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Abstract In this paper we investigate the m s p o r t  proses for rigid spherically symmetric 
macromolecules, having a segment densiry distribution falling off as rrA. We calculate the 
rotational and translational diffusion coefficient for P spbaically symmetric polymer and the 
shear viscosiiy for a dilute suspension of these molecules, s m i n g  from a continuum description 
based on the Debye-Brink" equation. Instead of numerid methods for solving equations we 
use peaurhative methods, especially methods from boundary-layer analysis. The calculations 
provide simple analytical formulae for Ule shear viscosity 0. and the translaiional and rotationid 
diffusion coefficients Dr and Dn. The results can also he applied to suspensions of other 
porous objects, such as aggregates of colloidal particles in which D = 3 - A  is called the fractill 
dimension of the aggregate. 

1. Introduction 

Some years ago. a method was developed to calculate the transport properties for 
macromolecules, by applying equations from the theory of porous media 11-51. At that 
time the calculations were performed for porous spheres of constant permeability [4], and 
for the more realistic model of Gaussian coils [Z], to which the stationary Deby+Brinkman 
equation can be applied 

(14 

div v = 0 (16) 
in which P is the average local pressure, v the average local velocity of the solvent, U 
the local velocity of the polymeric material, ?)a the viscosity of a pure solvent and k the 
(local) permeability of the polymeric material. Obviously, if we apply this equation to 
macromolecules, we treat the molecule as a continuum of permeability k(r ) .  

Beside the uniform porous spheres and the Gaussian coils many other types of suspended 
macromolecules or objects are subject to experimental and theoretical research, so it is 
interesting to study the permeation of the solvent into more general porous objects. In a 
recent paper [6] the authors discussed rigid star-like polymer molecules having a segment 
density dishbution n - l/rz. The calculations for these molecules can be done exactly, 
but it can also be shown that perturbative approximations give much simpler results which 
show very reasonable agreement with the exact results. In this paper we calculate aansport 
coefficients for a more general class of polymers with spherical symmetry, having a repeating 
unit distribution which has the form 

70 
k -VP + VOAV - -(v - U) = 0 

n(r)  - r - A .  (2) 
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This type of object occurs not only in polymer physics, but also in recent models of 
aggregates of colloidal particles, in which aggregates are considered to be porous structures 
with a fractal geometry and a power-law density distribution, characterized by a fractal 
dimension usually denoted by D [7]. In these models the permeability of aggregates is 
either neglected [8] or taken to be constant [9]. The origin of the power law in (2) is not 
the subject of this paper, neither do we attempt to calculate all transport properties of these 
suspensions of colloidal aggregates, as they can show very complex rheological behaviour 
as a result of the breaking up of aggregates and the formation of new aggregates, and of the 
interactions between aggregates. These effects can never be described with the equations (I) 
alone. But the one effect of permeation of the solvent into the aggregate, as calculated here, 
may be incorporated in more elaborate theories. 

For reasons of simplicity the type of objects which are decribed by (2) will henceforth 
be called power-law polymers, although the power-law polymer can be any porous object 
with a power-law repeating unit distribution. 

The outline of the paper is as follows. First we consider the segment distribution for 
a power-law polymer more specifically and try to determine the relevant dimensionless 
parameters. Then we calculate, respectively, the rotational diffusion coefficient, the 
translational diffusion coefficient and the shear viscosity for a dilute suspension, which 
is the order of complexity of the calculations. Each section starts with a quick review of 
the basic formulae of the theory on which the calculations are based, but for a detailed 
derivation we refer to a review of fluid flow in porous media [I]. The exact results for the 
special case A = 2 will serve as a check on the results of a perturbative method. 
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2. The power-law polymer: dimensionless parameters 

Suppose we have a macromolecule of M repeating units, where the radial-density 
distribution of repeating units is givefi by n(r) = cr-*. The exponent h is not necessarily 
an integer number. In recent models aggregates of colloidal particles, for instance, are 
assumed to have a fractal structure with fractal dimension D = 3 - h between 1.5 and 3. A 
fractal dimension equal to 3 corresponds to a homogeneous aggregate. The proportionality 
factor c can be found from the normalization condition 

yielding c = (3 - h)M/4zR3-*. 

permeability k ( r )  for flow through a macromolecule can be found from 
From the microscopic theory of Felderhof and Deutch [3] the local hydrodynamic 

where fr is the translational coefficient of friction of a single monomer. If we estimate that 
this coefficient is given by f~ = 67rqoa, which is the translational friction coefficient for an 
impermeable sphere of radius a, the radial permeability for a molecule is found to be given 
by 

with the dimensionless parameter y 
3aM y = -  
2R ' 
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This definition of the parameter y coincides with that of our previous paper [6 ] ,  which 
considers the special case in which the exponent A is equal to 2. The dimensionless 
parameters y and A are the only parameters in the model, beside the molecule radius 
R .  The exponent h is assumed to vary between 0 and 3, while the parameter y is likely 
to be much greater than zero, which can be seen from its definition: the number of times 
the segment radius a ‘fits’ on the total radius R is likely to be much smaller than the total 
number of segments. 

3. The rotational diffusion coefficient 

3.1. Basic equations 

Our first attention is to the rotational diffusion coefficient DR of a power-law polymer 
with a hydrodynamic permeability calculated from (5). We summarize the treatment in [I]. 
The velocity components for a spherically symmetric polymer rotating rigidly with constant 
angular velocity 00 around the z-axis are 

U1 = -my ( 7 4  
U 2  = +@OX (7b) 
u 3 = O .  (74  

The velocity components of the solvent now have to be solved from the set of equations (1). 
The ansatz 

U, (r, B )  = -rw(r) sin B sin B (pa) 
uZ(r,e) =+rw(r)sin6cosB ( W  

solves (l), provided the function w(r) satisfies 

together with the boundary conditions that w ( m )  = 0 and that o(0) is finite. 
Outside the coil the permeability is infinite, and the solution of (9) is 

w(r) = - ARWo r >  R .  (10) r3 
The constant AR must be determined by matching the ‘free’ solution outside the coil (r > R)  
to the solution inside the coil (r c R) .  The rotational diffusion coefficient can be found 
from the solution outside the coil, through the constant AR, by the simple formula 

kg being Boltzmann’s constant and T the temperature. 

3.2. Solutions 

Inserting (5) into (9) yields the equation 

+ -- - - - (3 rw  = -rwo(3 d2 2 d  2 
dr2 r dr r2 

Because of the work reported in 161, where exact results were compared to approximate 
results, we have chosen a perturbative approach to solve our problem. 
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We start by writing (12) in dimensionless form by introducing x = r j R  and w(x) = 
ro(r)/Ro&, yielding 

w(0) = 0 ( 14) 

Zw(1) + w’(1) = 0. (15) 
The prime denotes differentiation with respect to x. The second boundary condition (15) 
follows from’(10) because w and w’ have to be continuous at x = 1. We now introduce 
a small dimensionless parameter E = [(3 - A)y]- l  to make our problem a perturbation 
problem 

1 

This is a singular perturbation problem because the highest derivative is multiplied by the 
small parameter. The zeroth-order solution w(x) = x satisfies the boundary condition at 
x = 0, but can never satisfy the boundary condition at x = 1. This is typical for a boundary 
layer problem. Close to x = 1 the solution develops a boundary layer to meet with the 
boundary condition. We solve this problem using standard techniques [lo]. We divide the 
region x 6 1 in an ‘outer’ region and an ‘inner’ region; the latter is a small environment of 
the boundary x = 1. In fact this inner region is the outer shell of the porous coil, but it is 
called ‘inner’ by convention, because it is inside the boundary layer. For the outer solution 
we try an expansion of the form wout = WO + EWI + E’w~. . . . With this expansion the 
solution is found to be wQUL = x to all orders in E. It is stressed that ‘outer’ refers to the 
region away from x = 1, but certainly inside the porous coil. 

Inside the boundary layer, i.e. close to x = 1,  the outer solution is not correct. We first 
change variables x = 1 - r and then X = t/S, where 6 is a small parameter that measures 
the width of the boundary layer. We define an inner function W(X) = w(1 - SX) that 
satisfies the equation 

(17) 
1 w = ~- 1 

(1 - 6X)h (1 -SX)”-’ . 
E -W”- 2 W’ - 

w)- (6’2 S(1-SX) (1 -6X)’ 
The prime now denotes differentiation with respect to the inner variable X. The reason for 
this substitution is that we expect that inside the boundary layer the solution varies rapidly 
as a function of the normal variable x, but slowly as a function of the inner variable X. 
Setting S = E’’’ is the only choice that provides a working perturbation scheme. This 
choice of S is called the distinguished limit, and renders a differential equation that is ‘as 
rich as possible’. Thus we have a boundary layer of thickness E ’ / ~ .  We now seek solutions 
of the form 

(18) W(X) = wo(x)+8w1(X)+6’W2(X) ... . 
Substituting this series in (17) and comparing equal powers of 6 yields the zeroth-order 
equation 

w; - WO = -1 (19d 
-Wh(O) = o  W b )  

w~(x) = I + co(ex + e-X). (20) 

which is readily solved to give 
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The remaining constant CO must be determined from asymptotic matching of the inner 
solution (20) to the outer solution wouf in a small region of common validity, by taking 
the 'intermediate' limit x + 1, X + 00 and E , ~ , E X ,  S X  +,O. Because the positive 
exponential in the inner solution diverges in the intermediate limit, no match can be attained 
unless CO = 0. Thus the zeroth-order inner solution WO is found to be particularly simple. 

We now recall that the rotational diffusion coefficient is calculated through the constant 
AR in the solution outside the coil. Because of the continuity of the solution at x = 1, 
the coefficient AR is equal to R3W(0) ,  and is thus found to be given by the zeroth-order 
formula 

AR = ~ ~ ( 1  +o(s)). (21) 
From this equation it is seen that the zeroth-order result just equals the result for the 
impermeable sphere. 

To obtain a more accurate formula we need to calculate higher-order solutions. The 
first-order inner solution must be found from 

w ; - w , = x  (2 .2~)  
2 - Wi(0)  = 0 (22b) 

leading to the solution 

W I  ( x )  = -x - 3 ecX + C, (ex + e-') 
Similar asymptotic matching of the inner and outer solutions gives us the remaining constant 
C1 = 0, and an additional term for the coefficient AR 

AR = ~ ~ ( 1 -  3s + o(sZ)). 

AR = R3 [l - 38 + (3 + ah)S2 + O(S3)] . 

(24) 

(25) 

A second-order calculation of the inner function W%(X)  is straightforward and provides 
the next term in the series 

To check this result it should now be compared to the exact results of [6] ,  for the special 
case h = 2, so E = y - ]  and 8 = y-'/*. The exact result for AR can be written as a series 
in l f f i  

~~ 

which is obviously in agreement with (25). 
The rotational diffusion coefficient is then calculated from (11) and (251, 

ks T DE = 
8nqoR3(1 - 3s + ;sz) 

where one should recall that 6 = [(3 - h)y]- ' /z ,  depending both on the parameter h and 
the parameter y .  For large values of y (8 + 0) one recovers the result for an impermeable 
sphere. 

4. The translational diffusion coaent  

4.1. Basic equations 

We now calculate the translational diffusion coefficient 4, using the Debye-Brinkman 
equation. The coefficient of friction for an isolated particle is given by the ratio fi. = IF/uol, 
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where uo is the velocity relative to the fluid, and F the force exerted on the particle by the 
fluid. 

We summarize the basic equations of the treatment of [l]. Consider an isolated power- 
law polymer fixed at the origin and a stationary fluid flow, which would have a constant 
pressure po and a velocity field WO = (0, 0, +UO) in the absence of the polymer. Again, the 
true velocity and pressure fields must be calculated from (I), with the boundary condition 
that the fields will approach the unperturbed fields at large distances from the origin. The 
following ansatz due to Felderhof [4] simplifies the partial differential equation 
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The three unknown radial functions v ,  * and f must be solved from three coupled equations 
4 1 
r k  

*-"+ -*' - -qt + f' = 0 

1 
2r v = -*' (294 

and from the boundary conditions that-@(w) = 1, f(w) = 0, and that e(0) and $(O) must 
be finite. 

The solutions outside the coil, where I l k  vanishes, are readily found 

AT BT @(r)  = 1 - - + - . 
r r 3 '  

From the last equation and (29c) the function U can be calculated. The constants AT and 
BT are determined by the solution inside the coil, because f ,  @, @' and *" have to be 
continuous at r = R. As in the case of rotational diffusion, these solutions outside the 
coil determine the translational diffusion coefficient through the constant AT by the simple 
relation 

4.2. Solutions 

In this subsection we will solve the set of (29) using methods similar to those of section 
(3.2). To simplify the calculations we make the substitution ( = r f .  The equations can now 
be written in dimensionless form with x = r / R ,  @(r) = q ( x )  and ( ( r )  = j ( x ) .  We omit 
the tildes as this will not cause any confusion. Inserting (5) gives the new set of equations 
to be solved for x < 1: 

E *"+-*'+-('--( 4 x x* ' )  - - *=o  x!A 
( x  

with the boundary conditions that ((0) = 0 and *(O) remain finite, and that ( ( x ) ,  $b(x), 
$b'(x) and +"(x) are continuous at x =I.  We have again introduced the small parameter 
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E as E = [(3 - h ) y ] - ] .  In view of the previous calculation and the exact results reported 
in 161 we expect a boundary layer of thickness e"' for this problem. Thus we try to find 
outer solutions @ o ' O U t ( ~ )  and {o.t(x) having series expansions in E ,  and inner solutions Y(X) 
and Z(X) in the region close to x = 1 having series expansions in S = E ' / * .  

We will first consider the outer solutions +o&) and <o.t(x). The set of (33) to zeroth 
order in E is trivial with solution @&) = 0, which is noted to satisfy the boundary 
conditions at x = 0. To find the zeroth-order solution ( ~ ( x )  we must consider the set of 
equations first order in E ,  

1 1 1 
X X X i  
-{A - ,<o - -*I = 0 

(34b) 
2 h 

X X i  

1 2+A ~~ 

<; - +o + -*I = 0 .  

<; + Id - 7 $-o=o. 

From this set of equations @I can be eliminated to yield an equation for Jb alone 

(35) 

This equation is solved by trying a solution of the form <&) - xa,  giving two possible 
values of the exponent ci, 

- (36) 

As one of the roots is negative it must be discarded because of the boundary conditions 
at x = 0, and we find the solution <&) = COurx", with ci the positive root and CO, a 
constant. With more calculations the higher-order functions can be found, but we will not 
need those for our purposes. 

To determine the inner solution, i.e. the solution in the boundary layer at the edge of 
the porous sphere, we make the change in variables x = 1 - SX, (8 = E'/'). We introduce 
the functions of the inner variable X as W(X) = @((I - x)/S) and Z(X) = <((1 - x ) / S ) ,  
obeying the following equations: 

1 - h f 2/A2 + 2A +9 
2 

c i =  

62 1 W = o  ( 3 7 4  1-SX 1 -6X (1 -sX)ZZ- (1 -6X)A Z' - ql'- - y" - - 6 46 

Y = o .  (37b) 

The functions Z and Y have to satisfy the boundary conditions at x = 1 (X = 0) because 
this point lies in their region of validity. The continuity of respectively c ( r ) ,  @ ( r ) ,  @'(T) 

and @"(r) gives 

262 A Z" I 
(1-SX)zZ+ (1 -ax)& 

( 3 8 4  
1 

6' 
-Y"(O) = -2Ar + 1 2 a  

which are obtained after rewriting the solution outside the porous coil in dimensionless form 
as 

AT ET @ ( x )  = 1 - -+- 
x x3 

(39b) 
AT 

( ( X )  = - 
X 
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with AT = RAT and BT = R3&. 
We seek solutions for Y and Z in the form of a series expansion in S. From (38c) and 

(38d) it is seen that one must have YA(0) = 0, Y[(O) = 0 and " ( 0 )  = 0 to satisfy the 
boundary conditions. Furthermore one has to calculate at least YZ to determine AT and & 
to zeroth order. The zeroth-order functions YO and ZO are found from the set of equations 
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Y[ - Yo = 0 ( 4 0 4  
2; + AY0 0 ( 4 0 ~  

Y~(x)  = CO ex -I DO e-' (4 la) 

with the zero&-order solutions 

z0(x)  = -A(c~ ex + e-') + E ~ X  + FO (416) 

where CO, DO, EO and FO are constants to be determined. These solutions must be 
asymptotically matched to the outer solution in the limit x + 1, X -+ 00 and 
~ , 6 , 6 X , 6 X  + 0. Both CO and Eo must be zero because these terms diverge in the 
intermediate limit X -+ CO. Furthermore, in this limit we find that CO,, = Fo. The 
combination of inner and outer solutions now only contains two unknown constants Do and 
Fo, which have to be determined by applying the true boundary conditions (38) at X = 0. 
The condition Y'(0) = 0 immediately gives DO = 0. 

We now calculate the correction to the inner solutions to first order in S. With Do = 0 
the zeroth-order solution is very simple. Because of this simplicity the differential equations 
for the first-order functions Zl(X) and Yj (X) are precisely the same as for the zeroth-order 
functions, and so are the solutions 

wl(x)  = cl ex + D~ e-' 
z ~ ( x )  = -A(c~ ex + D, e-') + E ~ X  + F~ 

( 4 2 ~ )  
( 4 B )  

which have to be matched to the outer solution in a first-order match in the intermediate 
limit x + 1, X + CO, but keeping terms of order 6X. As again the positive exponential 
terms diverge in the intermediate limit, CI must be zero. In the intermediate limit the outer 
solution is written as 

* ( 1  -6X) = o  ( 4 3 4  
$-(I - SX) = Fo(1 - S X ) C  = Fo -CYFoSX. (436) 

Comparing these solutions with the inner solution (42) in the limit X -+ 00 we conclude 
that E1 = -crFo, leaving two unknown first-order constants DI and Fl which have to be 
determined from the real boundary conditions at x = 1. Because Oy(0) = 0, we find 

The equations second order in S are only slightly more complicated and the solutions 
DI = 0. 

are 

%(x) = Fo(1 - c ~ ) + & e - ~  (444 
Zz(X) = -hDze-' + tFo(2 - A + Aa)X2 + EzX + Fz. (446) 

We now have all the solutions we need for our purposes, as will become clear shortly. 
Writing the dimensionless coefficients AT and & also as a series expansion in 6 as 

AT = &.o + 6&,1 . . . and h = ~ T , O  + 6&.1 . . . , and applying the boundary conditions at 
X = 0 to zeroth order in 6 yields a linear set of equations for the coefficients iT,o, &, 
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This system of equations is easily solved and gives DZ = 3, FO = :, &.o = $ and 
&.o = 4. Similarly one can calculate the first-order correction, because the first-order 
coefficients AT,,, &,I are determined only by the first three equations, from which 4;(0) 
then follows, without having to calculate the third-order function 4 3 .  So we only have to 
solve a set of three linear equations, which yields, for the unknown first-order coefficients, 

3 -  3 Fi = -2, AT., = -$ and br.1 = -5 .  
Gathering the results we find for the important coefficient AT the expression 

(46) 
where it is again noted that 8 depends on A as 8 = [ (3  - A)y]-"z. In the special case 
that A = 2, equation (46) coincides with the result obtained in our previous paper [6]. 
Furthermore, it is noted that for the case A = 2, (46) was found to be a reasonable 
approximation to the exact results for y > 5.  This is the reason why we refrain from 
calculations of higher-order terms in the expansion of AT, although they can be done with 
a little more effort. 

2 
i T  = - $6 + o(8 ) 

The translational diffusion coefficient becomes, with (32), 
keT 1 DT = -- 

6 ~ v o R  (1 - 8) ' (47) 

5. The shear viscosity for a dilute suspension 

5.1. Basic equations 

In this section we calculate the sh&z viscosity for a dilute suspension of power-law polymers, 
again following [l]. The viscosity of the pure solvent without polymers is 170. As in the 
previous section we consider one polymer located at the origin of a Cartesian coordinate 
frame. Suppose the velocity field of the solvent without the polymer is given by a simple 
shear flow vo = (Goy, 0,O). Although held at the origin, the polymer will start to rotate 
because of the interaction with the solvent. By considering the total torque exerted by 
the fluid on the polymer, the velocity of the polymeric material can be calculated to be 
U =  goy, -$Gox, 0). Again the actual velocity and pressure fields of the solvent must 
be calculated with the Debye-Brinkman equation, subject to the condition that the fields 
approach the unperhlrbed fields at large distances from the power-law polymer. To solve 
this problem we invoke the ansatz due to Felderhof [4] 

1 

v = u + ~ ~ ( v o - u ) - ~ ~ x ( ~  X [ V O - U ] )  
r . vo 

p = PO - vox- 
r2 ' 

We have, as before, three unknown functions of the radial distance 4, /L and x, satisfying 
the following equations: 

6 1 1  
r k r  

4" + -4' - -4 + -x' = 0 ( 4 9 4  
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1 
LL = ?;@I 

with the boundary conditions that @(CO) = 1, ~ ( c o )  = 0 and that Q(0) and x(0) are finite. 
The solution outside the coil is as  simple as before 

AV Bv + ( r ) = l - - + -  
r3 r5 

from which the function p can be calculated. The constants AV and BV must be determined 
by matching to the solution inside the coil, demanding that x, @, @‘ and @” are continuous 
at r = R.  Again there is a simple relation between the solution outside the coil and the 
shear viscosity of a dilute suspension of spherical polymers, first obtained by Burgers [ll] 

n - n o  4 
~ = -?m A 

TO 3 Q V  

where np is the number density of polymer coils. 

5.2. Solutions 

We follow the same procedure for solving the viscosity equations inside the porous coil 
as we did for the translational diffusion coefficient, so we will not be as detailed. In 
dimensionless perturbative form the set of equations (49) becomes 

We define again an outer region and an inner region around x = 1. We have already seen 
that it is sufficient to calculate the outer solution denoted by Gout and xout to zeroth order 
only. This gives us $0 = 0, while KO has to solved from 

(54) 
2 + h  6 

X Z  

However, a study of the calculation of the translational diffusion coefficient shows that it 
is not necessary to solve this equation explicitly, and we immediately turn to studying the 
solution in the inner region. 

We must determine the inner solutions defined by 4 ( X )  = @((1 - x ) / 6 )  and E(X) = 
~ ( ( 1 -  x) /6) ,  which have to be solved from the coupled equations 

x: + -p;- -xo = 0. 

4” - - 66 4’-- 6 8‘ - 1 9 = 0  1 - 6 X  1-6X ( 1 - 6 X ) l  

with the set of boundary conditions - 
E(0) = 2Av 
4(0) = 1 -6,+bv 
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1 --@'(O) = 3iv - 5Ev 
6 

1 
82 

( 5 6 ~ )  

(564 -@"(O) = -12Xv + 30Ev. 

Note that we have again introduced dimensionless coefficients for the solution outside the 
c o i l t h r o u g h A ~ = R ~ ( i ~ , ~ + 6 A v , 1  ... ) and B V = R ~ ( E ~ , ~ + S ~ V , , . . . ) .  

The zeroth-order equations are easily solved and yield 

@o(X) = CO ex + DO e-' 
80 = -A(Co ex + DO e-') + EoX + Fo 

Because these inner solutions must be matched asymptotically to the outer solutions @,, and 
xo in a zeroth-order matching procedure, one must have CO = 0 and EO = 0. Note again 
that 'outer' refers to the solution away from x = 1 but inside the porous coil. The condition 
@'(O) = 0, which follows from (56c), gives DO = 0. 

Solving the equations first order in S is again very similar to solving the first-order 
equations for the translational diffusion coefficient. The inner solution that is capable of 
asymptotically matching the outer solution is 

@p,(X) = D1 e-' 
EI = -AD1 e-' + EIX + F1 

As @;(O) must be zero because of (56d), the coefficient D1 is equal to zero. Finally the 
second-order solution @* is given by 

@2(X) = El +&e-'. (59) 

We now apply the boundary conditions to determine the remaining unknown coefficients. 
Solving the set of equations (56) to zeroth order in 6 gives Dz = 15, Fo = 5 ,  Zv.0 = $ 
and EV,o = $. A first-order calculation of the remaining coefficients from the boundary 
conditions gives Fl = -15, = -5 2 and Ev.1 = -E 2 '  

. .  
Combining the results, we find for the important coefficient AV 

A V  = $ - 98+0(62) .  (60) 

For the shear viscosity we find with (52) and (60) the approximate formula 

' ~$ . rLP  ( I  - 3[(3 - A)y]-'I2) 
?O 

In the case that A = 2, this result coincides with the (series expansion of) the exact result. 

6. Discussion 

In this paper we have calculated three transport coefficients for macromolecdes or 
aggregates with a power-law repeating-unit density distribution. The calculations can be 
considered as classical examples of boundary-layer analysis. The physical meaning of the 
boundary layer in these calculations is the penetration of the velocity field of the solvent 
into the porous sphere, characterized by the parameter [(3 - A)y]-l/*. In the calculations 
we find no reason why the exponent A should be positive (as is the case for a mass- 
density distribution that decreases with r )  and the calculations seem to be valid also if 
the hydrodynamically impermeable core is absent, as long as y is large enough. In the 
interesting limit A + -w, for y fixed, one recovers the results for impermeable spheres. 
This limit corresponds to the case in which all repeating units are localized in a thin spherical 
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shell of radius R. The method breaks down if the exponent h gets close to 3, because then 
6 is no longer a small parameter. The method is not valid for h > 3. This results from 
the fact that the repeating-unit distribution cannot be normalized: all mass heaps up in the 
centre and the flow can penetrate easily deep into the porous polymer. 

The variety of exponents for which the method is applicable suggests that the results 
are not sensitive to the shape of the density distribution inside the porous coil. This can 
also be found in the calculations: to first order in 6 no property of the ‘outer’ solutions is 
retained in the final results. This suggests not only that the boundary-layer method may 
be succesfully applied to porous spheres with density distributions not precisely equal to 
a power-law distribution, but also that the present results for power-law polymers in fact 
cover the whole variety of mass distributions, because (almost) every density distribution 
function can be approximated with a power law at the edge of the porous sphere. 

The results presented here may be verified in experiments directly, but the greatest 
advantage most probably is that the simple closed form of the diffusion coefficients, as 
calculated in this article, allows straightforward incorporation in more extensive models. If 
these models concern colloidal aggregates, some care must be applied, because colloidal 
aggregates are spherically symmetric only on average, while individual aggregates in general 
are not. The validity of models in which colloidal aggregates are treated as spheres can 
only be measured by their predictions. Also, in our calculation the (average) deformation 
due to the shear flow is neglected. Some anisotropy may be dealt with perturbatively, 
but, in general, taking anisotropy into account requires the finding of different ansatze, and 
therefore knowledge of the shape of the porous object. Following this path will be succesful 
probably only for a few, very specific systems, such as rigid cylinders or ellipsoids. 

Finally we note that hydrodynamic permeabilities can be measured in sedimentation 
experiments, as is explained in the review of [I] and references therein. 

P Strating and F W Wiegel 
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