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Summary  
 
Selling organizations often offer quantity discounts schedules, but do not provide the underlying 
Quantity Discount Price Functions (QDPF). In literature an analysis on how QDPF could be 
derived from discount schedules is lacking. This is remarkable as QDPF contain useful 
information for buying organizations. QDPF give more insight into the fixed and variable costs 
of selling organizations and can be a useful tool for buying organizations in selecting and 
negotiating processes. Furthermore, QDPF can be used for calculating and allocating price 
savings in group purchasing and multiple sourcing decisions. In this paper we develop one 
general QDPF and two related measures for negotiating spaces. We prove that our QDPF gives a 
highly reliable approximation of 66 quantity discount schedules of different selling organizations. 
Finally, we compare the QDPF parameters of the 66 schedules and discuss their basic properties. 
  
Educator and practitioner summary  
  
In this paper we develop a general quantity discount price function and two indicators for 
negotiating spaces. These instruments provide more insight into the fixed and variable costs of 
selling organizations and can be used (1) as a tool in selecting and negotiating processes, and (2) 
to calculate and allocate price savings in multiple sourcing decisions and group purchasing.  
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Introduction of the topic 
 
Quantity discounts have been used widespread and discussed for centuries (Elmaghraby and 
Keskinocak, 2002). Selling organizations often offer quantity discounts schedules. Buying 
organizations often expect a price break for purchasing large amounts (Nason and Della Bitta, 
1983). Specific motivations for quantity discount schedules are: 
• Achieving perfect price discrimination against a single customer or a set of homogenous 

customers (e.g. Buchanen, 1953); 
• Achieving partial price discrimination against heterogeneous customers (e.g. Oi, 1971); 
• Charging a higher price for the first items sold allows covering fixed costs, while discounts 

increase efficiency as larger customers are priced closer to marginal costs (Miravete, 1999); 
• Influencing the buying organization’s ordering pattern to increase the logistics system 

efficiency and/or to coordinate and lower costs between levels in a distribution channel (e.g. 
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Crowther, 1967). It is claimed by Munson and Rosenblatt (1998) that this type of discount is 
intended to influence the quantity per order, but not the total quantity demanded over the long 
run. We claim however that a lower price could increase demand given a high price elasticity 
of demand. Marketing literature also suggests that the optimal reaction of sellers facing a 
decrease in costs is to pass some of the savings to their customers by lowering prices (Chan, 
and Qiang Wang, 2003), what could increase demand.  

 
Practitioners encounter different types of discount schedules which can be determined by: 
• The number of price breaks of a discount schedule may be one, two (e.g. a price per item of 

10 applies to an interval of 1 – 10 items; a price per item of 9 applies to an interval of 11 and 
more items), multiple, or infinite (Dolan, 1987; Munson and Rosenblatt, 1998). It is claimed 
by Munson and Rosenblatt (1998) that an infinite number of price breaks represents a 
continuous discount schedule. We claim however that this is only true if all the price breaks 
have an interval of only 1 (e.g. a price per item of 11 applies to 1 item; a price per item of 9 
applies to 2 items; a price per item of 8 applies to 3 items; et cetera); 

• The price breaks may be based on quantities (e.g. a price per item of 10,2 applies to 1 – 10 
items; a price per item of 9,6 applies to 11 – 20 items) or prices (e.g. a price per item of 20 
applies to 1 – 43 items; a price per item of 15 applies to 44 – 117 items); 

• The form may be all-items (the discount applies to all items) or incremental (only items 
within a price break interval receive that interval’s discount) (Munson and Rosenblatt, 1998); 

• Item aggregation describes if the discount applies to one or multiple items (bundling items). 
A business volume discount represents item aggregation where the price breaks are based on 
the total monetary volume for all products purchased (Munson and Rosenblatt, 1998); 

• Finally, time aggregation describes if the discount applies to individual or multiple purchases 
over a certain time period (Munson and Rosenblatt, 1998). 

 
The body of knowledge on quantity discounts is large, both from the point of view of selling and 
buying organizations. From the selling organization point of view a great deal has been written 
about whether or not selling organizations should offer quantity discounts, and if so, what type of 
quantity schedule they should offer to maximize profits (e.g. Lee and Rosenblatt, 1987). From the 
buying organization point of view the application of quantity discounts in e.g. EOQ-models (e.g. 
Viswanthan and Wang, 2003) or inventory ownership problems (e.g. Boyaci and Gallego 2002) 
has been discussed to a large extent. In addition, several authors have written about among other 
things the characteristics of quantity discount schedules (e.g. Dolan, 1987).  

Research relevance 
 
Academic relevance 
 
Literature is extensive thus; nevertheless, what we do not know is how buying organizations can 
derive Quantity Discount Price Functions (QDPF) from discount schedules. As mentioned earlier 
selling organizations often offer quantity discount schedules. However, mostly they do not 
provide the underlying function used. If they do provide the underlying function this often does 
not give direct and comparable information about e.g. fixed and variable costs. In literature a 
thorough analysis on how buying organizations could derive QDPF from discount schedules is 
lacking. This is remarkable as QDPF contain useful information for buying organizations. 



Especially concerning the structure of prices, and prices often are the main basis for purchasing 
decisions (e.g. Lehmann and O'Shaughnessy 1974). 
Our next point of interest concerns the huge gap of research between price elasticity and demand 
elasticity (Ramsay, 1981). Price elasticity of demand is a concept that is used throughout 
economics and is based on people doing less of what they want to do as the cost of doing it rises. 

Price elasticity is defined as %
%d

change in quantity demandedE
change in price

=  (e.g. Case and Fair, 2003) 

and has been studied in great detail. Almost all textbooks discussing the principles of economy or 
marketing include the topic. Several detailed papers describe the price elasticity of different 
commodities (e.g. Babbel, 1985; Lodererer et al., 1991). And a Google search on "price elasticity 
of demand" even gives 198.000 hits (February 2006), what our statements concerning the 
popularity of price elasticity confirms.  
However, a Google search on "demand elasticity of price" gives just 37 hits. And most of these 
hits refer to pages that actually give information about price elasticity. Even some academic 
papers use the definition demand elasticity while they mean price elasticity (e.g. Song and 
Sumner, 1999; Yan et al., 2001). Demand elasticity is based on quantity discounts and indicates 
the sensitivity of product and service prices to demanded quantities. A measure for demand 
elasticity is still lacking, let alone the demand elasticity of different commodities.  
 
Practical relevance 
 
In general, research results to QDPF will be applicable to models incorporating quantity 
discounts. More specific, QDPF give more insight into the supplier cost mechanism, i.e. its  fixed 
and variable costs. Therefore, it can be a useful tool in the supplier selection and negotiation 
process for buying organizations. Different discount schedules of different suppliers can be easily 
compared in the selection process while using one QDPF. In addition, QDPF can be used in the 
negotiation process for determining negotiating spaces and for calculating discounts for deviant 
quantities. The latter accounts to multiple sourcing decisions as well. One of the issues in 
multiple sourcing is how to divide the total quantity between different selling organizations. For 
all of the deviant quantities of the possible divisions the quantity discount can be calculated and 
weighed up against spreading risks and opportunities. 
The usage and calculation of price savings due to the bundling of needs within organizations can 
be improved by QDPF as well. The same accounts to the bundling of needs with other 
organizations, i.e. group purchasing. In group purchasing, QDPF can be used to improve 
calculating and allocating purchasing price savings. Here the total cooperative price paid to the 
selling organization is known. However, the prices for the buying organizations if they had 
purchased alone is often unknown. This information is necessary for calculating and allocating 
price savings for certain allocation methods. Finally, some of the properties of quantity discount 
schedules play an important role in the fairness of allocation methods for allocating cooperative 
gains in e.g. purchasing consortia and business unit group purchasing (Schotanus, 2005). 
 
Research objectives 
 
Given the research relevance our main analytical objective is to describe one general QDPF 
defined by a limited number of parameters. In addition, we aim to analyze its basic properties and 
to develop related indicators for negotiating spaces. It should be uncomplicated for buying 



organizations to derive these parameters from all different types of quantity discount schedules 
they encounter in practice. Intensive instruments as supplier auditing could provide the same 
information, but are usually very labour-intensive, both for the selling and the buying 
organization.  
Our main empirical objective is to test the reliability of this general QDPF for different types of 
quantity discount schedules. In addition, we aim to develop and test several hypotheses.  
Our third and final objective is the most ambitious one. It is to build a basic foundation for more 
research to unravelling quantity discounts. If the applications of our research results are proven to 
be useful to practitioners a new research line could be set up. This research line could unravel 
typical QDPF parameter and indicator values for typical product and service groups with typical 
procurement strategies. These values could serve as guidelines for buying organizations in 
selecting and negotiating processes as we aim to discuss shortly in our findings section. A similar 
line of research already exists in the price elasticity literature as mentioned in the research 
relevance section. To build a basic foundation we aim to develop several propositions related to 
the general QDPF. In addition, we aim to describe some general estimates of QDPF parameter 
and indicator values for several commodities. 

 
Analytical findings 
 
In this section we aim to achieve our first objective and partly our third objective. First, we 
substantiate and develop a general QDPF and its related total cost function. A QDPF gives the 
price per item for a certain quantity. The total costs function multiplies the price with the 
quantity. Second and third, we develop two indicators for measuring negotiating spaces. Finally, 
we discuss the demand elasticity of price.  
 
The QDPF defined 
 
To achieve our first objective our main choice is to use a continuous QDPF to approximate 
(gradual) discount schedules. A continuous type can approximate all different types of discount 
schedules mentioned in the introduction. However, in practice usually graduated prices are used 
to establish quantity discounts (Munson and Rosenblatt, 1998). For instance, a price of 400 
applies to 50–99 items, and a price of 390 applies to 100–199 items. Nonetheless, when a buying 
organization needs 95 items it could order 100 items, or otherwise could negotiate a lower price 
than 400. The selling organization could be able to offer a lower price due to economies of scale, 
which may affect fixed and variable (transaction) costs. A continuous price function represents 
this process better than graduated functions.  
Prices and lot sizes are mostly determined through negotiations (e.g. Munson and Rosenblatt, 
1998). Graduated price functions do not incorporate this flexibility. Note that most of the EOQ-
models consider quantity discount schedules as a given and do not consider negotiating 
possibilities. In some situations this is actually the case as logistical aspects like truck capacities 
may be a limiting condition. Still, due to negotiations most discount schedules are not rigid in 
practice. In addition, note that using graduated QDPF could lead to an anomaly (e.g. Arcelus and 
Rowcroft, 1992; Sethi, 1984). This anomaly concerns the possibility that it can save money by 
purchasing more items than needed at a discount and throwing the surplus away. Several other 
researchers proposed and applied continuous price functions in their studies as well (e.g. Spence 
1977; Hahn 2003). For all of the reasons above, we use a continuous price function in stead of a 
graduated price function to make a better approximation of reality.  



Our QDPF is based upon the function described by Heijboer (2003) as 

( ) cp q p c
q

⎛ ⎞
= ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠

2
0 1 , which can be rewritten as ( ) p cp q p c

q
= + 0 2

0 1 . Here 0p ⋅ 1c  represents the 

minimum price and 2c  is used to further scale the price function p(q) for quantity q. In our QDPF 
we introduce one new parameter η which represents the theoretical steepness. We introduce this 
parameter to be able to make better estimates of different types of quantity discount schedules 
with different types of steepness, as are shown in figure 1.  
 

 
Figure 1. Examples of Different Quantity Discount Schedules and Related Purchasing Prices 
 
The schedules shown in figure 1 are deduced from schedules found in practice by our QDPF:  

( )QDPF fixed amount  variable amount m
Sp q p
qη= ± = = +             (1) 

Here pm represents the theoretical minimum price (with S ≥ 0) or maximum price (with S < 0) and 
S represents the theoretical spread of the function. For instance, a positive steepness and S = 100 
means that the difference between the price per item for purchasing 1 item and the price per item 
for purchasing an infinite number of items equals 100.  
With the three parameters QDPF can be shaped and scaled into two main categories: positive 
steepness (and S ≥ 0) and negative steepness (and S < 0). For both categories the following 
restrictions apply in theory:  
• 1η ≥ −                        
• 0>q                                  
• 0>mp                           

We apply the first restriction as 1η < −  would lead to a price function that decreases increasingly. 
The corresponding total costs function q ⋅QDPF of (1) gives information about the ratio between 
fixed and variable costs of a selling organization. We define the total costs function as: 
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The f-factor defined for positive steepness 

Equation (1) can be used in an indicator in the negotiation process for quantity discount 
schedules with a positive price steepness. We name this indicator the f-factor and it can be used 
as one indicator for the space in which to negotiate. For instance, a f-factor score near 0% means 
that almost all costs per item are fixed. This could indicate a low negotiating space concerning 
the purchasing price. We define the f-factor for a certain quantity as: 
 

( )f-factor 1 100%m

m

pq Sp
qη

⎛ ⎞
⎜ ⎟
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                      (3) 

 
The q-factor defined for negative steepness 
 
If for a price function with 1 0η− ≤ <  the quantity range given by the selling organization would 
get extrapolated with our QDPF, then this would finally lead to a negative price. The extrapolated 

point where p(q) and q · p(q) would become 0 concerns QDPF 0m
Sp
qη= + = . Rewriting this 

equation leads to (see also figure 2): 
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The point after which the total costs q · p(q) would decrease can also be defined. This point 

q∗∗ occurs always before q∗  and can be calculated by differentiating TC m
Sq p
qη

⎛ ⎞
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⎝ ⎠
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Figure 2. Examples of Different Quantity Discount Schedules and Related Total Costs 

Equation (5) can be used in an indicator for the negotiation process for discount schedules with a 
negative steepness. We name this indicator the q-factor and it can be used as one indicator for the 
space in which to negotiate. For instance, a q-factor score near 1 could indicate a low negotiating 
space concerning the purchasing price. We define the q-factor for a certain quantity as: 
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Demand elasticity of price defined 

A measurement for demand elasticity of price as pE =  %
%

change in price
change in quantity purchased

 is of 

little use, as such a measure could vary at every point along a price curve. To find an alternative 
measure we could use one or more of the three parameters in our QDPF. The spread and the 
minimum or maximum price however only scale quantity discounts. The steepness is the main 
characterizing parameter of quantity discounts. We therefore propose that the best measure for 

pE  is the steepness η  of quantity discounts.  
 
Empirical methodology  
 
We are aware that some researchers proposed more complex quantity discount functions than our 
QDPF (e.g. Lee and Rosenblatt, 1986; Dada and Srikanth, 1987). However, more complex does 
not always mean better. To prove that our QDPF is reliable we test if it is able to give a reliable 
approximation of different discount schedules found in academic papers (Dolan, 1987; Lal and 
Staelin; 1984), actual offers provided to purchasing groups, and internet stores. The internet price 
schedules were picked by Google searches on the keyword “quantity discounts” for different 
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products. None of the products had exceptional discounts for e.g. marketing reasons. Some 
product groups occur more often in our selection than others. As the schedule properties within 
groups can differ significantly we used all products in our analysis. 
All of the different gradual types of discount schedules described in the introduction of this paper 
are incorporated in the discount schedules analyzed. After we had found all different gradual 
types we stopped collecting and analyzing new discount schedules, leaving a total number of 66 
discount schedules.   
When we approximate gradual discount schedules with a continuous QDPF we assume that the 
price given by the supplier for a certain range applies to the lowest quantity in this range. For 
instance, when a price of 400 applies to 50-99 items, and a price of 300 applies to 100-199 items, 
we assume that a price of 400 applies to 50 items and a price of 300 applies to 100 items. As 
mentioned before, the selling organization does not give the exact prices for 51-99 items, but we 
assume that while negotiating in most cases a lower price than 400 can be obtained. We 
approximated the three parameters in our QDPF in MatLab with an exact algorithm and several 
nonlinear least squares algorithms: 
• Gauss-Newton (Dennis and Schnabel, 1983; Foresee and Hagan, 1997); 
• Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963; Moré and Sorensen, 1983); 
• Trusted region (Branch et al., 1999; Byrd  et al., 1988; Coleman and Verma, 2001; Steihaug, 

1983; Sorensen, 1994); 

in combination with no method or with the following robust fitting methods: 
• Bisquare (DuMouchel and O'Brien, 1989); 
• Least absolute residuals (Meyer and Glauber, 1964). 

As an exact algorithm exceeds an acceptable calculation time, we used the Levenberg-Marquardt 
algorithm in combination with the least absolute residuals method. Without going into detail we 
claim that this combination most frequently gives the most reliable results for our QDPF. Five 
exceptions occurred where the Levenberg-Marquardt algorithm created a minimum price 
somewhat smaller than zero for an infinite quantity. Here we applied the trusted region algorithm 
with lower and upper bounds for the minimum price.   
See table 1 and 2 for an example of how we approximate the QDPF parameters from a quantity 
discount schedule with six price breaks based on one described by Dolan (1987). The discount 
schedule on its own in table 1 does not provide underlying information. The QDPF values in 
table 2 do provide useful information for buying organizations.  
 
Quantity  
Given by Supplier 

Price  
Given by Supplier  

Quantity Used for 
our Approximation 

Approximated Price 
with our QDPF 

 

1.000 – 5.000           $ 50,00       1.000          € 50,03  
5.000 – 10.000              45,40       5.000 43,92  
10.000 – 30.000              40,90       10.000 41,62  
30.000 – 50.000              38,10       30.000 38,32  
50.000 – 200.000              37,05       50.000 36,91  
200.000 and more              33,50       200.000 33,49  
Note: The R2 of our approximation equals 0,991, the adjusted R2 = 0,986, and the Root Mean Squared Error (RMSE) = 0,718.  

With all prices being multiplied with x, pm will also be multiplied with x. S and η will stay the same.  
Multiplying all quantities with x affects only S. 

Table 1. Example of an Approximation of a Quantity Discount Schedule  



Parameter Description Value Application 
p(1) 
p(7.500) 

• Theoretical Maximum Price (q = 1) 
• Deviant Quantity (q = 4.000) 

$ 93,50
$ 42,83

• Calculate Deviant Quantity Prices for 
Supplier Comparisons, Negotiating Spaces, 
Purchasing Groups, and Multiple Sourcing 
Decisions 

pm =  p(∞) Theoretical Minimum Price (q = ∞) $ 13,37 • Compare Supplier Offers 
• Indicate Negotiating Spaces 

S Theoretical Spread  $ 80,13 • Compare Supplier Offers 
• Indicate Negotiating Spaces 

η Theoretical Steepness    0,113 • Characterization of Quantity Discounts  
• Indicate Fairness of Certain Allocation 

Method 

f-factor 
(200.000) 

f-factor (q =200.000) % 60 • Compare Supplier Offers 
• Indicate Negotiating Spaces 

Application for a Purchasing Group in which 2 Partners 
Pay an Equal Price of $ 50,00 to 1 Supplier: 
• Savings Partner A with q = 200: 200 · (p(200) – 50,00) 
• Savings Partner B with q = 800: 800 · (p(800) – 50,00) 

$ 1.460
$ 748

• Allocate Price Savings for Deviant Quantity 
Prices 

Table 2. Examples and Applications of the QDPF Parameters  

Empirical findings  

In this section we aim to achieve our second objective and partly our third objective. First, we 
give a description of the data set analyzed. Second, we test and discuss the reliability of our 
general QDPF for all different types of gradual discount schedules. Third, we describe several 
QDPF parameter and indicator values of the discount schedules analyzed.   
 
Description of the data set 
 
The basic properties of our data set are described in table 3. The first two columns of table 3 give 
the properties related to the number of price breaks in the gradual discount schedules analyzed. 
The table shows that there is quite some variety in the number of price breaks. Note that we did 
not take schedules into account with only two price breaks.  
 
Number of Price Breaks  Value  ( )minp q and ( )maxp q  Difference Value 

Mean Number 4,91*  Mean Difference % 24,5* 
Median Number  5*  Minimum Difference % 1,82  
Minimum Number 3  Maximum Difference % 90,1 
Maximum Number  11   Standard Deviation % 21,0* 
Standard Deviation 1,65*  Skewness of Distribution      0,82* 
Skewness of Distribution 1,18*    
Total Number of Prices 320    
Note:  n = 65 

The price break measures are corrected by removing 2 schedules with an infinite number of breaks  
* corrected by removing double products from the same product group  

Table 3. Number of Price Breaks  and Differences between Maximum and Minimum Prices 



The last two columns of table 3 give the properties of our data set regarding the difference 
between the maximum price ( )maxp q  and minimum price ( )minp q  in the discount schedules 

given by the supplier. The difference is formulated as ( ) ( )
( )

max min

max

p q p q
p q

−
. The minimum 

difference that we found applies to notebooks; the maximum differences apply to printed matter 
and mobile phoning costs. The table clearly shows that quantity discounts can have a major 
impact on the total purchasing costs for some product groups. 
One could argue that the higher the number of price breaks is, the larger the difference between 
minimum and maximum prices is. A higher number of price breaks could mean that selling 
organizations provide prices for a wider range. Thus, we hypothesize:  

H1 The higher the number of price breaks is, the larger the difference between the minimum and 
maximum price in a quantity discounts schedule is.  

To test H1 we carried out a one-way ANOVA test. We found however no significant correlation 
for out data set (F = 2,114, p = 0,057).  

Reliability of the QDPF 

Using our continuous QDPF we approximated the 66 gradual discount schedules described in the 
previous section. We aim to achieve our second main objective here, thus we test the following 
hypothesis:   

H2 The general QDPF gives reliable approximations for different types of quantity discount 
schedules. 

Table 4 shows that our price function provides highly reliable approximations for most of the 
data set. Both the minimum and average R2 and the adjusted R2 are very high. The adjusted R2 is 
not significantly lower than the R2. This normally means that no explanatory variable(s) are 
missing. Three modelled schedules had one outlying point explaining for those cases a larger 
difference between the R2 and the adjusted R2. On first sight H2 seems to be supported by our 
data. However, we have to give some marginal comments.  
Not all different quantity schedules can be approximated by our continuous price function 
though. One modelled schedule has a q-factor < 1 for several quantities within the quantity range 
given by the supplier. We assume that such a modelled schedule is not reliable. Here a q-factor < 
1 would mean that the total costs of a tender decrease after a certain point within the quantity 
range of the supplier. Therefore we removed this schedule from our analysis.  
In addition, for five modelled schedules we found a minimum price somewhat smaller than zero 
for an infinite quantity when we did not use lower bounds for the minimum price. Despite the 
fact that the six divergent schedules have a high R2 and adjusted R2, not all the parameter values 
found will be useful to buying organizations. Calculating deviant quantities is still possible 
though.  



Measure  Value
Average R2  0,995
Average Adjusted R2 0,988
Average RMSE  0,642
Minimum R2 0,961
Minimum Adjusted R2 0,913
Maximum RMSE  4,628
Number of Schedules with a  Pm ≤ 0 without Boundaries 5* 
Number of Schedules with a q-factor < 1 1** 
Note:    n = 65 

* applies to schedules with a positive steepness  
** applies to a schedule with a negative steepness  

Table 4. Reliability of the QDPF 
 
Note that the remarkably high values for R2 can partly be explained because there were several 
discount schedules with just three price breaks. Nevertheless, for the other price breaks we found 
a very good match as well. Still, one could argue that the higher the number of price breaks is, the 
lower the value of R2 will be. This is because it might become more difficult to approximate the 
prices of all of the different price break points. Therefore we hypothesize:  

H3 The higher the number of price breaks in a quantity discount schedule is, the lower the 
reliability of the general QDPF is.  

To test whether or not the number of price breaks significantly influences R2 we carried out a 
one-way ANOVA test. We found however no significant correlation for our data set (F = 1,286, 
p = 0,270). Our explanation for the high R2 of all discount schedules is that most of the discount 
schedules given by the selling organizations in our sample seem to have a fairly simple 
underlying basis. In addition, the discount schedules usually have no outliers, but follow a more 
or less logical line. Regardless of the simple basis of the discount schedules there are numerous 
differences between its QDPF parameters. We show this in the next section.  

The QDPF parameters  

In this section we describe some general estimates of QDPF parameter and indicator values for 
several commodities (see table 5 and 6). Note that all of the values in table 5 and 6 still heavily 
depend on our relatively small data set. More specific research will be necessary to find more 
reliable values. Our only objective here is to build a basic foundation for more research.  
In table 5 we show some overall estimates to provide an initial indication of the QDPF 
parameters and indicators and their behaviour. For instance, the steepness of the discount 
schedules analyzed ranges from -1,00 to 1,60. The schedules analyzed with a positive steepness 
(40% of the total number of observations) have a mean of 0,58. Schedules with a negative 
steepness (60% of the observations) have a mean of -0,50. We found five linear schedules (8%) 
with a steepness of exactly -1,00 and one schedule (2%) with a steepness of exactly 1,00.  
 



Positive Steepness  Value  Negative Steepness Value 
Mean Positive Steepness 0,58  Mean Negative Steepness -0,50 
Minimum Positive Steepness 1,60  Minimum Negative Steepness -1,00 
Maximum Positive Steepness 0,04  Maximum Negative Steepness -0,03 
Standard Deviation 0,43  Standard Deviation  0,30 
Skewness of Distribution 0,64  Skewness of Distribution  -0,35 
Mean Minimum Price 246  Mean Maximum Price 121 
Minimum Minimum Price 0,00  Minimum Maximum Price 0,25 
Maximum Minimum Price 2.731  Maximum Maximum Price 1.585 
Standard Deviation 710  Standard Deviation 269 
Skewness of Distribution 3,31  Skewness of Distribution 4,66 
Mean Spread 13.315  Mean Spread -8,06 
Minimum Spread 2,51  Minimum Spread -63,1 
Maximum Spread 121.400  Maximum Spread -0,00 
Standard Deviation 37.360  Standard Deviation 13,8 
Skewness of Distribution 2,60  Skewness of Distribution -2,45 
Mean Min/Max Difference  % 38,0  Mean Min/Max Difference % 25,8 
Minimum Min/Max Difference % 5,92%  Minimum Min/Max Difference % 1,82 
Maximum Min/Max Difference % 90,1  Maximum Min/Max Difference % 50,0 
Standard Deviation % 26,7  Standard Deviation % 15,6 
Skewness of Distribution 0,46  Skewness of Distribution 0,34 
Mean f-factor % 35,5  Mean q-factor 109 
Minimum f-factor % 0,00  Minimum f-factor 1,20 
Maximum f-factor % 100  Maximum q-factor 1.537 
Standard Deviation % 36,8  Standard Deviation 288 
Skewness of Distribution 0,68  Skewness of Distribution 3,89 
Note:  n = 26 for positive steepness, n = 39 for negative steepness 

The price break measures are corrected by removing 2 schedules with an infinite number of breaks  

Tables 5. Positive and Negative Steepness and Related QDPF Parameter and Indicator Values 

Quantity discount schedules with a negative steepness for the given range by selling 
organizations are somewhat peculiar, because extrapolating those leads eventually to negative 
purchasing prices. To try to explain the existence of negative steepness one could argue that there 
is a relationship between steepness and the difference between minimum and maximum prices in 
discount schedules. It could be that negative steepness only exists in discount schedules with a 
small range concerning the minimum and maximum price in its schedule. This is because if the 
range would be larger, the q-factor would approach one and eventually negative prices occur. So, 
for larger ranges concerning the minimum and maximum prices a positive steepness could be 
found. Therefore, we hypothesize: 

H4 Quantity discount schedules with a positive steepness have a higher difference between 
minimum and maximum prices than schedules with a negative steepness.   

 
With an independent samples t-test we analysed the relationship between the difference between 
minimum and maximum prices and negative or positive steepness. We assumed the variances of 
both groups being unequal (Levene’s test p = 0,002) and found a significant correlation (t = -
2,173, df = 37,060, p = 0,036, 2-tailed) supporting H4. Price schedules with a positive steepness 



(mean = 38,0 %) have a significantly higher difference between minimum and maximum prices 
than schedules with a negative steepness (mean = 25,8 %). Therefore we assume that discount 
schedules with a negative steepness only provide prices for relatively low quantities. For a large 
enough quantity all discount schedules will eventually lead to schedules with a positive 
steepness. So, discount schedules with a negative steepness cannot reliably be used for 
extrapolating and calculating prices for larger quantities than given by the supplier’s schedule.  
By removing one or more price breaks from the positive discount schedules we tested if these 
would become negative. This happened in a few cases (20%), but most schedules are based for 
the whole range on a positive steepness. 
 
Commodity ( )minp q and 

( )maxp q  
Difference 

Std. 
Dev. 

Freq. Mean 
Positive 

Steepness 

Std. 
Dev. 

Freq
. 

Mean 
Negative 
Steepness 

Std. 
Dev. 

Printed Matter % 64 % 22 5 0,93 0,23 2 -0,45 0,59 
Paper     26     8 7 0,59 0,36    
Advertisements     29     22 3 0,77 0,81 3 -0,71 0,29 
Software     50     15 1 0,16  3 -0,43 0,50 
Clothing     42     7    3 -0,48 0,43 
Computer Hardware     7     5 1 1,40  2 -0,60 0,57 
Subscriptions     34     10 1 0,12  2 -0,41 0,12 
Mailing Services     13     12    2 -0,45 0,08 
Hosting Services     50     0    2 -0,49 0,29 
Temporary Employment     16     4    2 -0,37 0,31 
Pharmaceuticals     34     19 1 0,41  1 -0,65  
Semiconductors     9     1 2 0,20 0,15    
Mobile Phoning     67     4 2 0,78 0,12    
Entry Tickets     33     1 -1,00  
Food Products     7     1 -0,59  
DVDs and CDs     14     1 -0,36  
Packaging Materials     33  1 0,11     
Other     17     11 2 0,16  14 -0,46  
Total   26 0,58 0,43 39 -0,50 0,30 
Table 6. QDPF Parameter Values for Several Commodities 

Note that the concept of group purchasing might be interesting to consider for commodities with 
a high mean positive steepness and/or a high difference between minimum and maximum prices. 
For instance, the standardized commodities software, subscriptions, and paper in table 6 could be 
interesting commodities for group purchasing. In these commodity markets bundled purchasing 
volumes might have a large impact on the purchasing price. Of course limiting conditions of 
group purchasing have to be taken into account, like trust, commitment, and similar purchasing 
needs. More research will be necessary to confirm our statements. Therefore, we propose: 
 
P1 Group purchasing is profitable in standardized commodity markets with a high mean 

positive steepness and/or a high difference between the minimum and maximum price in a 
quantity discounts schedule.   



Note as well that some markets have similar methods to determine discount schedules. In these 
markets most of the schedules of different selling organizations are alike. Other markets show a 
different behaviour. Here selling organizations differentiate by offering schedules different from 
their competitors. This could for instance be the case for the advertisement commodity where the 
standard deviations are high (see table 6). In such markets it might be interesting to consider a 
larger number of suppliers in the supplier selection process. In the negotiating process there 
might be more negotiating space as well. Hence we propose to verify in further research: 

P2a With the general QDPF commodity markets can be characterized by the extent to which 
selling organizations differentiate by offering more divergent quantity discount schedules.  

P2b In commodity markets where selling organizations differentiate by offering more divergent 
quantity discount schedules it is profitable to consider more suppliers in selection processes. 

P2c In commodity markets where selling organizations differentiate by offering more divergent 
quantity discount schedules there is more space in which to negotiate.  

Limitations and further research 
 
Due to the general character of this paper there are some limitations concerning our analytical 
and empirical results. We already discussed some assumptions and limitations in the paper. Our 
main assumption already discussed is that a continuous QDPF makes a better approximation of 
reality than graduated QDPF. Further case study research among selling and buying 
organizations could be carried out to test whether or not this is actually the case. In such case 
studies it could also be tested whether or not the minimum price of a discount schedule found by 
our QDPF equals the minimum price of the selling organization’s production process. At a larger 
scale it could also be tested if certain discount schedule types exist that cannot be approximated 
by our QDPF. In addition, it could be tested how schedule types influence QDPF parameters and 
indicators. Finally, propositions P1 and P2 could be subject to further research to set up a new 
research line to demand elasticity of price.   
Limitations concerning our analytical findings concern among other things the fact that we only 
considered one continuous type of QDPF. Other equations could be formulated as 

( ) η− ⋅= + ⋅ q
mp q p S e  or ( ) γ η= +mp Sp q

q q
. Another option is to approximate the total costs of a 

purchase with a TC function. The total costs approximation will become more reliable; the 
purchasing prices in this function will however become less reliable. Limitations concerning our 
empirical findings concern among other things the fact that we can only give estimates for the 
specific QDPF parameters and indicators (see table 5 and 6).  
 
Conclusions 
 
Our first main conclusion is that our continuous Quantity Discount Price Function (QDPF) gives 
reliable approximations for most different types of quantity discount schedules. Our QDPF 
consists of three parameters which can be easily derived from all kind of different types of 
quantity discounts. A simple QDPF tool is available at our website 
http://www.bbt.utwente.nl/leerstoelen/bbim.  
The QDPF parameters and indicators as the f-factor and the q-factor have several applications for 
buying organizations (see table 1 and 2 for an example). These parameters and indicators provide 



information about the cost mechanism of suppliers and can therefore be used in among other 
things the supplier selection and negotiation process.  
More research to the QDPF parameters could provide useful information for purchasing groups 
concerning indications for profitable commodities. More general, more research to the QDPF 
parameters could characterize commodity markets. For some characteristic commodity markets it 
could be interesting to consider a larger number of suppliers in the supplier selection process. In 
the negotiating process there could be more space in which to negotiate. The QDPF parameters 
therefore provide a basic foundation for a new research line to unravel demand elasticity of price. 
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