process can be very simple since it contains no internal parallelism. (fig. 6)

149

fig. 6

U
I

I

I

<
E

)

Is the above scheme simply implementable? We believe it is. Of course, it is now

insufficient to have in the environment display of a module, address bases only. Each

element must also contain a node identification. Given an element of the environment

display, the mechanism for external call may now detect easily that some calls have

to be directed to foreign nodes, and, in order to get this accomplished, invoke the

actual routines that take care of remote procedure invocation. In fact, the scheme

is surprisingly similar to that mentioned at the end of 1.6 where the dynamic loading

of code segments is delegated to the external call mechanism.

Apart from its conceptual simplicity, we must reflect on some of the potential

drawbacks.

The load-table will be distributed over the nodes of the network, which makes the

linking of modules somewhat more costly. On the other hand, it n~y be attractive

that - as long as no malfunctioning takes place - each node has up-to-date knowledge

of the system structure in those parts of the network it depends on. Failure in a

node A which has spawned a process in a node B need not be fatal as long as the

actions in B do not perform remote invocations on A. As soon as they do, however,

the malfunctioning of A will be detected and it can be coped with in B much in the

same way as local malfunctioning is coped with.

It might also be argued that the system is asymmetric in the sense that the node,

from which all activities are originally spawned, is too central and too vulnerable

within the system. It seems that this need not be the case. We only propose that

150

the system; when being set up, sprawls out from one node. There may be several nodes

in the system able to perform this task. Whether this initial node plays a central

role in the system's further activities is highly dependent on the import structure

of the modules that are distributed over the nodes.

3.4 Security, protectionr access control

In this chapter we briefly discuss some aspects of protection within systems,

structured along the lines ir~icated. The main point to be stressed is that within

this form of co-operation between nodes in a network, most of the interface checking

can still be delegated to compile-time checks and it seems that very little run-time

protocol checking will be recg/ired. In contrastf both message oriented systems and

capability based systems are to a much higher degree dependent on run-time checks.

with regard to security~ we will discuss three aspects:

- security in the use of addresses

- security across node boundaries

- accessibility of modules

The first aspect is the classical one of protecting address spaces. Ideally, the

language used for prograr~ming the system should be fully fool-proof, or some hardware

support should be provided. For Pascal, it is well known that pointers, the heap and

record variants are unsafe features. In order to have a secure system at the same

time preserving the unsafe features of the language, it needs to be checked that the

result of each address calculation falls within the bounds set for the current

module. (Such checks are bound to be inefficient in the absence of supporting

hardware!) It should be allowed that, at the time of use, an address calculated

previously, lies outside the bounds set for the current module. (var-parameters!).

External call/return is responsible for switching the address map, including the

limits for the addressing space.

The second aspect is more interesting:

Since all co~unication between nodes in the network takes place by means of remote

procedure call and the passing back of results, it will be impossible for one node to

break the security in another, provided the procedures are safe with respect to the

node they are active in. Therefore, even if locally we can not guarantee perfect

operation, malfunctioning can never be caused by non-local events. In other words,

the system is safe with respect to the Trojan Horse.

Third, and this seems to be the most interesting aspect, we may wish to exercise

access control at the module level. For instance, within the Operating system we may

151

have some modules that are to be called from other O.S. modules, but not directly by

"user programs". This form of access control can be borrowed in a straightforward

way from the access control which is generally found in file systems.

Within this scheme a discipline for the use of a particular module can easily be

enforced by making externally available only those modules that are known to stick to

that discipline, and not the particular module itself. Note that it is not the

identity of the ultimate user which determines the access rights, but the identity of

the using module.

The exploitation of this form of access control may yield a tremendous increase in

the efficiency of intermodule access, since accesses are checked at compile-time, and

only once for every inter-module connection (arc in the directed graph representing

the system). This strongly contrasts with capability based systems where

capabilities are checked at runtime, at the procedure calling level. The latter

either hampers efficient implementation [21], or requires additional hardware and

storage [11]. It can not be stressed enough that the rx>st vital abstraction mechanism

presently available, notably procedures, should be implemented with such'efficiency

that it induces its frequent use.

IS2

Summary

In paragraphs !,~3 we have described an addressing structureg based on program

modules and visibility control obtained from modular interconnections forming an

acyclic directed graph. Out of these modules systems can be composed in a variety of

dynamic ways. The classical concept of "running a user program" is viewed as a

temporary extension of the system (1.5), where the boundary between Operating System

and user program has actually vanished.

A central concept in such systems is a data structure we have called the

"load-table", which forms the administration of the modules currently active in the

system (2.2). Around this administration, several system structures ranging from

dedicated single user systems (2.!) to distributed systems (3.3) may be conceived.

All of these systems show a surprising amount of similarity with regard to their

addressing structure. They can be considered as members of a single family [12]. A

reasonable amount of protection in these systems can be obtained at low overhead. A

possible implementation of the addressing structure has been described in 1.6, but

many of the other details of the implementation of such a system can be filled in in

a variety of ways.

Several classical concepts like linking and loading either have disappeared

altogether, or display a very natural form within this system structure (2.2). The

systems of this family are particularly suitable for program sharing and the support

of software libraries, Procedural parameters - so often neglected in programming

languages (ADA) - turn Out to be an extremely useful concept, even at the level of

so-called hard systems programs.

Acknowledgements

The original concepts of the addressing structure within programs composed from

modules are due to Eelco J. Dijkstra, and were implemented by him in a portable

compiler for a version of Pascal supporting this module concept. The ideas with

regard to Operating System structures were further developed in discussions with

P.J. Voda, and recently with Wiek A. Vervoort and Albert L. Schoute in the course of

the development of a "high band-width" distributed Operating System.

153

References

[1] ADA: Preliminary reference manual
ACM SIGPLAN Notices 14 (6, June 1979)

[2] Addyman, A.M., A draft proposal for Pascal
ACM SIGPLAN Notices 15 (4, April 1980), 1 - 66

[3] Andler, S.,
Synchronization primitives and the verification of concurrent programs
2nd International Symposium on Operating Systems
IRIA, Rocquencourt, France (October 1978)

[4] Bloom, T., Evaluating synchronization mechanisms
Proc. 7th Symposium on Operating Systems Principles,
AC~4 SIGOPS, Asilomar, Ca., U.S.A. (December 1979)

[5] Brinch Hansen, P., A comparison of two synchronizing concepts.
Acta Informatica 1 (1972) 190 - 199

[6] Brinch Hansen, P., Concurrent Pascal
IEEE Transactions on Software Engineering (1975) 199 - 207

[7] Bron, C., Dijkstra, E.J., A Pascal compiler redone
Memorandum 283, Department of Applied Mathematics,
Twente Univerity of Technology, Enschede, Netherlands

[8] Bron, C., Report on the prograrmaing language THT Pascal for the PDP11 series
Memorandum #296, Department of Applied Mathematics
Twente University of Technology, Enschede, Netherlands

[9] Bron, C., Trends in the synchronization of parallel processes
Informatie (1974), 646 - 651 (Dutch Computer Society Monthly)

[10] Bron, C., Pascal used for Operating System implementation
Pascal Conference
chalmers Technical University, Gothenburg, Sweden (June 1980)

[11] Gehringer, E.F., Variable-length capabilities as a solution
to the small object problem.
Proc. 7th Symposium on Operating Systems Principles
ACM SIGOPS, Asilomar, Ca., U.S.A. (December 1979)

[12] Habermann, A.N., Flon, L., Cooprider, L.
Modularization and hierarchy in a family of Operating Systems
Comm. ACM 19 (May 1976) 266 - 272

[13] Ichbiah, J.D., Rissen, J.P., Heliard, J.C., Cousot, P.,
The system implementation language LIS
Technical Report #4549 EI/EN CII, Louveciennes, France (1976)

[14] Lauer, H.C., Needham, R.M.
On the duality of Operating System Structures
2nd International Symposium on Operating Systems
IRIA, Rocquencourt, France (October 1978)

[15] Mitchell, J.G., Maybury, W., Sweet, R.,
MESA Language manual
Xerox, Palo Alto, Ca., U.S.A. (April 1979)

[16] Ritchie, D.M., Thompson, K.,
The UNIX Time-sharing system
Con. ACM 17 (July 1974) 365 - 375

[17] Welsh, J., Bustard, D.W.,
Pascal Plus - Another language for modular maltiprogramming
Software P. & E. 9(1979) 947 - 957

[18] Wichmann, B.A.,
'Ackermann's Function': A study in the efficiency of calling procedures
BIT 16 (1979) 103 - 110

[19] Wirth, N., Modula: a language for modular multiprogramming
Software P. & E. 7 (1977) 3 - 36

[20] Wirth, N., Modula-2
ETH Zuerich, Technical Report #36 (March 1980)

[21] Wulf, W.A., Harbison, S.P.,
Reflections in a pool of processors
Carnegie Mellon University, Technical Report QMU-CS-78-103 (February 1978)

