
Using Ontologies for Modeling
Context-Aware Services Platforms
Diego Rios1, Patrícia Dockhorn Costa1, Giancarlo
Guizzardi1, Luis Ferreira Pires1, José Gonçalves

Pereira Filho1,2, Marten van Sinderen1

Abstract. This paper discusses the suitability of
using ontologies for modeling context-aware
services platforms. It addresses the directions of
research we are following in the WASP (Web
Architectures for Services Platforms) project. For
this purpose a simple scenario is considered.
Keywords. Context-awareness, services platforms,
ontologies, Semantic Web, WASP project.

1. Introduction

Context-aware computing is a new
computing paradigm that has brought the
possibility of exploring the dynamic context of
the user in order to provide added-value
services or to execute more and complex tasks
[1]. Building context-aware systems involves
facing several design challenges to cope with
highly dynamic environments and changing
user requirements. Such challenges are mainly
related to gathering, modelling, storing,
distributing and monitoring context. These
challenges justify the need for proper
architectural support.

In the recent years, we have seen research
efforts towards service platforms that provide
architectural and programming support for
context-awareness. This provision is usually
done by hard-coding semantics into the
underlying system implementation and, as a
result of this approach, platforms cannot easily
evolve and interoperate. Now we are seeing a
movement towards the use of ontologies [2]
and Semantic Web [3] concepts to explicitly
formalize the properties and structure of
contextual information to guarantee common
semantic understanding among different
architectural components.

The objective of our research is to evaluate
the applicability of the Semantic Web
technologies for the modeling and the

1 Centre for Telematics and Information Technology,
University of Twente. PO Box 217, 7500 AE Enschede,
The Netherlands.
{rios, dockhorn, guizzard, pires, filho,
sinderen}@cs.utwente.nl.
2 On leave from Departamento de Informática,
Universidade Federal do Espírito Santo, Brazil.
zegonc@inf.ufes.br.

handling of contextual information within
the WASP (Web Architectures for Services
Platforms) platform. WASP is a project
concerned with the definition and validation
of a service platform to support the
development and deployment of context-
aware integrated mobile speech and data
applications based on Web Services
technology on top of 3G mobile networks.
These 3G or next generation mobile
networks interacts with the mobile network
and with terminals in this network [3].

2. WASP Architecture

Figure 1 depicts the current version of
the WASP architecture, as described in [4].

 WASP PLATFORM

Repositories Monitor

Parser

Subscription
Manager

Coordinator

EntityType
Registry

FunctionType
Registry

Service
Registry

ContextDB
Registry

Context Interpreter

ActionType
Registry

Entity
Registry

User Profile
Registry

W
A
S
P

A
P
P
L
I
C
A
T
I
O
N
S

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R
S

CONTEXT PROVIDERS
Figure 1. WASP architecture

Interactions between WASP applications

and the WASP platform are configured
during the platform run-time through the
addition of application subscriptions.
Application subscriptions are written in a
descriptive language that allows applications
to dynamically expose their needs to the
platform. With this language it is possible to
manipulate the representation of the entities
involved in the system (users, museums,
restaurants, hospitals, etc.), their attributes,
and their context. For instance, it is possible
to express that an action involving an
entity’s context (send an ambulance to
John’s location) should be taken if an entity
(John) enters in a certain context (having a
heart attack or a stroke). Service Providers

(SP) are business parties that foresee
opportunities to profit from offering their
services through the platform. Context
Providers (CP) are the parties responsible for
providing contextual information.

The WASP platform architecture is
composed by three main components: i) the
Context Interpreter (CI), which gathers
contextual information from the Context
Providers, manipulates context and makes it
available to the rest of the platform. ii) the
Repositories, which support the Monitor with
knowledge of the elements involved in the
platform (e.g., it contains the entity types,
action types, user profiles, etc.). For this
purpose, the Repositories collect information
from the CI and use services of the SP. iii) the
Monitor, which is the responsible for
interacting with the WASP applications and
managing their subscriptions, and gathers
information from the Repositories and CI.

A distinctive characteristic of the WASP
platform is that it enables the dynamic
deployment of a large range of context-aware
applications that are unanticipated during the
design of the platform. Accordingly, we have
defined a subscription language - coined
WASP Subscription Language (WSL) - which
applications use to configure the platform to
react to a given correlation of events,
potentially involving contextual information.

3. The WASP Platform Model

The platform manipulates data entities.
These entities represent objects of the real
world (users, restaurants, museums, roads,
vehicles, etc). Attributes (age, area, address,
etc) and Context (location, activity, etc) are
associated with data entities. In order to
effectively and consistently manipulate data
entities, attributes and context, we need to
organize, represent, and describe them in a
model (context model). Once this model is
defined, it is used as basis for common
understanding of data entities, context and
attributes between platform, applications and
services providers.

At this moment, the WASP platform model
is described by means of UML Class
diagrams. The model presents three
instantiation levels, a metamodel, a model and
an object level. The metamodel level is
embedded in the platform and it is defined

during the platform design-time, being
unchangeable during run-time. The lower
levels of instantiations are called the model
level and the object level. These levels are
dynamically changeable during the platform
run-rime. They represent instances of the
Metamodel and the Model levels,
respectively. Ideally, the context model
should be extendable to allow the
deployment of new kinds of contextual
information that have not been anticipated
during the platform design. Currently, it
does not provide a formal semantic
knowledge to allow developing richer
functionality in some architectural
components. For example, the context
information provided by the CP’s (sensors
or third party context providers) must be
processed and made uniformly available to
the platform. The existence of a set of
ontologies can extend the CI functionality
by capturing semantic knowledge and
deriving relationships between contextual
information, which otherwise could not be
directly gathered from the environment. This
can greatly increase applications’ context-
awareness. Likewise, the Service Registry
component can use ontologies to enhance
the storing, matching and retrieving
semantically richer (context-aware) services.

Ontologies are believed to be a key
requirement for modeling software system
architectures because:
• Ontologies allow architectural

components to share knowledge;
• Ontologies allow one to reason about

knowledge and check information
consistency.

 These reasons also apply to context-aware
systems, where different entities must share
common contextual information
representation, and inference and reasoning
mechanisms are necessary to allow the
derivation of complex contextual
information and reason about the context,
respectively. Moreover, ontologies not only
help to reason about the context, but also
help to detect inconsistency in the acquired
information since context information can
be highly imperfect.

With the emergence of ontology-based
reasoning and query engines (especially for
Semantic Web ontology languages), like

RuleML [5] and FaCT [6], that exploits
different forms of logic (e.g., first order logic,
temporal logic, etc.), the platform model can
be more expressive and powerful.

We focus on Semantic Web technology,
which includes ontology-based markup
languages for building ontologies, and tools
for processing and reasoning over information
described by using these ontologies. In
particular, we are investigating the suitability
of languages such as OWL [8] and
DAML+OIL [9].

4. Application Scenario

As an illustration of a possible application
scenario we consider a set of CP’s (e.g., sensor
agents) that communicate with the CI via
appropriate domain-specific languages. For
instance, a location-sensor device could send a
message to the CI with the following content:

INSIDE (person15, room52, t1)

The semantics of the primitives of this
device language are defined in terms of a set
of distributed ontologies in which the
meanings of Person, Room, Time Interval and
the predicate INSIDE are specified. These
ontologies are represented as a set of logical
theories that play the role of the semantic
domain for these domain-specific languages.
After receiving this message, the CI can
interpret its content by accessing the
corresponding ontologies. Suppose the
following axioms are defined in the semantic
domain of this device language:
• The ⊆ (part of) relation is reflexive,

asymmetric and transitive;
• Two physical locations X and Y (room,
building, university) are disjoint iff
there is no physical location Z that is both
part of X and Y;

• The predicate INSIDE(p,l,t) is defined
to hold if a person p is at physical location l
at time t;

• A person p is inside a physical location X in
time interval t iff p is inside a part of X at
t;

• A person p cannot be inside two disjoint
physical locations at the same time t;

• Every Student is a Person;
• A student s is present at a university U at

time interval t iff s is inside U at t.

Also suppose that the following
information is known to the CI (it was
sensed or specified before the current
situation):

(room52 ⊆ building5) ∧ (building5
⊆ Utwente) ∧ (building2 ⊆
Utwente) ∧ STUDENT(person15) ∧
UNIVERSITY(Utwente)

In this case, the CI could derive, for
example, the following information:

 INSIDE(person15,building5,t1)
¬INSIDE(person15,building2,t1)
 PRESENT(person15,Utwente,t1)

A similar scenario is being implemented,
using the Jena Framework [10] and a
generic reasoner, to prove the cited benefits.
In the current implementation, the
application subscriptions are defined by
rules written in terms of a generic rule
language. These rules express a certain
context and are evaluated by a reasoner,
which makes use of the information
provided by CPs and the semantic
information captured by a set of ontologies
defined in OWL to trigger a specific action
when the context expressed by the rules
becomes true.

5. Conclusions

Many architectural components of
context-aware services platforms – and the
WASP platform in particular – may profit
from Semantic Web technologies. Since
semantic knowledge is a cross-cutting
concept, it can be exploited by different
conceptual layers, from context storage to
adaptive interfaces, from service description
and discovery to complex service
composition. Ontologies play a key role in
this scenario, enabling knowledge sharing
and providing a model for context
reasoning. This paper briefly addresses the
suitability of using ontologies in context-
aware services platforms.

References

[1] Dey, K., et al. A Conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications. Human-
Computer Interaction Journal 16, 24 (2001), pp.
97-166

[2] Guarino, N., Understanding, building, and
using ontologies. International Journal of Human–
Computer Studies 46:293–310, 1997. [3] W3C
Semantic Web [http://www.w3c.org/sw]
[4] WASP project [http://www.freeband.nl/
projecten/wasp/ENindex.html]
[5] Dockhorn Costa, P. Towards a Services
Platform for Context-Aware Applications. M.Sc
Thesis, University of Twente, The Netherlands,
2003.
[6] Rule Markup Language (RuleML).
[http://www.ruleml.org]
[7] Horrocks, I., et al. Practical reasoning for
expressive description logics. In Proc. LPAR’99, n.
1705, Lecture Notes in Artificial Intelligence, pp.
161-180. Springer-Verlag, 1999.
[8] Web Ontology Language (OWL) Guide, W3C
Working Draft 31 March 2003.
[http://www.w3.org/TR/owl-guide]
[9] DAML+OIL. [http://www.daml.org/2001/03/
daml+oil-index.html]
[10] Jena Framework. [http://jena.sourceforge.net]

