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Abstract. The  collocation method combined with a serial expansion of the electric potential 
is presented as an alternative way of solving the boundary integral equations of 
electroencephalography and magnetoencephalography. 

1. Introduction 

In order to use electroencephalography (EEG) andlor magnetoencephalography (MEG) for the 
localisation of active (evokedlspontaneous) areas, a mathematical model is needed to 
describe how the neuronal activity generates a current distribution. This distribution results 
in an electrical potential and a magnetic field. In the model, the shape and the conductivity 
distribution of the head need to be prescribed. Usually it is assumed that a small activated 
area can be described by a current dipole embedded in a conducting medium. 

The electrical potential and the magnetic field can be calculated by solving the Maxwell 
equations within the model. This is called the forward problem. The  localisation of the 
sources is called the inverse problem: everything except the source parameters is known. 
By comparing the measured values of the electrical potentiallmagnetic field with the values 
of the forward problem solution, the source is iteratively moved into such a position that 
the measured data fit the forward solution data optimally. 

In this article a method is described for solving the forward problem (Barnard et a1 1967) 
for a model in which the head consists of homogeneous, isotropic compartments. Usually, 
the standard boundary element method (BEM) is used, but if the difference between the 
conductivities of the cerebraspinal fluid and the skull is assumed to be high, the BEM gives 
rise to numerical problems, making this method inappropriate for the inverse solution. We 
present an alternative method: the shapes of the interfaces separating different tissues are 
given in an analytical two-parameter form. The electrical potential (which is also needed 
for the evaluation of the magnetic field) is expanded in a finite series of independent base 
functions. By increasing the number of parameters in both the surface and potential 
descriptions, the accuracy of the forward solution can be improved. The influence of the 
number of parameters was tested in a spherical made1 because, i n  this simplified case, 
analytical results exist and can be compared with the numerical ones. 

2. The basic formulae 

In order to compute the electromagnetic fields generated by neural currents, it is suff~cient 
to use the Maxwell equations in their quasistatic form, 
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where E denotes the electric field, B the magnetic field and Q a charge distribution. The  
current density J  is divided into two terms, J  = JP + oE, where the primary current JP 
models the cause of the volume currents oE. 

Charge does not accumulate in the tissue, so V .J = 0. By writing E = - V V, we 
obtain a partial differential equation for the potential V 

Once the potential is known, the magnetic field can be calculated from the Biot-Savart law 

where the interval of integration extends over the entire space. This solution also satisfies 
equations (1). 

3. Boundary e lement  formulat ion 

The conductor model consists of layers representing the different tissues, e.g. brain, skull 
and scalp. The boundaries of the compartments are closed and non-intersecting. The  
conductivity o is assumed to be piecewise constant. 

The surfaces will not be discretised, but instead the coordinates on each will be 
presented as continuous two-parametric functions 

r = (x(u,o), y(u,o), z(u,v)) (4) 

n good approximation for x(u, vj arrd y(u, vj is a iirrcai ioiilbiiiaiioii of ioiiip:ix base 
functions 

f,(u, 4 = CP*(u, v )  

x = Re f, (U, v )  

Y = Im L (U, oj 
z = z(u, U) (5) 

For example, all points on a sphere satisfy the relations (5), when f and z are 

fs = C CP., sin(n8) exp(im+) 
n m 

(6) 

Z = Rcos8 

and only the first coeff~cient is non-zero: P,, = R. 
Surhces rermain continuous and differentiable in the aode!. The unknown coeEcients in 
equation (5) will be found by a least-squares fit; a set of sample points is obtained, fur 
example, from MRI images. 

The potential distribution is continuous everywhere, but its gradient, the electric field, 
is not. The normal component of the current density, however, must be continuous across 
the boundaries: 

0-0 v v- = To+ 
1 - . v v +  (7) 

Equations (7) form the boundary conditions for equation (2). 
With these assumptions and conditions it is possible to formulate (2) as an integral 

equation of the potential V (Barnard et a1 1967): 
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When the potential on each surface is expressed as a series (Gonzalez er a1 1989) 

V(r) = C c; qm(r) r E S, 
m 

(9) 

and this representation is inserted into (g), the problem changes into 

(D, + ?+)C c; qm(r) = 2Vo(r) ++C (0; - C: Ijk(Sm ) (10) 
m k k 

where 

In order to determine the unknowns c:, equation (1 1) is evaluated on each surface on a set 
of so-called collocation points. In the case of a two-layer model, the linearised problem 
reduces to 

where the matrix A contains all geometrical information of the problem, while s defines 
the source model. The unknown vector c is solved in a least squares sense 

c = A + s  (14) 

A+ denotes the pseudo-inverse of A. Once the coefficients have been fixed, the potential 
can be extrapolated at any point on a surface. 

For the evaluation of the magnetic field B at a point r, additional integrals of the 
potential distribution will be needed: 

where 

The field component, which a magnetometer measures, is then 

B(r)-e = Bo(r) me + cTQ = B, (r) . e + s T A t T Q  = B,(r)-e + sTD 
(17) 

where e is the unit normal vector of the pick-up loop. The matrix D remains the same as 
long as the measurement point r does not change. If this formulation is used to solve the 
inverse problem of EEG-MEG, on each trial only the source vectors B, and s will have to be 
re-evaluated. 
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4. Features of the method 

It is of practical interest to estimate how many terms in the expansion (9) will be needed 
in order to reach a precision p. T h e  answer, however, depends on the choice of the 
minimisation criterion. If the true potential can be expressed as an infinite series 

where the coefficients a; are known analytically and the base '&' is orthogonal, the finite 
series 

(N are the first coefficients from the infinite series) minimises the least squares error 

Thus a numerical approximation VE, has an error & 2 F 2 .  On the other hand, if the error 
is measured as the maximum pointwise deviation 

E ,  = max l V(r) - VN(r)I 
r 

then G may or may not be the optimal solution, but it is obvious, that its maximum . . ~- A-..:-.:-.. 
pV"'LWL"C U L Y L a L L Y . .  

c; = max lV(r) - VN(r)l 

serves as an upper bound: E ,  2 F,. 
For a concentric-sphere model, the analytic expression of the potential can be found, for 

example, in Nunez (1981). Since the potential distribution is a linear combination of the 
point source potentials, it is enough to construct the error estimate for a current dipole. Due 
to the rotational symmetry, the dipole can always be positioned on the z-axis with its 
moment in the xz plane. 

For a two-layer model the number of base functions and the corresponding accuracy in 
the potential is presented in table 1 for a radial dipole at three depths. The error was 
measured as the deviation at the point (0,0,1), when the dipole was at (O,O,rq) ( c I  error). 

Table I .  The approximate prrcisiu~l p(:y', r Q )  (ii, p;: ce-:) of the pntenri?! Tcr a cuio-!?ye! rphcrlcnl model, in 
which the inner radius was 0.96, uuicr radkirs 1.00 sad :c!atiuc conduai:~iti:a !.O asd 0.05, respectively. The 
radial dipole was set to (0, 0, rQ) and the potential was calculated at (0. 0, 1). N is the number of terms in (9). 

p ,  ) N = 50 N = 70 N = 90 
(%) 

In a sphere model, when the source is close to the brain-skull boundary, at least 70 terms 
are needed to reach 95% accuracy in the potential of the radial dipole. If a tangential 
component is added, N increases easily to 150 on each surface. Even more coefficients will 
be needed in order to compensate for lack of symmetry in a realistic geometry. 
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In practice this means that the matrix A in equation (13) becomes large and ill 
conditioned for numerical computations. It would be preferable to keep the problem size 
small, or at least limited and independent of the dipole position. 

5. Discussion 

The basic reason for the increase of N, when the dipole approaches a boundary, is the 
strongly localised nature of the potential distribution. The linear combination of the base 
functions is required to approximate the potential both at the high-gradient region near the 
source and at the low-gradient area elsewhere. 

In order to improve the solution (9) and yet keep N relatively small, we reformulate the 
problem slightly. It may be possible to approximate the potential on each surface S, by 

where the initial solution W, would contain the strong gradients and place the maximum 
and minimum almost correctly. The  remainder consists of spatial low-frequency terms, 
which improve the numerical solution. The functional form of W is likely to be found from 
the theory for systems of Fredholm integral equations (Pogorzelski 1966). 
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