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Abstract. For the simulation of industrial sheet forming processes, the time discretisation is
one of the important factors that determine the accuracy and efficiency of the algorithm. For
relatively small models, the implicit time integration method is preferred, because of its inherent
equilibrium check. For large models, the computation time becomes prohibitively large and, in
practice, often explicit methods are used. In this contribution a strategy is presented that enables
the application of implicit finite element simulations for large scale sheet forming analysis.

Iterative linear equation solvers are commonly considered unsuitable for shell element mod-
els. The condition number of the stiffness matrix is usually very poor and the extreme reduction
of CPU time that is obtained in 3D bulk simulations is not reached in sheet forming simulations.
Adding mass in an implicit time integration method has a beneficial effect on the condition num-
ber. If mass scaling is used—like in explicit methods—iterative linear equation solvers can lead
to very efficient implicit time integration methods, without restriction to a critical time step and
with control of the equilibrium error in every increment. Time savings of a factor of 10 and more
can easily be reached, compared to the use of conventional direct solvers.
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1 INTRODUCTION

The two main solution procedures for the simulation of sheet forming processes are the
dynamic explicit and the static implicit algorithms. The dynamic explicit method is frequently
used in simulations of sheet forming processes, since it reduces the computation time drastically
compared to implicit methods, using a diagonal mass matrix to solve the equations of motion
[1–3]. A disadvantage of this method is the conditional stability, necessitating extremely small
time steps or artificial adaptations to the model.

The static implicit method is unconditionally stable, but a linear set of equations must be solved
repeatedly. For large models, this leads to extremely long computation times if direct solvers
are used. The use of iterative solvers in quasi-static elasto-plastic simulations has been reported
by a number of researchers [4–10]. These papers concerned mainly the convergence behavior
of the iterative solver and the parallel implementation. For shell element models, however,
convergence is slow. Current research in this field is mainly focussed on the improvement of
preconditioners for this type of problems [11–14].

In this paper some aspects of explicit solvers are used to improve the performance of implicit
solvers. In this way the computation time of implicit codes can be decreased by factors. In
Sections 2 and 3 the basic finite element formulations are reviewed and the continuum prob-
lem is discretised. The discretisation leads to huge linear sets of equations, resulting in large
computation times for implicit methods. In Section 4 the implicit and explicit time integration
algorithms are compared. In Section 5 it is shown that iterative solvers can reduce the calcula-
tion time considerably. Section 6 demonstrates the influence of model parameters and dynamics
contributions on the efficiency of iterative solvers.

2 PROBLEM DEFINITION

Although most sheet forming processes can be considered quasi-statically, we start by con-
sidering conservation of linear momentum, since this is the basis for implicit as well as explicit
time integration methods. This conservation law is commonly written as

ρv̇ = ∇ · σ + ρb (1)

where ρ is the mass density, v the velocity, σ the Cauchy stress and b the body force per unit
mass. A superposed dot denotes a material time derivative, hence v̇ is the acceleration.

The problem to be solved can be phrased as: find a displacement field u(x) such that the
balance equations are fulfilled, subject to the initial conditions

u(x, t0) = u0(x), v(x, t0) = v0(x) ∀ x ∈ � (2)

and the boundary conditions

u = ū on 0u and σ · n = t̄ on 0t (3)

where � is the deformed domain of the analysed body, 0u is that part of the boundary on which
the displacements ū are prescribed and 0t the part where the traction t̄ is prescribed
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Using the weighted residual method, integration by parts and the divergence theorem, the
weak form of the momentum equation becomes

∫

�

w · ρv̇ d� +

∫

�

∇w : σ d� =

∫

�

w · ρb d� +

∫

0t

w · t̄ d0 ∀ w ∈ V (4)

where w is the weighting function and V contains all C0 vector functions with a value of 0 on
0u .

A finite element discretisation is used to discretise the space dimension, usually by a Galerkin
method. The nodal displacements are the degrees of freedom, assembled in a vector d. It finally
leads to the semi-discrete equations in matrix format:

Md̈ + fint − fext = 0 (5)

with the mass matrix M, the internal load vector fint and the external load vector fext. The internal
load vector, and in the case of e.g. a pressure load also the external load vector, depend on the
displacements. Hence, (5) is nonlinear in the displacements. A time integration algorithm must
be selected that can cope with this nonlinearity.

2.1 Time integration methods

An incremental-iterative strategy is followed as solution method for the nonlinear semi-
discrete equations and a Newton–Raphson method is used for the iterative part. For the time
integration procedure at the level of the system equations a Newmark algorithm is chosen. The
increment in the displacement vector is updated iteratively by

1dk+1 = 1dk + δdk (6)

where the superscript k denotes the iteration number. Writing (5) for the end of an increment in
a residual form gives

Md̈ + fint − fext = r(1d) (7)

in which the residual r must iteratively be brought to zero to conform to equation (5). This leads
to the Newton–Raphson iteration relation for δdk :

(

∂r
∂1d

)k

δdk = −rk (8)

The matrix with derivatives is called the Jacobian matrix and can be written as

∂r
∂1d

= M
∂d̈

∂1d
+

(

∂fint

∂1d
−

∂fext

∂1d

)

(9)

The derivatives ∂ d̈/∂1d depend on the selected time integration algorithm. The term between
parentheses is known as the stiffness matrix K.
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The Newmark integration method is a one-step integration method, using only the current
state and the state to be calculated. The basic assumptions in the Newmark method are

dn+1 = dn + 1t ḋn + 1t2 [

(1
2 − β)d̈n + βd̈n+1

]

(10a)

ḋn+1 = ḋn + 1t
[

(1 − γ )d̈n + γ d̈n+1
]

(10b)

All values at time n are fixed and the derivatives ∂ d̈/∂1d can now be determined. Equation (9)
yields an equivalent stiffness matrix

K∗ =
∂r

∂1d
=

1

β1t2 M + K (11)

where the parameters β and γ can be chosen freely. In the linear case, the Newmark integration
method is unconditionally stable for 2β ≥ γ ≥ 1

2 and it is second order accurate for γ = 1
2 .

The most widely used scheme is the β = 1
4 and γ = 1

2 scheme. For γ > 1
2 the algorithm

is dissipative and numerical damping is introduced. An Euler backward integration scheme is
achieved by choosing β = γ = 1. This scheme is consistent with the usual integration of
constitutive equations at the material point level.

When we choose β = 0 and γ = 1
2 we obtain the explicit central difference scheme. A more

direct way to describe this scheme for constant time increments 1t is

Md̈n = fext,n − fint,n (12)

dn+1 = 2dn − dn−1 + 1t2d̈n (13)

Clearly, dn+1 can be calculated explicitly, and no iterations are needed. The central difference
scheme is conditionally stable and the time increment 1t must be less than the critical time
increment 1tcrit = 2/ωmax, where ωmax is the maximum eigenfrequency of the linearised sys-
tem [15]. The big advantage of the central difference scheme is that the mass matrix can be
diagonalised and in that case the solution of d̈ from (12) is trivial.

3 ELEMENTS

The weak form of conservation of momentum (4) forms the basis of the finite element dis-
cretisation. Element mass matrices and internal and external load vectors can be derived from
the element contributions to the integrals in (4), leading to

Me =

∫

�e

ρNTN d� (14a)

fint,e =

∫

�e

BT
σ d� (14b)

fext,e =

∫

�e

NTρb d� +

∫

0te

NT t̄ d0 (14c)
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where N and B interpolate nodal displacements to local displacements and strains respectively.
In this paper discrete Kirchhoff shell elements are used [16]. They have 3 translational and 3

rotational d.o.f. in each node. The out-of-plane displacement is only defined along the element
edges, on which a cubic polynomial is assumed. The parameters are determined by the nodal
displacements and rotations and constraint conditions at discrete points. The problem arises
that the displacements are not explicitly defined over the complete element. This means that a
consistent interpolation matrix N cannot be defined.

3.1 Stiffness matrix

The rotational d.o.f. along the normal of the element does not contribute to any deformation
in the element. Hence, this so-called drilling d.o.f. gives no contribution to the mass or stiffness
matrices. Without further measures, the equivalent stiffness matrix K∗ will be singular and thus
will break down any solution procedure. One way to avoid this is to add a small stiffness to
the diagonal element that represents this d.o.f. If a direct solver is used, this approach leads
to good results. However, the very small diagonal terms lead to ill-conditioned matrices that
are detrimental for iterative solvers. The approach described by Zienkiewicz and Taylor [17]
may therefore be beneficial in combination with iterative solvers. Here, a coupling between all
drilling d.o.f. φzi is achieved by a stiffness relation between drilling moments Mzi and rotations
φzi :







Mz1

Mz2

Mz3







= α





2 −1 −1
−1 2 −1
−1 −1 2











φz1

φz2

φz3







(15)

where α is a factor that scales with the stiffness of the element. This relation contributes to the
stiffness matrix and the effect on iterative solvers is demonstrated in Section 6.1.

3.2 Mass matrix

For efficient use in an explicit central difference algorithm the mass matrix must be diag-
onalised. This can be done in several ways e.g. row-sum techniques, proportional scaling or
nodal integration [18, 19]. For higher order elements—and that includes shell elements—row-
sum and nodal integration can lead to negative values on the diagonal. With proportional scaling
the contributions from translational and rotational d.o.f. are mixed up and a physical justification
fails.

For Kirchhoff elements a lumped mass matrix was developed based on equivalent acceleration
moments or ‘mass moments of inertia’ [20]. The total virtual work due to rotational acceleration
for an element along one of its edges is approximated by

δW = δωImω̈ ≈ δωρhI ω̈ ≈ δωρh 1
12 bh3ω̈ ≈ δωρh 1

3 A2ω̈ = δω 1
3m Aω̈ (16)

with m the element mass and A the element area. The resulting diagonal mass matrix becomes

M = 1
3 m diag

[

1 1 1 1
3 A 1

3 A 1
3 A ...(×3)...

]

(17)
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The rotational part of this matrix is not correct, but at least it has correct dimensions and scales
properly on mesh refinement. In Section 6.1 the influence of the drilling stiffness and mass
matrix on the performance of iterative solvers is investigated.

4 COMPARISON BETWEEN IMPLICIT AND EXPLICIT METHODS

4.1 Implicit methods

The static implicit method is unconditionally stable. Equilibrium is satisfied at the end of
each time step. The main drawback of this method, however, is that a linear set of equations must
be solved repeatedly. For 2D or planar 3D finite element models and uniform refinement, the
computation time increases quadratically with the size of the model when using a direct solver.
Another drawback is that sometimes convergence is hard to reach.

In large scale implicit finite element simulations the computation time for a direct solution
of linear sets of equations is the bottle-neck. A way to alleviate this problem is to use iterative
solvers instead of direct solvers. For shell element models, however, the condition of the matrix
is poor and iterative solvers tend to converge very slowly.

Most sheet forming processes can be considered quasi-statically. In this case it is customary
to ignore the mass term in (5) altogether and iterate on equilibrium (fint = fext). The iterations in
(8) are performed with the stiffness matrix K only. The implicit methods of practical relevance
are unconditionally stable. This means that the time increment can be based on the required
accuracy or convergence behaviour. The determination of iterative increments δdk requires the
solution of a linear set of equations.

In [4, 21] it was demonstrated that, in a 2D analysis, the time needed by a direct solver
was negligible for models with less than 10000 d.o.f. and that it dominated the CPU time for
models with more than 20000 d.o.f. A conjugate gradient (CG) solver with incomplete Cholesky
preconditioning was more efficient in the latter models.

Two serious disadvantages of implicit methods are the (lack of) stability of the Newton–
Raphson iteration process and the rapid increase in computation time when direct solvers are
used. Iterative solvers can decrease the computation time for large systems, but this depends
heavily on the condition of the matrix. Typically for shell structures the condition number of the
matrix is very high, and as a consequence iterative solvers converge very slowly or not at all.

4.2 Explicit methods

Compared to the implicit methods, the explicit methods are very easy and straightforward.
For reasons of accuracy, only the central difference scheme is used in practice.

In an explicit method no stiffness matrix needs to be generated. The memory requirement
for the (diagonal) mass matrix is marginal and since no iterations are required on the material
level, no separate start- and end-of-increment data need to be stored and it will never suffer from
convergence problems within a time increment. However, equilibrium is not fulfilled after each
time step, which can result in erroneous stress distributions and unrealistic product shapes [22].

The most significant drawback of the central difference method is its conditional stability.
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With a typical element length of 5 mm, the critical time step is about 1 µs. To reduce the
computation time for processes that are not completed within milliseconds, mass scaling is often
applied. The mass density of the material is then artificially increased, thus increasing the critical
time step. To reach acceptable computation times for processes like deep-drawing, mass scaling
with a factor of 100 to 10000 is not uncommon.

It is interesting to note the similarity between the explicit method and one of the simplest
iterative linear equation solvers viz. the Jacobi iteration. Decomposing the matrix A in a diagonal
part D and an off-diagonal part F, the Jacobi iteration method to solve Ax = b can be presented
as [23]

Dxk+1 = −Fxk + b (18)

If we use an implicit method with an initial continuation prediction, the initial estimate for the
displacement is d0

n+1 = 2dn − dn−1. In the next Newton–Raphson iteration, the displacement

becomes d1
n+1 = 2dn − dn−1 − K∗−1r. If this set of equations is solved by a Jacobi iteration

method, setting A = K∗ and b = −r, the first iteration of the Jacobi solver (starting with x0 = 0)
yields d1

n+1 = 2dn −dn−1+D−1b. If the diagonal of the iteration matrix is dominated by M/1t 2

(e.g. by choosing β = 1 in the Newmark scheme and using a lumped mass matrix) then, by
comparison with (12) and (13) it shows that one increment in the explicit method performs like
one Jacobi iteration.

4.3 An efficient strategy for implicit methods

Regarding the previous discussion on implicit and explicit methods the analysis strategy
based on implicit methods can be optimised. It is clear that the use of direct solvers is not a
feasible option for large systems. Iterative solvers do not perform very well for shell models,
but at the other hand it was noted that the explicit method can be regarded as one of the simplest
iterative solvers. Clearly the dominance of the mass terms in an explicit method is essential.
This implies that the strategy should be to retain inertial effects in the implicit finite element
code in combination with the use of iterative solvers. When the mass matrix is diagonalised
and added to the stiffness matrix, the diagonal terms of the system matrix will increase and the
condition of the matrix improves, which makes an effective use of iterative solvers feasible.

5 LINEAR EQUATION SOLVERS

For large models, the computation time needed for the solution of a linear set of equations
dominates the total computation time of implicit methods. The chosen analysis strategy ad-
vocates the use of iterative solvers for this part. In this section some properties of direct and
iterative solvers are discussed.

5.1 Direct solvers

Direct solvers are generally based on some form of Gaussian elimination process. Bandwidth
optimisation algorithms are used to reduce the bandwidth and thus the required computation time.
More recent direct sparse matrix solvers even optimise on a reduced fill-in during the elimination
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process. The computational complexity of direct solvers is proportional to neqn2
bw, where neq is

the number of equations and nbw the (mean) bandwidth. In sheet forming simulations (a curved
plane in 3D) a uniform decrease in element size results in a quadratic increase in the number
of equations and a linear increase in the bandwidth, so finally a fourth order increase in the
computation time (or quadratic in the number of d.o.f.).

5.2 Iterative solvers

The solution of a linear set of equations can be approximated in an iterative way. Several ex-
amples can be found in [23–25]. These solvers become interesting if they produce an acceptable
iterative displacement vector δdk in a shorter time and using less memory than a direct solver.

The time requirements for iterative solvers depend on many parameters. For every local
iteration, the time depends linearly on the number of d.o.f. but the number of iterations is not
fixed. The number of iterations depends on the local convergence criterion and the condition
of the matrix. Typically the convergence deteriorates due to high stiffness ratios (stiff contact
elements, multi-physics or shell elements), due to decreasing material stiffness (plasticity) and
due to singularities (constant volume constraints). Preconditioning of the matrix can significantly
improve the convergence characteristics.

Several iterative solvers have been compared in [4]. The iterative solvers used here are:
Conjugate Gradient (CG) and BiConjugate Gradient Stabilised (Bi-CGSTAB). All solvers are
used with Jacobi, SSOR and Incomplete Cholesky (IC) preconditioning.

5.3 Convergence criterion

In the nonlinear solution process the linear set of equations (8) must be solved repeatedly to
obtain the iterative displacement increments δdk . The Newton–Raphson iterations are stopped
if the Euclidean norm of r is less than ε times the Euclidean norm of fint. The actual ratio in
iteration k is designated as εk :

‖rk‖

‖fint‖
= εk ≤ ε (19)

We now consider an iterative solution process for the linear system of equations, described
by (8). With an iterative solver δdk is not calculated exactly, but it is approximated by δd̂k so
that an error ε remains according to

K∗kδd̂k = −rk + ε (20)

The iterative process will be terminated if the Euclidean norm of the error vector ε is less than
δit times the Euclidean norm of rk :

‖ε‖ ≤ δit‖rk‖ (21)

Relating the convergence to rk instead of directly to fint facilitates the use of ‘of the shelf’ solvers.
It is argued in [4] that the value of δit should be chosen such that the additional error ‖ε‖ does
not add much to the error ε that is made in the global Newton–Raphson process anyhow.
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Figure 1: Finite element mesh for a quarter section of a rectangular product.

6 STABILISATION BY DYNAMICS CONTRIBUTIONS

In this section the influence of dynamics contributions on the simulation of deep drawing
is investigated. The main goal of the dynamics contributions is to stabilise the calculation and
improve the convergence of iterative solvers. First a relatively small model is used to investigate
the influence of drilling stiffness, time integration scheme and punch velocity. Then the impact
on computation time in a large scale analysis is presented. An extended description is given in
[20, 21].

6.1 Deep drawing of a rectangular product

In this section a relatively small model for the deep drawing of a rectangular product is used to
determine the influence of several model parameters. The results from the backward difference
scheme are used as reference values. The difference with the Newmark scheme and the influence
of the drilling stiffness and punch velocity are presented. A lumped mass matrix approach is
used.

In Figure 1 the final shape, at a depth of 100 mm, is presented for a quarter section of the
product. The initial dimensions of the blank are 313 mm by 221 mm, with a thickness of 1 mm.
The unbalance criterion of the global Newton–Raphson iterations according to (19) is set at
ε = 0.01

The influence of several parameters on the condition number of the matrix and on the required
number of iterations is determined. To this end, for every parameter set 40 increments with
0.5 mm punch displacement per increment were taken, using a direct solver. After 20 mm
displacement a large part of the blank is plastic, while some parts in the flange are still elastic.
This results in large stiffness ratios that are usually detrimental for iterative solvers. The matrix
and right-hand side vector that were assembled in the first iteration of the 40-th step were stored.
The condition number for this matrix was derived and the set of equations was solved by a CG
and a Bi-CGSTAB method with Jacobi, SSOR and IC preconditioning with a local convergence
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Figure 2: Influence of the drilling stiffness factor α.

criterion δit = 10−5 according to (21).
The influence of the artificial drilling mode stiffness (α in (15)) is presented in Figure 2. It

can be seen in Figure 2(a) that, in a static analysis, the condition numbers are very high for a
low α and start to decrease rapidly for α > 10−6. At a punch speed of 10 m/s, Figure 2(b), the
mass terms regularise the matrix, but still an improvement of the condition number is achieved
for α > 10−6. Looking at Figure 2(c) and Figure 2(d) (note the logarithmic scale) it is evident
that the condition number of the matrix is not the only relevant parameter. For Jacobi and IC
preconditioned methods, the decay in condition number for α > 10−6 does not influence the
number of required iterations much. However, for the SSOR preconditioned methods in the static
analysis, an anomalous increase of required iterations is seen for 10−12 < α < 0.1. This may
be due to the particular spectrum of eigenvalues, which is known to influence the convergence
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(b) Convergence; backward vs. Newmark integra-
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(c) Convergence; CG vs. Bi-CGSTAB solver

Figure 3: Influence of the velocity on condition number and convergence.

behaviour [24]. This detrimental effect does not appear in the dynamic analysis, and some
beneficial effect can be observed for the SSOR preconditioner for α > 10−3.

In this particular example, the factor α = 0.1 did not influence the convergence of global
Newton–Raphson iterations and, given the results as presented in Figure 2, this value was used
for all subsequent analyses.

In Figure 3, the influence of the punch velocity on the condition numbers and the required
number of iterations for the iterative solvers is presented. Since no rate dependent material is
used, an increase in punch velocity is equivalent to a quadratic increase in mass density (mass
scaling). It can be seen in Figure 3(a) that the condition number decreases for velocities higher
than 1 m/s. The number of iterations for the CG solver needed to achieve a residue of 10−5 are
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presented in Figure 3(b). The condition number and number of iterations scale very well. It can
also be seen from these graphs that the Newmark method results in a lower condition number
and number of iterations, compared to the backward difference method. This can be explained
by the stronger weighting of the mass matrix in (11). In this case β = 0.3 and γ = 0.6 was
used, in order to add some numerical damping. In Figure 3(c) the difference between the CG
and Bi-CGSTAB iterative solvers are presented. In all circumstances, the Bi-CGSTAB solver
converged within less iterations than the CG solver. But, because one CG iteration is faster than
one Bi-CGSTAB iteration, the CG solver was always faster. Because the IC preconditioning is
more time-consuming than SSOR, the CG solver with SSOR preconditioning was in almost all
circumstances the fastest of the applied iterative solvers. With only 3754 d.o.f. in the matrix, this
is a relatively small model and the direct symmetric skyline solver was faster than the iterative
solvers for punch velocities below 50 m/s.

The inertial effect also influences the convergence behaviour of the Newton-Raphson pro-
cedure. The simulation without dynamics contributions needed 586 iterations for the entire
simulation of 200 increments. The simulation of a dynamic process with a punch velocity of
50 m/s, using the backward difference method, needed 502 iterations for the entire simulation.
Hence, a reduction of 14 % in the number of iterations is achieved by the stabilising effect of
inertia. Both simulations were performed using a direct skyline matrix solver in order to separate
this effect from possible effects of iterative solvers.

The thickness strain distribution in the product for a static and a dynamic simulation was
presented in [20]. It was observed that the inertial terms do influence the thickness strain
distribution for a punch velocity of 50 m/s. A simulation performed with a drawing speed of
20 m/s showed hardly any difference between the results for the static and dynamic simulations.
Already at this speed, the iterative solvers benefit a lot from the added inertia.

6.2 Front door panel

In this section, the forming of an AUDI front door panel is discussed. This product served as
a benchmark for the NumiSheet ’99 conference [26]. The blank holder is doubly curved which
gives rise to numerical instabilities while closing the blank holder if dynamics contributions are
not taken into account. This automotive product will be used to investigate the performance of
the improved implicit code with respect to the conventional implicit code.

Two simulations were performed. For both simulations, the dynamics contributions were
switched on, gravity loads were applied and automatic refinement used. The deep drawing
velocity was set to 10 m/s. One simulation was performed in which the Bi-CGSTAB iterative
solver with SSOR preconditioning was used, and one simulation was performed with a direct
solver (Cholesky decomposition).

The results of the simulation using the iterative solver are discussed first. During the first
90 steps, the blank holder is closed. Then the punch moves downwards, until the desired deep
drawing depth is reached in step 191. The final deformed mesh is presented in Figure 4.

During deep drawing, the mesh is refined in areas with high curvatures [27]. The initial
mesh contains 17244 d.o.f., whereas the mesh ends up with 79344 d.o.f. The generation of new
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Figure 4: Final shape of front door panel.
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Figure 5: Evolution of d.o.f. and solver time in front door panel simulation.

elements during the simulation is graphically represented in Figure 5(a). The computation time
for the entire simulation was 5.5 hours on a HP8000 workstation.

Next, a simulation was started using a direct solver. At increment 166 the mesh contained
36876 d.o.f. and another mesh refinement was required. At this moment the simulation could
not proceed due to insufficient internal memory. Figure 5(b) shows the computation time for one
linear solution with the iterative and the direct solvers. The theoretical increase in computation
time for the direct solver, based on uniform refinement proportional to n2

eq, is also included.
The figure clearly shows that the iterative solver is significantly faster than the direct solver. For
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17244 d.o.f. the iterative solver is 10 times faster than the direct solver while this factor increases
up to 25 for 36876 d.o.f. The time for the direct solver increases more than quadratically, which
is due to the non-uniformity of the refined mesh. The computation time of the iterative solver
increases slightly more than linearly. If the theoretical approach is taken as a lower bound
for the prediction of the computation time for the direct solver in the case of 79344 d.o.f., the
computation time will increase by at least a factor 40 with respect to the iterative solver. With
the iterative solver the total calculation time is no longer dominated by the linear solver.

7 CONCLUSION

The convergence of iterative solvers for sets of equations derived from elasto-plastic shell
element models is usually slow. To improve the convergence of iterative solvers, inertial effects
can be included in the algorithm. In this way the matrix becomes more diagonally dominant
and the condition number of the matrix improves, which is advantageous for iterative solvers.
Special attention should be given to the drilling d.o.f. in shell elements. Without (rotational)
mass contribution, the presented artificial stiffness largely influences the performance of the
iterative solver with SSOR preconditioning. If (artificial) rotational mass is added to this d.o.f.,
the influence of the drilling stiffness is reduced.

Under realistic deep drawing conditions, the contribution of the mass matrix is not enough
to improve the behaviour of iterative solvers. If mass scaling or reduced process times are
used, comparable to that used in explicit methods, the reduction in computation time can be
tremendous. Another advantage of using dynamics contributions in the implicit finite element
code is that it stabilises the Newton–Raphson iterations.

It is shown that significant time and memory savings can be achieved by using iterative solvers
with appropriate preconditioners. In the large deep drawing example, the linear solution stage
no longer dominates the total solution process.
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