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Abstract

Since the early 1990s, a variety of studies have shown that network traffic, both for local- and wide-area networks, has
self-similar properties. This led to new approaches in network traffic modelling because most traditional traffic approaches
result in the underestimation of performance measures of interest. Instead of developing completely new traffic models, a
number of researchers have proposed to adapt traditional traffic modelling approaches to incorporate aspects of self-similarity.
The motivation for doing so is the hope to be able to reuse techniques and tools that have been developed in the past and with
which experience has been gained. One such approach is the so-calledpseudo-self-similar traffic (PSST)model. This model
is appealing, as it is easy to understand and easily embedded in Markovian performance evaluation studies.

In applying this model in a number of cases, we have perceived various problems which we initially thought were particular
to these specific cases. However, we recently have been able to show that these problems are fundamental to the PSST model.

In this paper we review the PSST model, validate it experimentally and discuss its shortcomings. As far as we know, this
is the first paper that discusses these shortcomings formally. We also report on ongoing work to overcome some of these
problems.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Extensive measurements in the 1990s have revealed the presence of long-term correlations, often
denoted asself-similarity, fractality andlong-range dependency, in network traffic. The seminal paper by
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Leland et al.[27] showed self-similarity in Ethernet traffic. Later, many others revealed similar properties
in wide-area traffic, signalling traffic, high-speed network traffic and in multimedia and video traffic
[6,8–10,14,16,17,31]. Many studies have shown that ignoring theself-similarity in the analysis of systems
leads in general to an underestimation of important performance measures[31]. Additionally, various
studies have shown that the presence of self-similarity is generally associated with the presence of
heavy-tail distributions for certain entities in the network, e.g., for WWW object-size distributions or
silence period lengths[25,26].

Considerable efforts have been undertaken to develop appropriate traffic models to evaluate the per-
formance of systems underlying a self-similar workload, see for instance[5,11,26]. Instead of aiming at
a complete new class of traffic models, for which little analysis means are yet known, many researchers
have tried to capture the self-similarity of network traffic in more traditional Markovian models of some
sort, like Markov-modulated Poisson processes (MMPP). The benefit of using this type of model is the
availability of a large number of techniques and tools for computing performance measures for systems
underlying such a workload.

In this paper, after a brief introduction to self-similarity inSection 2, we focus on the so-called
pseudo-self-similar traffic (PSST) model, as introduced by Robert and Le Boudec[35,36], in Section 3.
This model is both simple and intuitively appealing, however, when applying this model in a number of
cases, we have encountered various shortcomings, on which we report inSection 4. We then show that
these shortcomings are not specific to our case studies, but instead that they are fundamental to the PSST
model inSection 5. As a result,the PSST model in its current form, should not be used for modelling
self-similar traffic. We briefly touch upon a number of other Markovian models for self-similar traffic in
Section 6, before we conclude the paper inSection 7.

2. Self-similarity

Self-similarity is an often-observed phenomenon in nature. It means that the basic structure of an object
or observation can be found at diverse (time) scales. There are many related definitions in the literature
to this term, cf.[5,26,27]; in this paper we adhere to the following definitions.

Definition 1. A stochastic processX = (Xt, t ≥ 0), with t ∈ T (the index set) is called second-order
stationary (or weakly stationary) if:

1. its expectation is constant over time, i.e.,E[Xt] = µ, for all t ∈ T , and
2. its covariance functionγ is shift-invariant, i.e.,γ(Xt1+s, Xt2+s) = γ(Xt1, Xt2) for all s, t1, t2 ∈ T .

Definition 2. An aggregated stochastic processX(m) is obtained from a stochastic processX by
“averaging” over non-overlapping blocks of sizem, that is, fork = 1,2, . . . :

X
(m)

k = 1

m
(Xkm−m+1 + · · · +Xkm).

Note thatX(m) is weakly stationary ifX is weakly stationary.

Definition 3. A stochastic processX = (Xt, t ≥ 0) is called exactly self-similar with Hurst parameter
H if
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X =d m
1−HX(m) for all m = 1,2, . . . . (1)

This definition implies that the aggregated processX(m) is related toX via a simple scaling relationship
involvingH in the sense of finite-dimensional distributions (denoted by=d), cf. [26, Section 1.4.1.2].

Definition 4. The autocorrelation at lagk, denoted asr(k), of the stochastic processX is defined as

r(k) = E[(Xt − µ)(Xt+k − µ)]

var[Xt]
.

Definition 5. A stochastic processX = (Xt, t ≥ 0) is called exactly second-order self-similar if the
aggregated processesX(m) has the same correlation structure asX, that is,

r(m)(k) = r(k) for all m = 1,2, . . . and k = 1,2, . . . ,

wherer(m)(k) denotes the autocorrelation function at lagk of the aggregated processX(m) andr(k) denotes
the autocorrelation function at lagk of the original stochastic processX.

Definition 6. A process is called asymptotically second-order self-similar if

r(m)(k) ∼ r(k), m → ∞.

Self-similar processes have the so-called property oflong-range dependency, i.e., the autocorrelation
function decays hyperbolically. This implies that

∑
k r(k) → ∞. In contrast,short-range dependency

implies an exponentially decaying autocorrelation function for which
∑

k r(k) < ∞.
The Hurst parameter definesthe degree of self-similarity and expresses the rate of decay of the auto-

correlation function. From(1) we obtain (for details, see[26, Section 1.4.1.2]):

var[X(m)] ∼ αm−β, β = 2 − 2H, 0 < β < 1. (2)

There are various methods to identify self-similar processes, such as R/S-analysis, Whittle’s maximum-
likelihood estimator, or the variance-time plot method[17,27]. For the purpose of this paper, it suffices
to use the variance-time plot method. This method estimates the Hurst parameterH from a graph of
var[X(m)] versusm, plotted on a log–log scale. An example of such a variance-time plot is given inFig. 2,
which will be discussed later. From(2), we derive that

log(var[X(m)]) ∼ logα− β logm,

so thatβ emerges as the negative gradient in the variance-time plot. Using a linear regression technique
on this plot, we can estimateβ and, hence,H .

3. The PSST model

We describe the PSST model as introduced in[35,36] in Section 3.1, and discuss the computation of
its parameters inSection 3.2. A continuous-time variant of the model is presented inSection 3.3.
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Fig. 1. The state-transition diagram for the modulating Markov chain of the PSST model.

3.1. Model definition

Model description. The PSST model attempts to characterise traffic self-similarity by the use of
a discrete-time Markov-modulated Bernoulli process (MMBP), i.e., the discrete-time analogue of a
Markov-modulated Poisson process. The modulating Markov chain hasn states, numbered 0 through
n − 1. Its corresponding state-transition diagram is depicted inFig. 1and its one-step transition proba-
bility matrix is given as

A =




Σ0
1

a

1

a2
· · · 1

an−1

q

a
Σ1 0 · · · 0

(q
a

)2
0 Σ2 · · · 0

...
...

...
. . .

...(q
a

)n−1
0 0 · · · Σn−1




with Σ0 = 1 − (1/a) − (1/a2) − · · · − (1/an−1) andΣi = 1 − (q/a)i, for i = 1, . . . , n − 1. At every
discrete-time step, a state transition, possibly a self-loop, takes place in the modulating chain. Only upon
entry in state 0 a packet arrival takes place.

As can be observed, the PSST model is completely specified by the three parametersq, n anda. This
makes the model attractive, as it requires only three parameters to be set, e.g., based on some fitting
procedure. Notice, however, that the parametersa andq need to fulfil certain conditions so thatA is
indeed a stochastic matrix describing a discrete-time Markov chain:q, a > 0, q ≤ a anda such that
0 ≤ A0,0 ≤ 1.

In the sequel, we denote withAk
i,j the entry in rowi and columnj of Ak. We furthermore define

N = (Nt, t ∈ N) as the discrete-time stochastic process describing the number of arrivals over time, as
described by the MMBP.

Moments. Using the notation and terminology of the MMPP cookbook[38], we can derive the following
results for the first and second moment of the number of arrivalsN in an interval of length 1, i.e., per
discrete-time step:

E[N] = π�e and E[N2] = π�2e, (3)
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where

• π is the steady-state solution of the ergodic DTMC given byA, that is,π = πA and
∑

i πi = 1; it can
easily be shown (by substitution) that

π = (π0, . . . , πn−1) = 1 − 1/q

1 − 1/qn

(
1,

1

q
, . . . ,

1

qn−1

)
;

• e = (1,1, . . . ,1)T, a column vector of just 1’s;
• and the(n× n)-matrix� has the simple form

� =




1 0 · · ·
0 0 · · ·
...

...
. . .


 .

Notice that(3) is in a form typical for Markov-modulated arrival processes[38]. However, given the
above explicit expressions forπ and�, we can generalise and reduce(3) as follows. Thekth moment of
the number of packet arrivals per unit time is given as

E[Nk] = E[N] = 1 − 1/q

1 − 1/qn
= π0. (4)

Note that the first moment ofN can also easily be derived in the following way: an arrival takes place with
probability 1, whenever the current statei is occupied (with happens, on the long run, with probability
πi) and the next state is state 0 (which happens with transition probabilityAi,0). Hence, we haveE[N] =∑n−1

i=0 πiAi,0 which, after simple manipulations, indeed yieldsπ0.
Aggregated process. Them-aggregated processN(m) = (N

(m)
t , t ≥ 0) is introduced, defined as the

average number of arrivals overm successive intervals (precedingt):

N
(m)
t = 1

m
(Nt−m+1 +Nt−m+2 + · · · +Nt), t > m.

SinceN is second-order stationary, we obtain for the first moment ofN
(m)
t :

E[N(m)
t ] = E[N(m)] = E[N].

For the variance ofN(m)
t , we follow the definition, that is, var[N(m)

t ] = var[N(m)] = E[(N(m))2] −
E[N(m)]2, which can be reduced to[35,36]:

var[N(m)] = 1

m
E[N2] − E[N]2 + 2

m2

m−1∑
i=1

(m− i)π�Ai�e. (5)

The matrix�Ai� is an(n×n)-matrix consisting completely of zeroes except for the non-zero entryAi
0,0

in the upper left corner. An explicit expression for the autocorrelation of them-aggregated process at lag
k, that is,r(m)(k), cannot be easily obtained. Finally, note that the expressions forE[N] and var[N(m)] in
[36] contain typographical errors.
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3.2. Computation of the parameters n, q and a

In this section we assume that the expectationE[N], the variance var[N(m)], and the Hurst parameterH
of the process under study are known, that is, they have been obtained from a trace using some estimation
procedure. Given these (required) workload parameters, we describe how the model parametersn, q and
a for the PSST can be computed. Note that the iterative recipe given below has been proposed in[36]; its
simplicity makes it attractive to use. It is not the aim of the current paper to improve on this scheme:

• Computation of n. The value forn is chosen by experience. It is suggested that values aroundn = 6
give good results in most cases[35,36]. We used similar values in our experiments[3,11,30].

• Computation of q. The Newton iterative method is used to solve the non-linearequation (4)in order to
computeq from a known estimate forE[N] and givenn.

• Computation of a. Assume that the Hurst parameterH of the measured workload has been estimated
from the log–log plot of var[N(m)] againstm, for instance using a least-squares fitting procedure. From
(5) we see that var[N(m)] depends, via the entryAi

0,0 in the summation, on the actual value ofa. Thus,
implicitly a functionV(a) is defined that yields, for givena, the function of var[N(m)] againstm. Hence,
for a starting valuêa, we can estimate the negative gradient of log var[N(m)] against logm, giving β̂
andĤ (estimates forβ andH , respectively). IfĤ differs from the measured value forH , we compute a
next estimate for̂a, using an interval splitting procedure, and iterate until we have achieved the desired
accuracy. We do not address the issue of uniqueness of the found values.

We illustrate this procedure inSection 4.

3.3. Continuous-time variant

In this section we derive an alternative representation of the PSST model as a phase-type renewal
process[29]. We use that representation for transforming the approach to the continuous-time domain,
so that numerical analysis tools for the evaluation of continuous-time Markov chains can be applied as
well.

Phase-type representation. As the PSST model generates packet arrivals only upon entering state 0, the
PSST arrival process forms a renewal process. Due to the Markovian nature of the modulating process, the
renewal time can be described as time to absorption (towards state 0) in an absorbing Markov chain, i.e.,
as a phase-type distribution. That phase-type distribution is easily obtained by replacing all transitions to
state 0 by transitions to a new absorbing state, and by setting the initial probability for state 0 equal to 1,
resulting in the representation (for background on this notation, see[29, Eq. (2.2.8)]):

T =




0
1

a

1

a2
· · · 1

an−1

0 Σ1 0 · · · 0

0 0 Σ2 · · · 0

...
...

...
. . .

...

0 0 0 · · · Σn−1



,
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with initial probability vectorα = (1,0, . . . ,0). Using standard results for phase-type distributions,
higher moments of the PSST interarrival time distribution can easily be obtained. Due to its phase-type
nature, we refer to the corresponding arrival process as pseudo-self-similar phase-type process (PSSP).

Continuous-time variant. An PSSP can be derived from a PSST model by transforming the discrete-time
phase-type distribution to the continuous-time domain, replacingP by a transition rate matrixQ = [qi,j].
In [3,11], two approaches were investigated for obtainingQ: (i) by matching the mean sojourn times in
each state of the phase-type distribution, thereby settingQ := P − I, or (ii) by matching the sojourn
times’ probability distribution functions in the discrete- and continuous-time domains at integer points,
requiring 1− eqi,it = 1 − (1 − pi,i)

t, thusqi,i = ln(pi,i), and choosing the remaining rates to reflect the
original transition probabilities. As the latter approach changes the PSSPs traffic intensity, it has not been
followed further, however.

Using the first approach to derive a (continuous-time) PSSP representation, matrix-geometric methods
(and tools supporting such methods) for the numerical analysis of continuous-time Markov chains can
be employed to evaluate queueing models of PSSP|MAP|1 type, i.e., a PSSP as arrival process, a single
server and Markov-modulated service times. We resorted to the tool SPN2MGM[20,21] to perform
several case studies, where we observed a number of peculiarities (see next section) that led to the current
paper.

4. Application

In Section 4.1we show how well the PSST model performs when matching its parameters to data
obtained from measurements. We then apply, inSection 4.2, the PSST model in queueing analyses.

4.1. Fitting the PSST model to traces

For the experiments in the current paper, we have used two different data trace:

• The access traces from theRWTH sunsite web-server already examined in[3]. It contains the log entries
of approximately 640,000 accesses to the server and was collected during two weeks in 1998. For that
trace, the mean time between arriving requests was 1.459 s (hence,E[N] = 0.685) and we computed
a Hurst parameterH = 0.927.

• TheDEC WWW access logfiles [12] with approximately 15×106 events, having a mean interarrival time
of about 0.0761 s and a Hurst parameterH = 0.99. Taking as time basis 1 ms, we see 13.1 arrivals/s,
and, hence,E[N] = 0.0131 (arrivals/ms).

First of all, for both traces we invariably found that with moderaten (always less than 10), we could
fit E[N] as well as the Hurst parameterH accurately, i.e., with relative errors smaller than 0.1%, using
the procedure outlined inSection 3.2. The parameters found, forn = 4, 6, 8 and 10 states, are listed in
Table 1. For both traces, notice the large values ofa that appear; these results in Markovian models that
are stiff, and hence, difficult to solve numerically.

We also invariably observed a rather large difference between theabsolute value of var[N(m)] of the
model, in comparison with similar metrics directly obtained from the measurements. As an example of
such a difference, observeFig. 2, in which we graphically display var[N(m)] againstm (on a log–log
scale), for both traces and their corresponding PSST models.
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Table 1
Parameters of the PSSTs

n RWTH DEC

q a q a

4 3.10658 6304.83 0.260535 4.53e+ 06
6 3.17248 6173.44 0.477608 4.35e+ 06
8 3.17859 6173.44 0.615499 4.25e+ 06

10 3.17921 6173.44 0.705391 4.15e+ 06
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Fig. 2. Comparison between the effective value of the variance var[N(m)] (from the traces) and the results obtained from the
PSST models as a function of the parameterm for different values ofa. (a) Sunsite trace,n = 4, q = 3.10658; (b) DEC trace,
n = 4, q = 0.260535.
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The curves obtained fora = 6304.83 (sunsite trace), resp.a = 4.53e+ 06 (DEC trace) are nearly
parallel to the curves for the real traces, i.e., the Hurst parameter is well estimated, but the absolute values
differ considerably. Thus, even though the PSST model allows for a good fit ofH andE[N], a good fit
for var[N(m)] is not necessarily the case. As already described in[3,30], we think the bad variance fit is
responsible for the bad queueing performance predictions made with the model.

4.2. The PSST model in queueing analyses

In this section we investigate to which extent PSSPs are an appropriate substitute for real traffic as far
as the performance measures obtained in a model-based evaluation are concerned. This question is par-
ticularly interesting since such a modelling-oriented validation has, surprisingly,not been accomplished
for the original approach, when suggested in[35,36].

Our investigation is based on a comparison study for a simple queueing system. In order to minimise
the impact of the service process on our study, we consider a system where arriving jobs are subject to
exponential services. Taking real traffic measurements as starting point, we first derive performance figures
using trace-driven simulation. We then compare these results to a numerical analysis of the PSSP|M|1
model that results from matching the trace with a PSSP.

Tool environment. For the simulation study, a custom-developed simulation package has been used
which is capable to process roughly 106 events/s.

For the numerical analysis of the PSSP|M|1 model, we developed an infinite-state stochastic Petri net
(iSPN) model[30]. iSPNs have been designed to simplify the specification of Markovian quasi-birth-and-
death processes, which arise in many queueing scenarios (all MAP|MAP|1 models, and thus also the
PSSP|M|1 model, are covered). The key difference to “normal” SPNs is the introduction of an unbounded
place that can hold an arbitrary number of tokens, and which essentially keeps track of the number of
jobs waiting to be served. The iSPN for a PSSP|M|1 model, withn = 4, is shown inFig. 3; the iSPN
clearly resembles the modulating Markov chain inFig. 1.

For the specification and numerical evaluation of the PSSP|M|1 model, the tool SPN2MGM has been
used. SPN2MGM allows to derive reward-based performance measure from iSPNs by applying efficient
solution algorithms to solve the underlying quasi-birth-and-death Markov chains (QBDs). For further
details on iSPNs, we refer to[20,21,30].

Numerical results. We first note that the large differences in transition rates in the PSSP lead quickly
to stiff Markov chains; this is especially the case for large values ofa. In many cases, ill-conditioned
boundary equations did not even allow to numerically derive the QBDs steady-state solution, even when
the QBDs were small. For the examples inTable 1, the minimum and maximum transition rates in the
PSSP differ by factors as large as 2.5× 1011 (sunsite,n = 4 states) and 8.4× 1060 (DEC,n = 10 states).
Only for the “sunsite,n = 4 states” parameter combination accurate and reliable numerical results could
be obtained.

For that parameter combination,Fig. 4 depicts the mean number of queued customers E[L] in the
PSSP|M|1 system for different traffic intensity levels (obtained by varying the service rate). It can be
observed that the PSSP model yields much too optimistic results most of the time, with mean buffer
occupancies being orders of magnitude smaller than those derived by the trace-driven simulation. Fur-
thermore, the PSSP model is not capable to capture the impact of the traffic intensity on the mean buffer
size in a qualitatively correct manner; at higher traffic intensities, the effect of the traffic intensity on the
mean buffer length becomes stronger for PSSPs, which is in contrast to the simulation case.
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Fig. 3. The iSPN for a PSSP|M|1 system with arrivals according to a four-state PSSP.

Except for extremely large traffic intensities, this dramatic discrepancy can be explained by looking
at the queue-length distribution in both the trace-driven simulation and the numerical solution. For an
example traffic intensity level of 0.6, it can be observed inFig. 5(a) that the probability of small queue
lengths is much larger in the PSSP case than for the real trace, except for queue lengths 0 and 1. In strong
contrast to this, for queue lengths larger than about 100 (seeFig. 5(b)), the probabilities quickly approach

Fig. 4. The mean buffer size at different saturation levels (sunsite,n = 4).
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Fig. 5. Queue length distribution of the PSSP|M|1 sample system at traffic intensity 0.6 for queue lengthsl: (a) up to 20, and (b)
over 100 (sunsite,n = 4).

zero in the PSSP case, but they remain much larger for the original trace. Evidently, the heavy-tail of the
queue length distribution in the simulation leads to much higher mean queue lengths than in the PSSP
case. We have found the same behaviour for other traces as well[11]. Note that the observed slow decay
of the queue length distribution tail for self-similar traffic is in accordance with the theoretical results in
[7,13].

As second reason for the largely differing results we found that the PSSP approach is only capable to
match the Hurst parameter and the first moment of the interarrival time distribution; however, higher-order
statistics usually heavily impact the performance of a queueing system as well. This can be clearly seen
when examining the transient behaviour of the PSSP|M|1 system.

Transient behaviour. To examine its transient behaviour, we also simulated the iSPN for the PSSP|M|1
system.Fig. 6 exemplarily shows the evolution of the queue length for the PSSP|M|1 model as well as
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Fig. 6. Queue length evolution over time at traffic intensity 0.75.

for the trace-driven·|M|1 queue as recorded during one simulation run at traffic intensity 0.75. It seems
that the PSSP is able to match the general character of the trace data: both curves show sudden increases
of the queue length stemming from bursts in the arrival process. However, the curves also show that the
variations produced by the PSSP model are much smaller and shorter. Although both queues experience
the same traffic intensity, the trace-driven simulation results in peak queue lengths ten times higher than
found in the PSSP simulation. We think that this directly follows from the mismatch of higher-order
statistics by the PSSP model.

5. Formal validation

In this section we analyse the PSST model in more detail in order to find the cause for the differences
in variance and the misleading queueing performance as illustrated in the previous section.

By simplifying (5), using the fact thatE[Nk] = E[N] for all k ≥ 1 (cf. (4)), and exploiting the special
structure of�, we obtain an efficient method to compute var[N(m)] for various values ofm:

var[N(m)] = 1

m
E[N2] − E[N]2 + 2

m2
E[N]

m−1∑
i=1

(m− i)Ai
0,0

= E[N]

m

(
1 + 2

m

m−1∑
i=1

(m− i)Ai
0,0

)
− E[N]2. (6)
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Fig. 7. var[N(m)] as a function ofa, as derived from the PSST model. (a) Sunsite trace,n = 4, q = 3.10658; (b) DEC trace,
n = 4, q = 0.260535.

Note that in order to compute var[N(m)] we only need to compute the first column of the matrices
Ai (i = 1, . . . , m − 2) and not the complete matricesAi for all i = 1, . . . , m − 1. This implies an
important reduction in computational complexity, especially seen in light of the fact that var[N(m)] has
to be computed repeatedly in the iterative procedure to computea (cf. Section 3.2).

Let us now discuss the relation between var[N(m)], a andm. To do so, we first consider var[N(m)] as a
function ofa for three fixed values ofm as given inFig. 7 (where a change ofa incurs a change ofH ,
but that does not bother us at this point).

As can be observed, var[N(m)] monotonously increases witha, however, seemingly towards an upper
bound somewhere between 0.20 and 0.25 for the sunsite PSSP model resp. 0.13 for the DEC PSSP model.
It can indeed be proven that this upperbound exists and that it is reached fora → ∞. To do so, we proceed
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in two steps:

1. We first prove var[N(m)] ≤ E[N]−E[N]2. SinceA is a stochastic matrix we always have 0≤ Ai
0,0 ≤ 1.

Eq. (6)shows that var[N(m)] is linearly dependent onAi
0,0, with positive coefficientm− i, so that we

obtain an upper bound for var[N(m)] by settingAi
0,0 to 1:

var[N(m)] ≤ E[N]

m

(
1 + 2

m

m−1∑
i=1

(m− i) · 1

)
− E[N]2

= E[N]

m

(
1 + 2

m

m(m− 1)

2

)
− E[N]2 = E[N] − E[N]2.

2. We now prove lima→∞ var[N(m)] = E[N] −E[N]2. We now rewrite the right-hand side ofEq. (6)as
follows:

var[N(m)] = E[N]

m

(
1 + 2

m

m−1∑
i=1

(m− i) lim
a→∞ Ai

0,0

)
− E[N]2,

in which we can bound the termAi
0,0 by 1, so that we obtain

var[N(m)] = E[N]

m

(
1 + 2

m

m−1∑
i=1

(m− i) · 1

)
− E[N]2.

Using the same transformation as before, we can rewrite this intoE[N] − E[N]2.

We thus have proved the following theorem.

Theorem 1. In the PSSP model, as defined in Section 3, var[N(m)] is bounded (from above) by E[N] −
E[N]2. The limiting value is reached for m → ∞.

The limiting value of var[N(m)] = E[N] − E[N]2 can be further reduced using(4) as follows:

lim
a→∞ var[N(m)] = E[N] − E[N]2 = E[N]

q

(
1 − 1/qn−1

1 − 1/qn

)
≈ E[N]

q
, (7)

where the approximation can be understood from the fact that the ratio(1− 1/qn−1)/(1− 1/qn) is close
to 1, forq ≥ 2 andn not too small. This fact is illustrated inFig. 8 in which we show this ratio (upper
three curves), as a function ofq, for three values ofn. In the same figure, we also show for the same three
values ofn, E[N] as a function ofq (lower three curves).Fig. 8 should now be read as follows. For a
given scenario, pick the valueE[N] that has to be modelled on they-axis. Find the corresponding value
of q to this value. For the thus found value ofq, the ratio can be read from the set of upper curves. As it
is clear from the figure, forE[N] ≥ 0.65, we findq ≥ 3, so that the ratio is very close to 1.

The upper bound for var[N(m)] is of the formU(x) = x − x2, with x = E[N]. The functionU(x), a
parabola, achieves its maximum atx = 1/2, beingU(1/2) = 1/4. Moreover, in our casex = E[N],
which takes values between 0 and 1. Hence, var[N(m)] is always non-negative, as required. Furthermore,
if E[N] �= (1/2), U(E[N]) < 1/4. For the sunsite trace, we haveE[N] = 0.685, so that var[N(m)] must
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Fig. 8. Ratio (1 − 1/qn−1)/(1 − 1/qn) (upper three curves) and E[N] (lower three curves) as a function of q, for n = 6, 7 and 8.

be bounded by U(0.685) = 0.216, which is indeed the case, as can be observed in Fig. 7(a). Similarly,
for the DEC trace, we find (on the 1 ms time scale): E[N] = 0.0131, and so U(0.0131) = 0.0129 which
indeed is confirmed in Fig. 7(b). Thus, we have proven the following theorem.

Theorem 2. In the PSSP model, var[N(m)] ≤ 1/4.

Recalling thatE[N] can be interpreted as the traffic intensity generated by the PSST model, we note that
for large traffic intensities, that is, E[N] close to 1, the maximum achieved variance var[N(m)] becomes
smaller and smaller.

In conclusion, we have formally derived that even though the PSST model does allow for the correct
fitting of both E[N] and H , values of var[N(m)] larger than 1/4 cannot be obtained with it. Moreover,
under high load conditions where E[N] comes close to 1, var[N(m)] will have to approach 0. For these
reasons, we suggest not to use the PSST model in any modelling study.

6. Alternative models and fitting procedures

In the previous section we have shown that the PSST model has its shortcomings in modelling
self-similar traffic. Nevertheless, the idea of adequately modelling self-similar traffic using Markovian
models remains appealing. In this section, we briefly touch upon a number of recent approaches in this
direction, without aiming at completeness.

Early work on fitting MMPPs. As early as 1986, Heffes and Lucantoni reported on a procedure to match
the four parameters of a two-state MMPP to interarrival measurements [22]. As parameters to be matched
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they proposed the mean arrival rate, the variance to mean ratio of the number of arrivals in the interval
[0, t) and in the long-term interval [0, t)t→∞, as well as the third moment of the number of arrivals in a
limited interval. The authors report good queueing performance when the model is applied for packetised
voice sources.

In this context also the work of Meier-Hellstern and Fischer [28,38] on fitting Markov-modulated arrival
processes should be mentioned. In [28] a maximum-likelihood optimisation is used for the transition
density matrix.

In 1991, Gusella [19] reported on similar work, in which he proposed to use the index of dispersion
for counts and the index of dispersion for intervals as parameters to match.

Notice that these papers did appear before the notions of self-similarity, long-range dependence and
heavy-tail distributions had become apparent in the context of network traffic modelling.

Successive superposition of two-state MMPPs. The fitting procedure developed by Andersen and
Nielsen [4] bases on matching of second-order properties of counts (number of arrivals in a certain
interval) between the model and the measurement data. The model comprises superpositioning of a num-
ber of two-state MMPPs. The authors suggest that, typically, the use of four two-state MMPPs (leading
to a 16-state MMPP) suffices to model highly-variable traffic with long-range dependencies. The method
matches five traffic characteristics: the mean arrival rate of the process, the lag-1 correlation, the Hurst
parameter, the number of MMPPs to be superposed and the number of time scales to be taken into consider-
ation. Although the model seems to be acceptable for describing second-order traffic properties, it does not
appear to be suitable to predict queueing behaviour; indeed, the authors argue that the number of the em-
ployed traffic descriptors might not be sufficient for that. Furthermore, the suggested fitting procedure has
the drawback that the number of parameters to be fitted can grow beyond 5, the number of traffic character-
istics being matched. This leaves open the problem of how to deal with the remaining degrees of freedom.

Using hyper-exponentials. Feldmann and Whitt [1] proposed a model and a fitting procedure for
handling heavy-tailed distributions, based on a mixture of hyper-exponentials. Such distributions could
be used to model independent interarrival times. We recently reported on an alternative fitting procedure
for this type of (interarrival time) distribution [32], based on the EM-algorithm [37]. Even when our fitting
procedure is more costly, it allows a far better fit, especially with respect to higher-order characteristics
(variance, skewness). Furthermore, when using these distributions for describing service times in queueing
models, very good performance predictions have been made (when compared to trace-driven simulations).
We still need to extend this work towards interarrival time distributions; in that case, we will also have
to take into account the correlations between successive arrivals. Recently, also Smirni and coworkers
[34] proposed the use of hyper-exponentials for describing heavy-tailed (or “heavy waist” ) distributions,
albeit slightly differently.

Separate treatment of short- and long-range dependence. The fitting method by Horvath et al. [2] is
based on the superpositioning of a phase-type renewal process and an interrupted Poisson process, in
order to capture both long- and short-range dependence. The traffic descriptors to be fitted are the arrival
rate, the index of dispersion for counts I(t) = var[Nt]/E[Nt] (for two different values of t), and the Hurst
parameter. To approximate the heavy-tailed distribution of the interarrival times, a hyper-exponential
distribution is proposed (to be fitted with the algorithm of Feldmann and Whitt [1]). Unfortunately, their
results did not yet show a good fit for the traffic statistics nor for the queue length distribution (in the
analysis of a ·|D|1-queue).

MMPP exhibiting multifractal behaviour. Horvath and Telek [24] recently proposed the use of a special
MMPP with a symmetric n-dimensional cube form, thereby employing the so-called Haar wavelet theory
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[33]. In fact, the composition of the proposed MMPP structure is similar to the generation of the Haar
wavelet transform [23]. Starting at the largest considered time scale, with an arrival rate equal to 1, the
model is generated in an iterative fashion. At the next (finer) time scale, a new cube is generated so that
the structure of the MMPP remains unchanged as well as the behaviour at the previously addressed time
scales. At level n, the MMPP comprises 2n states and has n + 2 parameters, n of which are computed
by minimising the relative errors of the second moment of Haar wavelet coefficients. The other two
remaining parameters are determined by observing the “best-looking” fi t. The proposed model seems to
be useful for approximating the fractal behaviour of the considered trace. Furthermore, good results have
been observed for the queue length distribution, in particular for higher utilisations.

7. Conclusions and outlook

In this paper we have analysed and validated the recently proposed PSST model [36]. Earlier work,
cf. [3,30] only showed empirically that this model is less suitable for use in queueing model evaluations,
even when it does correctly characterise the traffic intensity as well as the Hurst parameter. In the current
paper, we have extended our empirical evaluation of this model, thus making our earlier claim more firm.
Furthermore, we have formally analysed the PSST model and shown, in a case-independent fashion, a
major shortcoming of it, being its inability to capture the variance of the traffic process adequately.

In a broader context, the aim of this paper has been to show that even when traffic models appear to
perform well in a number of cases studies (using a number of traces), these models still have to undergo
a thorough analysis in order to establish what can, and what cannot be described with them. Too often a
model is presented as a good one, on the basis of only a small number of cases (if more than one at all).

As the current paper shows, developing traffic models dealing adequately with self-similarity remains a
big challenge. One of the problems for all the developed models is their generalisation to other scenarios
than those explicitly tested for. In the current paper, we have formally proved that a recently proposed
model does have certain limitations. When proposing new models, it is required to prove that “ such
limitations” are not present; it is currently unclear, however, which limitations, and which not, need to be
considered in such a proof. Other unresolved issues are the selection of the proper traffic characteristics
for the fitting procedures to work with, and the desired quality measures for the fitted model (at the traffic
stream level, or at the level of queue performance).

We finally note that in some recent studies, the issues of heavy-tailedness and long-range dependency
are questioned again [15,18]. Indeed, these authors claim that not so much the tail-behaviour of, for
instance, file-size distributions is important for system performance, but rather their “waist-behaviour” .
Similarly, it is claimed that TCP does only generate strong correlation structures over a limited range of
time scales. These new insights seem to suggest that there is still room for Markovian models, as we have
recently shown [32].
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