A Reconfigurable Tile-Based Architecture to Compute
FFT and FIR Functions in the Context of
Software-Defined Radio

Ajay Kapoor,* Sabih H. Gerez,™ Fokke W. Hoeksema and Roel Schiphorst

Signal and Systems (EWI-SAS) Group, Department of Electrical Engineering, University of Twente,
The Netherlands
E-mail: s.h.gerez@utwente.nl

Abstract— Software-defined radio (SDR) is the term
used for flexible radio systems that can deal with multiple
standards. For an efficient implementation, such systems
require appropriate reconfigurable architectures. This pa-
per targets the efficient implementation of the most com-
putationally intensive kernels of two significantly different
standards, viz. Bluetooth and HiperLAN/2, on the same
reconfigurable hardware. These kernels are FIR filtering
and FFT. The designed architecture is based on a two-
dimensional arrangement of 17 tiles. Each tile contains a
multiplier, an adder, local memory and multiplexers al-
lowing flexible communication with the neighboring tiles.
The tile-base data path is complemented with a global con-
troller and various memories. The design has been im-
plemented in SystemC and simulated extensively to prove
equivalence with a reference all-software design. It has
also been synthesized and turns out to outperform signif-
icantly other reconfigurable designs with respect to speed
and area.

Keywords—Software-defined radio (SDR), architectures
for digital signal processing

I. INTRODUCTION

The many standards used in radio systems and the
tendency of standards to change over time created the
necessity for radio architectures that have some degree
of flexibility. The concept of software radio was pro-
posed by Mitola [1] about one decade ago. In its ideal
form, the received signal at the antenna is directly fed
into an analog-to-digital converter (ADC) and pro-
cessed entirely in the digital domain. Such an im-
plementation is infeasible due to the power that such
device would consume and other physical limitations
[2,3]. It is therefore a challenge to design a system
that preserves most properties of the ideal software

*Ajay Kapoor is currently with the Embedded Systems Ar-
chitectures on Silicon (ESAS) Group, Philips Research, The
Netherlands.

TThe main affiliation of Sabih Gerez is with SiTel Semicon-
ductor, Design Center Hengelo, The Netherlands.

radio while being realizable with current-day technol-
ogy. Such a system is called a software-defined radio
(SDR). An SDR has hardware that can be reconfig-
ured to be used for different radio systems. It should
at least support reconfigurability on behalf of a stan-
dard update. From a commercial point of view, SDR
is interesting because of a shorter time-to-market, the
added value of multiple-standard device with upgrade
possibility and the wider set of customers that can be
served with the same device.

The analog front-end of an SDR system, the part
between the antenna and the ADC, will consist of
some low-noise amplifier, a mixer and filters each hav-
ing some degree of configurability. The digital back-
end, that converts the output of the ADC to a received
stream of bits, can be designed in many different ways
[4]. In one extreme, the use of a general-purpose mi-
croprocessor offers a high degree of flexibility at the
expense of area and power inefficiency. In the other
extreme, dedicated back-ends can be built for each
standard to be supported. This may be optimal from
a speed and power point of view, but implies a large
area overhead. In between these extremes, one can
think of many architectures that offer opportunities of
hardware sharing for the processing of multiple stan-
dards while minimizing the area and power overhead.
Such architectures are the topic of this paper.

The research was carried out in the context of the
University of Twente SDR Project which is presented
in Section II. The receiver block diagrams, as given
in Section III, were the starting point for architecture
design as elaborated in Section IV. Implementation
details are finally discussed in Section V.

II. THE UNIVERSITY OF TWENTE SDR PROJECT

In the years 2000-2004, the Signals and Systems
Group took part in Project TES.5177 entitled De-
velopment of a software-radio-based embedded mobile

369

terminal funded by the PROGram for Research on
Embedded Systems € Software (PROGRESS) of the
Dutch organization for Scientific Research NWO, the
Dutch Ministry of Economic Affairs and the technol-
ogy foundation STW focusing on the digital back-end
[5] while the analog front-end was developed in paral-
lel by the IC Design group [6].

To create a research challenge, it was decided to
select two standards that are significantly different,
Bluetooth [7] and HiperLAN/2 [8], and to try to rec-
oncile both within an SDR framework. The relevant
characteristics of the two standards are summarized
in Table I.

A testbed consisting of a reconfigurable analog
front-end and a digital back-end was built to prove
the feasibility of the idea. The digital back-end is a
Pentium 4 processor that receives its data at a rate of
20 MSPS from the front-end via an analog-to-digital
converter and a programmable down converter con-
nected to a PCI card.

A Pentium 4 processor offers a high degree of flexi-
bility: it can implement any demodulation algorithm
provided that the algorithm’s computational require-
ments can be met by the processor. The price paid
for this flexibility, however, is high: both the area
and the power consumption are orders of magnitude
higher than dedicated ASIC solutions for either of the
standards chosen. It was therefore decided to inves-
tigate more efficient hardware architectures that still
were sufficiently flexible to support the two standards
mentioned. First results of this research are reported
in this paper.

III. RECEIVER BLOCK DIAGRAMS

The full software implementation of the digital
back-end was based on specific functional partition-
ings of receiver functions for both standards [5]. They
are presented below together with the transmitter
functions, which help to understand the receiver func-
tionality.

A. Bluetooth Block Diagrams

The frequency spectrum available to Bluetooth is
positioned in an unlicensed radio band that is globally
available. This band, the Industrial Scientific Medical
(ISM) band, is centered on 2.45 GHz. In most coun-
tries, free spectrum is available from 2400 MHz to
2483.5 MHz. The frequency spectrum is divided into
79 channels, each of them occupying a bandwidth of 1
MHz. GFSK (Gaussian frequency shift keying) is used
to transmit data in a channel. This is accomplished

input bits
. GFSK . -
——> physical burst —> modulation —I> radio transmission J

E. F. G. H.

—> Binary numbers —> Complex samples —@ Analog signal

Fig. 1. Bluetooth transmission block diagram.

synchronization/parameter

’ timati
M. es |;a/|on

GFSK
[demodulation

channel
selection

frequency offset output bits
P a Y 9 de-mapping —>
correction
N. 0. P.
—> Binary numbers —> Complex samples —Pp Control

—4@ Analog signal —b Real samples

Fig. 2. Bluetooth receiver block diagram.

by letting the Gaussian-filtered bit pattern control the
voltage-controlled oscillator (VCO) of the transmitter.
This idea is illustrated in Figure 1.

The receiver is somewhat more complex as shown
in Figure 2. The first step is to select the wanted
Bluetooth channel and suppressing all others. This is
necessary as a consequence of the fact that the ana-
log front-end passes a large-bandwidth signal to the
digital back-end in order to satisfy the HiperLAN/2
requirements. Channel selection is achieved by digi-
tally mixing the wanted channel to zero IF followed
by appropriate filtering and decimation. The next
step is to demodulate the FM signal using a maxi-
mum a-posteriori probability (MAP) receiver based on
the Laurent decomposition. Demodulation using the
MAP receiver requires first passing the signal through
a low-pass filter. This filter also acts as a matched
filter for the input signal. Then, the signal is fre-
quency corrected and decoded using Viterbi decod-
ing. The synchronization/parameter estimation en-
tity uses this signal to detect the start of a MAC burst
(time/symbol synchronization) and estimates the fre-
quency offset.

B. HiperLAN/2 Block Diagrams

The transmitter block diagram for HiperLAN/2 is
shown in Figure 3. The bit stream to be transmit-
ted is fed to a forward-error correction (FEC) coding
function after having been scrambled. Interleaving
is followed by mapping the bits onto complex QAM
(quadrature amplitude modulation) symbols. These

370

TABLE I
COMPARISON OF THE PHYSICAL-LAYER CHARACTERISTICS OF BLUETOOTH AND HIPERLAN/2

Bluetooth HiperLAN2
Frequency band 2.4-2.4835 GHz | 5.150-5.300 GHz, 5.470-5.725 GHz
Access method CDMA TDMA
Duplex method TDD TDD
Modulation GFSK OFDM
Maximal data rate 1 Mbps 54 Mbps
Channel spacing 1 MHz 20 MHz
Maximal power peak 100 mW 200 mW -1 W

Input /l/

bits
A , B. C.) D.
Scrambling — FEC coding —> Interleaving

L Mapping %

F.
OFDM = Physical burst

——> Binary numbers Radio H.
transmission

—{> Vector of complex numbers

——=e Complex samples

Fig. 3. HiperLAN/2 transmission block diagram.

symbols are modulated by means of orthogonal fre-
quency division multiplezing (OFDM).

As shown in Figure 4, the receiver needs the inverse
of the transmitter functions as well as functions for
synchronization and parameter estimation, frequency-
offset correction, phase-offset correction and channel
equalization.

IV. ARCHITECTURE DESIGN
A. Bottleneck Identification

The first step in the design of a reconfigurable but
efficient hardware architecture for both standards was
to identify the most computationally intensive tasks
(the remaining tasks can remain being implemented
in software). This was done by analyzing the com-
plexity of the functions in the receiver block diagrams
presented above. The analysis is based on simply
counting multiplications and additions taking param-
eter values for filter orders and sample rates from the
full software implementation [5]. Details on this anal-
ysis can be found in [9]. Here, only the results for both
standards are presented in Tables II and III. For each
of the most important receiver functions, the tables

synchronization/parameter
estimation

inverse
OFDM

frequency offset

channel selection } —> >
K. M. N.

correction

- common phase offset . . |
LY channel equalization +—Y detection & correction > de-mapping
o. P. Q.
output bits
e-interleaving FEC decoding e-scrambling |
L de-interleavi decodi d bling f—>
R. S. T. U.

—> complex samples

— control

—> Binary numbers

—4@ Analog signal

Fig. 4. HiperLAN/2 receiver block diagram.

give the (input and output) sample rates (in megasam-
ples per second) and the number of multiplications
and additions.

After an inspection of the tables it can be seen that
(FIR) filtering related to sample-rate reduction and
channel filtering is the most computationally intensive
function of the Bluetooth receiver, while the 64-point
FFT (OFDM demodulation) is the HiperLAN/2 func-
tion with the highest requirements. Not surprisingly,
for both standards the bottleneck occurs in the first
stages of the receiver chain. This implies that FIR
filtering and FFT computations are likely candidates
to share the same data path in a reconfigurable SDR
architecture. For this reason, it was actually decided
to focus on such a data path.

B. Architectural Alternatives

Reconfigurable architectures can be classified ac-
cording to a number of criteria:
e Granularity. Devices with a small granularity allow

371

TABLE 11

COMPUTATIONAL COMPLEXITY OF THE BLUETOOTH RECEIVER

Function Data rate Number of Number of
[in/out MSPS] | multiplications | additions
Mixing 20/20 80e6 40e6
Decimation/Halfband filtering 20/5 420e6 360e6
Matched filter 5/5 170e6 160e6
Frequency offset correction 4.15/0.83 20e6 8.5e6
Viterbi decoder 0.83 29.9¢6 21.6e6
TABLE III
COMPUTATIONAL COMPLEXITY OF THE HIPERLAN /2 RECEIVER
Function Data rate Number of Number of
[MSPS| | multiplications | additions
64 point FFT 16 153.6e6 76.8e6
Channel equalization 13 20.8e6 10.4e6
Phase-offset correction 12 19.2e6 10.4e6
64-QAM demapping 12 9.6e6 9.6e6

reconfiguration at the level of single bits and ele-
mentary logic functions. They are known as field-
programmable gate arrays FPGAs (see e.g. [10]).
They are very flexible in the sense that almost any
hardware can be built with them, but the over-
head in area and speed of bit-level reconfiguration is
high (both the function of elementary Boolean units
as their interconnections is programmable). Their
flexibility makes FPGAs very suitable for a proto-
typing platform. However, for efficient reconfigura-
bility a more coarse-grained approach, where the
unit of computation is a (simple) processor rather
than an elementary Boolean function, may be more
interesting. Examples of such systems are the field-
programmable processor array of Nussbaum et al.
[11] and the field-programmable function array of
Jaap Smit [12] that evolved into the Montium plat-
form [13].

Static vs. dynamic reconfigurability. A system is
called dynamically reconfigurable, if the transition
from the execution of one function to another is
(almost) smooth, if the system does not need to
be stopped and restarted after reconfiguration. In
some FPGAs this is e.g. achieved by reprogramming
part of the array while another part is involved in an
operational computation; when the reprogramming
is ready, the new part takes over the computation.
A system is called to be statically reconfigurable if
it needs to be stopped for reconfiguration.

e Application domain. If the reconfigurable system

is to be used for specific applications, its building
blocks may be designed to optimally support such
an application. A multiply accumulate (MAC) unit
is e.g. often encountered in platforms that are tar-
geting digital signal processing. One may also en-
counter architectures with an embedded RISC pro-
cessor to complement the functionality of data-path
oriented building blocks with a part that can han-
dle control-dominated computations. Studies show
that systems based on arrays of ALUs make a more
efficient use of silicon area than systems based on
arrays of microprocessors for applications in the
signal-processing domain [14].

Homogenous vs. heterogeneous structure. Homoge-
neous platforms in which the same building blocks
are repeated in one or two dimensions have the ad-
vantage of simplicity and regularity. On the other
hand, heterogeneous systems in which RISC pro-
cessors, FPGAs, custom data paths, etc. are com-
bined, may offer the best opportunity to efficiently
map a wide range of applications. Rabaey was one
of the first to advocate such heterogeneous systems
[15]. A similar setup can also be found in the adap-
tive system-on-chip architecture developed at the
University of Massachusetts, Amherst [16], where
each building block is called a tile and tiles have a
standardized interface for communication with their
neighbors.

Scalability. An architecture is called “scalable” if
the computational power of the system can be in-

372

creased by increasing the number of regular building

blocks in the architecture.

When it comes to hardware that should efficiently
support the entire physical layer of both Bluetooth
and HiperLAN/2, a heterogeneous platform is the
best choice. However, if the design is limited to hard-
ware support for the computationally most expensive
parts, viz. FIR filtering and FFT, one can make the
domain-specific design considerations that are pre-
sented below. The resulting architecture can more
or less be qualified as coarse-grained homogeneous,
scalable, dynamically reconfigurable and application
specific.

C. Design Considerations

Once the most computationally intensive parts of
the receiver have been identified, the next step is to
analyze these parts in more detail. The local struc-
tures in their data flow hint at the data path to be
constructed. The overall succession of computations
leads to insight about the requirements to local and
global controllers.

As mentioned earlier, the halfband filtering related
to decimation and the matched filter that are the most
computationally intensive parts of the Bluetooth re-
ceiver, are implemented by means of finite impulse
response (FIR) filters. If the transposed form [17] of
a FIR filter is implemented, the computational kernel
can be expressed as:

wi[n] = hyzln] + wi_1[n]

where z[n] is the filter input data stream, the hy are
the filter coefficients, and the wy[n] represent the data
streams at the internal registers (the filter output y[n]
equals wy,[n]). Obviously, the computational kernel
consists of a multiplication followed by an addition.
For complex-valued signals that occur in the Blue-
tooth demodulator, the kernel does not change: the
real and imaginary components of the signals can be
separately filtered as the filter coefficients are real val-
ued.

The fast Fourier transform (FFT) that is the most
computationally intensive part of the HiperLAN/2 re-
ceiver, has the following radix-2 butterfly as compu-
tational kernel when the decimation in frequency de-
composition [17] is chosen:

Xk[pl = Xg-1[p] + Xp-1[q]
Xilq] = (Xg—1[p] — Xp—1[g)W

In these equations, all numbers are complex valued,
including the twiddle factor W which is a number on

the unit circle whose value depends on the butterfly

stage. This means that the total number computa-

tions in this kernel consists of four multiplications (one
complex multiplication), three additions (one complex
addition shown above plus one addition in the com-
plex multiplication) and three subtractions (one com-
plex one and one in the multiplication).

In the design of hardware to support both kernels,
the following considerations have been made:

e For the sake of scalability (e.g. support for other fil-
ter orders), the hardware should consist of uniform
tiles.

e Both the FIR kernel as the complex multiplication
of the FFT have a data flow in which a multipli-
cation is followed by an addition (or subtraction
which is easily computed on an adder/subtractor).
It is therefore wise to have a multiplier followed by
an an adder in the data path.

e In order to keep the tiles simple, the subtraction
that precedes the multiplication in the FFT, could
be executed on a neighboring tile, rather than on
the tile itself. This consideration can be combined
with the pipelining of the butterfly implementation.

e Apart from the tiles that carry out the computa-
tions, there is a necessity for memories in the archi-
tecture. They are necessary for storing the input
and output data (notice that the computation for
the FFT are block based rather than stream based),
as well as the coefficients and twiddle factors.

e Each tile will need some local storage in order to
avoid that data is sent multiple times to the same
unit.

e Both intra-tile as inter-tile communication should
be reconfigurable up to a certain degree. This im-
plies the use of multiplexers.

e The system needs a central controller that takes
care of reconfiguring for either Bluetooth or Hiper-
LAN/2 in a dynamic way (a switch from one stan-
dard to the other should not cost more than a few
clock cycles). Actually, dynamic reconfiguration is
essential for the Bluetooth implementation alone as
different FIR filter structures have to be executed
after each other in the same data stream.

D. Tile-Based Architecture

Considering the dimensions of the filters and FFT,
an arrangement of 9 data-processing tiles turns out to
be sufficiently powerful to meet the requirements of
the two standards. This network is shown in Figure 5.
Each tile is called a data-processing unit (DPU). As
can be seen in the figure, the DPUs are arranged in

373

% % INY)
DPU1 DPU2 DPU3 DPU4
1 L
IN IN IN |NV IN %Z
O£UT Y Y | L IY o
DPUS5 DPU6 DPU7 DPUS DPU9
ouT ouT

Fig. 5. The tile-based architecture.

Inputl THS_
RH R A
E r idl
¢ D “out
Input2 bus2 ! t ;J
s > h
T m !
E e !
R t
Input3 s —D i out
) | c

Data Processing Unit

Fig. 6. Structure of a single data-processing unit.

two rows. Within each row, left-to-right and right-
to-left communication is possible. In addition, some
dedicated connections run from the top row to the
bottom row.

The structure of a DPU is shown in Figure 6. It
mainly consists of a register file, an arithmetic unit
and a multiplexer to take data either from a neigh-
boring DPU or a global bus (connected to memory
not shown in Figure 5. It also has a local controller
that is connected to the global controller.

The arithmetic unit, depicted in Figure 7, contains
a multiplier, an adder/subtractor and a set of mul-
tiplexers. It is possible to configure the multiplexers
in such a way that either the adder/subtractor or the
multiplier is bypassed.

E. Entire Reconfigurable System

The complete reconfigurable architecture is shown
in Figure 8. Apart from the the tile-based data path
that was discussed above, it consists of:

e An input buffer. This is the memory in which the
data samples produced by the analog front-end are
stored after down conversion.

e A central controller. For the sake of simplicity,

374

| Registers

Arithmetic
Unit (AU)

out Sideout

Fig. 7. The contents of the arithmetic unit.

Buffer

cO

\> ST T Qg

MEMORY

Fig. 8. The entire reconfigurable architecture.

the controller is supposed to be implemented as
a state machine (it is not difficult to replace the
state machine by a programmable controller). Note
that none of the computations envisaged (FIR filter-
ing or FFT) contain data-dependent calculations.
Therefore, the data path does not need to generate
status signals.

e A configuration unit (CU). This unit takes care of
translating the controller state into detailed control
instructions for each of the tiles in the data path.

e A read-only memory (ROM) used for the storage of
FIR-filter coefficients and twiddle factors.

e A random-access memory (RAM). This memory is
used for the storage of filtered data streams or the
result of the FFT.

F. Algorithm Mapping

The halfband filters of the Bluetooth receiver pro-
posed in [5] have order 7. When mapped on the ar-
chitecture of Figure 5, the 4 DPUs in the top row are
used for the real signal, and 4 (out of 5) DPUs of the
bottom row for the imaginary signal. Then, the filter
can be implemented using 2 clock cycles. In the first
cycle data travels from left to right, as shown in Fig-
ure 9. In the second cycle, data travels from right to
left. In this way, the data on the rightmost processor
can remain local (it does not need to be transferred
to the leftmost processor). In addition, no multipli-
cations need to be performed in the second cycle as
the filter has symmetric coefficients and the multipli-
cation result is still locally stored in the tile. This
results in power savings.

The 17th-order matched filter used for Bluetooth is
mapped to be executed in 2 two clock cycles on the
entire set of 9 processors. Because both the real and
the imaginary parts of the signal need to be filtered,
the total number of clock cycles for one invocation
of this filter amounts to 4. This filter has symmetric
coefficients too which means that the multipliers can
remain inactive in the second clock cycle of a FIR-
filter computation.

As far as the FFT is concerned, the design strat-
egy was such that one butterfly would execute in a
single clock cycle. The mapping of the butterfly on
the architecture is shown in Figure 10. Omne should
note that there are tiles that are configured to only
perform an addition or multiplication. For the com-
putation of the entire 64-point FFT, 32 executions of
the butterfly are required.

V. IMPLEMENTATION RESULTS

The design has been modeled in synthesizable Sys-
temC and verified by extensive simulations using Syn-
opsys CoCentric System Studio. Using reference input
data streams, identical results were obtained as with
the existing full-software implementation (except for
the transition from floating-point numbers in the soft-
ware to the fixed-point numbers in the reconfigurable
hardware).

Synthesis took place in two steps. First, the Sys-
temC descriptions were translated into Verilog using
the public-domain tool sc2v [18]. Then, the Synop-
sys Design Compiler took care of the logic synthesis
with a 0.18 micron ASIC technology. Actually, three
different variants were built:

e The dynamically reconfigurable version with 9
DPUs described above; it has an estimated area of
0.60 mm?.

e A dedicated 9-DPU version for Bluetooth only; un-
used connections between DPUs were removed in
this version of the design and the controller was re-
placed by a controller that only supports Bluetooth;
it has an estimated area of 0.55 mm?.

e A dedicated DPU version that only supports Hiper-
LAN/2 using the data path shown in Figure 10 and
an appropriate controller; it has an area of 0.29
mm?. The main gain comes from the fact that un-
used multipliers and adders in the DPUs do not
contribute to the total area.

The area numbers above do not include the RAM and

ROM areas.

Because there are many ways to implement hard-
ware on silicon, one can only cautiously conclude that
adding HiperLAN/2 functionality to the Bluetooth
design, costs about 10% extra area. Putting the ded-
icated HiperLAN/2 receiver on chip would incur an
overhead of some 50%. These numbers show that
hardware sharing is really interesting.

Given the rates of the input data streams and the
reuse factor of the data path (the number of clock cy-
cles per data sample), one can derive that the system
needs to operate at least at 80 MHz. Synthesis results
for all three variants indicate that clock speeds up to
180 MHz are feasible with the design.

It is interesting to compare the performance of the
design with other approaches. The FFT is a computa-
tion that has been widely implemented and therefore
a good vehicle for comparison. Various FFT imple-
mentations are already compared with the Montium
implementation in [13]. It is not surprising that our
design outperforms is an order of magnitude smaller in

375

Globalbus

Globalbus

DPU1 DPU2

FFTbus Bus2 FFTbus Bus2

DPU3

DPU4

FFTbus Bus2

A_re

FFTbus

FFTbus Bus2

Fig. 10. Mapping of a single FFT butterfly on the tiled architecture.

area than implementations on the Montium or Avispa
[19] platforms, as both have been designed to support
a larger class of algorithms than FFTs and FIR filters.
Our design is also somewhat faster. More details on
performance comparisons can be found in [9].

VI. CONCLUSIONS

Starting point for the research presented in this
paper was the all-software implementation for the
Bluetooth and HiperLAN/2 receivers in the digital
back-end of the Twente University SDR project. The
goal was to provide a reconfigurable hardware solution
such that the digital back-end could be implemented
more efficiently from an area and power-consumption
point of view while preserving support for the two sig-
nificantly different standards.

As a first step the most computationally intensive
kernels of the two receivers were identified by count-
ing arithmetic operations. They turned out to be FIR

filtering and FFT respectively. Then, the two kernels
were analyzed and found to be implementable on a
two-dimensional arrangement of 17 tiles each having
a multiplier, an adder, local memory and flexible in-
terconnection structures to communicate with their
neighbors. This tile-based data path was connected
to a global controller and global memories that act as
input and output buffers.

The entire design was implemented in SystemC. Af-
ter confidence in the correct functioning was assured
by extensive simulations, the design was synthesized
for 0.18 pum process. It turns out to occupy 0.6 mm?
and to be able to run at 180 MHz, more than twice
as fast as required by the system constraints. The
performance of the design has been compared with
other reconfigurable hardware platforms and shows
to be both faster and smaller in area. The design
also proves that hardware sharing for the support of
multiple standards is feasible: the area for the recon-

376

figurable hardware is smaller than the sum of the ar-
eas for separate dedicated implementations of the two
standards.

ACKNOWLEDGMENTS

The authors would like to thank Paul Heysters and
Gerard Rauwerda from the Montium research project
at the University of Twente for the discussions on
mapping radio algorithms on the Montium platform.

REFERENCES

[1] J. Mitola. The software radio architecture. IEEE Commu-
nications Magazine, pages 26-38, May 1995.

[2] B. Nauta and C.H. Slump. On the design of a front-end
subsystem for software-radio applications. In PROGRESS
2000 Workshop on Embedded Systems, Utrecht, The
Netherlands, October 2000.

[3] R.H. Walden. Performance trends for analog-to-digital con-
verters. IEEE Communications Magazine, pages 96-101,
February 1999.

[4] J. Reed. Software Radio: A Modern Approach to Engineer-
ing. Prentice Hall PTR, Upper Saddle River, New Jersey,
2002.

[5] R. Schiphorst. Software-Defined Radio for Wireless Local-
Area Networks. PhD thesis, University of Twente, Depart-
ment of Electrical Engineering, September 2004.

[6] V.J. Arkesteijn, R. Schiphorst, F.W. Hoeksema, E.A.M.
Klumperink, B. Nauta, and C.H. Slump. A combined ana-
logue+digital software defined radio receiver front-end for
Bluetooth and Hiperlan/2. In 5th Progress Symposium on
Embedded Systems, Nieuwegein, The Netherlands, October
2004.

[7] Bluetooth SIG. Specification of the Bluetooth system -
core. Technical Specification Version 1.1, February 2001.

[8] Broadband radio access networks (bran) ETSI. Hiperlan
type 2 : Physical (phy) layer. Technical Specification ET-
SITS 101 475 V1.2.2 (2001-02), February 2001.

[9] A. Kapoor. A reconfigurable architecture of software-

defined radio for wireless local area networks. Master’s

thesis, Signals and Systems Group, Department of Electri-
cal Engineering, Mathematics and Computer Science, Uni-
versity of Twente, March 2005. SAS04-048.

J.O. Hamblen and M.D. Furman. Rapid Prototyping of

Digital Systems. Kluwer Academic Publishers, Boston,

2000.

P. Nussbaum, B. Girau, and A. Tisserand. Field pro-

grammable processor arrays. In M. Sipper, D. Mange, and

A. Perez-Uribe, editors, Evolvable Systems: From Biology

to Hardware, pages 311-322. Springer, Berlin, 1998. Lec-

ture Notes in Computer Science, No. 1478.

P.M. Heysters, J. Smit, G.J.M. Smit, and P.J.M. Havinga.

Mapping of DSP algorithms on field programmable func-

tion arrays. In 10th International Conference on Field-

Programmable Logic and Applications, FPL 2000, pages

400-411, Villach, Austria, August 2000.

P.M. Heysters. Coarse-Grained Reconfigurable Processors,

Flexibility Meets Efficiency. PhD thesis, Department of

Electrical Engineering, Mathematics and Computer Sci-

ence, University of Twente, September 2004.

(12]

(13]

[14] D. Johnsson, J. Bengtsson, and B. Svensson. Two-level re-

configurable architecture for high-performance signal pro-

cessing. In International Conference on Engineering of

Reconfigurable Systems and Algorithms, ERSA’04, pages

177-183, Las Vegas, Nevada, June 2004.

J.M. Rabaey. Reconfigurable processing: The solution to

low-power programmable DSP. In International Confer-

ence on Acoustics, Speech and Signal Processing, 1997.

J. Liang, A. Laffely, S. Srinivasan, and R. Tessier. An

architecture and compiler for scalable on-chip communica-

tion. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 12(7):711-726, July 2004.

A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal

Processing. Prentice-Hall International, London, second

edition, 1999.

[18] http://www.opencores.org/cvsweb.shtml/sc2v/.

[19] J. Leijten, G. Burns, J. Huisken, E. Waterlander, and
A. van Wel. Avispa: A massively parallel reconfigurable ac-
celerator. In International Symposium on System-on-Chip,
pages 165-168, 2003.

(17]

377

