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Determination of surface stress anisotropy from domain wall fluctuations

H. J. W. Zandvliet and Bene Poelsema
Department of Applied Physics and Centre of Materials Research, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands
(Received 12 October 1998

The thermally induced meandering of domain walls betweexr 1P andc(4X2) regions on G@0Y) is
analyzed with a scanning tunneling microscope in order to extract the anisotropy of the surface stress tensor.
On small length scales the domain walls exhibit random walker behavior, whereas on larger length scales
(>100 A) due to domain-wall repulsion originating from the anisotropy in the surface stress tensor a deviation
from this one-dimensional random-walk behavior is observed. We have determined a value of 0.13
+0.04 eV/(1x 1) cell for the stress anisotropyS0163-18209)02411-X

Surface stress plays a major role in many surface pheplies reasonable well to the @91 case, the size of the
nomena. For instance, surface stress can stabilize the surfagemain pattern does not depend on the actual magnitude of
atomic structure or control the growth mode of heteroepithe surface stress anisotropy. Due to the surface stress anisot-
taxial thin films. Recent studies of the lattice mismatchedropy, domain walls exhibit a force monopole. These force
Ge/S(00]) system have shown a wealth of fascinating phe-monopoles repel each other resulting in a reduction of the
nomena, such as the formation ofX2) reconstructiond, thermally induced meandering of the domain walls on larger
reversal of step-edge roughnésand the formation of three- length scales. Here we demonstrate that by analyzing the
dimensional island$,in which surface stress plays the key thermally induced meandering of the domain walls we are
role. More recently, we have addressed the influence thatble to extract the surface stress anisotropy experimentally.
surface stress anisotropy can have on the structure of cledrhe method we apply here is generally applicable to other
semiconductor group-IM001) surfaced. It is well estab- surface systems where the domain pattern is stabilized by
lished that at room temperature the technologically importantong-range interactions, such as electrostatic or magnetic in-
Si(001) and Ge&001) surfaces exhibit a (1) reconstruc- teractions.
tion: surface atoms dimerize, eliminating one dangling bond The experiments have been conducted in an ultrahigh
per atom(at the expense of the development of an anisovacuum (UHV) chamber (base pressure 10 °mbay
tropic surface stress tensdo lower the surface-free energy. equipped with a scanning tunneling microscope. The nomi-
This dimerization was first proposed by Schlier andnally flat n-type G&€001) samples were cleaned by cycles of
Farnswortfi nearly 40 years ago and was imaged on arsputtering with Af ions and annealing at 1100 K. The
atomic scale in real space by scanning tunneling microscopgamples are either rapidly quenched by switching of the
(STM) in 1985° Recently, we have shown that this generally power supply or slowly cooledL K/s) to room temperature.
accepted view on the ground stds room temperatujeof ~ Samples repeatedly cleaned in this way typically contain
the semiconductor group-1\001) surfaces needs to be ad- 0.02-0.5% surface defects.
justed. The state with the lowest surface-free energy at room Figure 1 shows a dimer resolved STM image of a clean
temperature of these surfaces is not a simplg {2 recon- and nearly defect-free nominally flat intrinsic ®81) sur-
struction as generally accepted by the physical commuhity face revealing the ordered ¥21)/c(4%2) domain pattern.
(and taught to students in textbooks on surface scjenceFirst-principles calculations of the surface stress for the
Instead, it consists of an ordered pattern of alternatind2x1) and c(4x2) dimer reconstructed001) surfaces
c(4x2) and (2<1) domains[also, in thec(4X2) recon- show that the tensile stress component along the dimer bond
struction the dimers are the elementary building blocks: thés about one tenth of an eV/§1) cell larger for the
dimers are buckled in an antiferromagnetic ordering along @(4x 2) reconstruction than for the ¢21) reconstructior}:®
dimer row, whereas adjacent dimer rows are out of phas&he stress component perpendicular to the dimer bond is
with respect to the buckling registryln retrospect, the oc- compressive for both the (1) andc(4X2) reconstruc-
currence of this structure is not strange at all but can in factions. Consider for the sake of simplicity a quasi-one-
be explained in the framework of a well-established strairdimensional ordered domain structure consisting of alternat-
relaxation theory. The reason why this structure has noting (2x1) and c(4x2) domains. At each domain wall
been observed before so far is that it requires extremely cleametween a (X 1) andc(4 % 2) domain a force density, equal
and defect-free surfaces. For thé(®1) surface it is inher- to the anisotropy in the stress component, is present. Such a
ently difficult to prepare clean surfaces with defect-free denconfiguration will result in strain relaxation, which decays
sities low enough for this pattern to develop. For thé(B4) logarithmically with the domain widtf.Irrespective of the
surface, however, this requirement can be met by extremelgxact value of domain-wall formation energy one can always
careful preparation procedures. Interestingly, in the particulafind a critical domain width where the surface-free energy
case where the domain-wall free energy vanishes, which agxhibits a minimun. If we consider a striped domain phase
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row direction is to be expected as well; however, the domain
wall energy in this case is quite substarfti@sulting in ex-
tremely large domain$(l+L). depends exponentially on
I:wall]-

The inset of Fig. 1 shows the ordering of the dimers near
a monatomicS, step edge. Thé-type upper terrace nearly
always terminates with @4 < 2) domain. This can easily be
understood in terms of strain relaxation, i.e., minimalization
of the free energy per unit area. The largest force monopole
will be found at the monatomié-type step edge if the upper
terrace terminates with &(4X2) domain, because the
tensile stress component along the dimer is larger for the
c(4 %X 2) reconstruction than for the §21) reconstruction.

In order to analyze the spatial fluctuations of the domain
walls, we introduce -y coordinate system with the di-
rection taken to be the mean running direction of the domain
wall. The spatial fluctuations of the domain walls can be
characterized by the mean-square displacement as a function
of distancex:{[y(x) —y(0)]?). An isolated domain wall be-
haves as a random walker, and therefore, the mean-square
displacement increases linearly with

FIG. 1. STM image of a clean Ge(0B12X1)/c(4X2) sur-

face. Scan area 400400 A%. Sample bias is-1.6 V and tunneling X

current is 1 nA. Asterisks mark surface defects, such as missing <[Y(X)_Y(O)]2>:<k2>;- (3
dimer clusters and adsorbates. Inset: Buckling registry near a mon- I

atomic S, step edge. where(k?) is the domain wall diffusivity

consisting of (2X 1) andc(4X2) domains of width$ andL, 22 Z K2a—<(k)/kyT

with free energies per unit area 9§, andycxz), respec- 5 L=

tively. The formation-free energy of the domain wall per unit (k)=—= : (4)
length between the two domains is denotedy;, and the > e cklkT

anisotropy of the surface stress component along the dimer

bond isocax2)— 02x1. The population of the two domains 4 axiract
arep and (1—p), respectively. The free energy per unit area
F/(I+L), is represented By°

(k?) from microscopic interactions, we need to
'know e(k), the energy of a kink of lengthkka, (k=...,
—-2,—-1,0,1,2...). Inprinciple there are two different types
of kinks, which are called positive or negative, correspond-
ing to a “protrusion” and an “indentation,” respectively,
that can be distinguished. The symbl ) is used to de-

F _ 2F yall
m_p72><1+(1_p)7c(4><2)+ Tl

2C [+L note the probability that at a given position in the domain
————In —Sin(qrp)} (1) wall there is a protrusiortindentation of length 2a, in a
(I+L) "] 2ma, direction perpendicular to the domain watly is the prob-

With C=(1—v)[0¢(ax2)— T2x1]?/2mu. ability that at a given position in the domain wall there is no

Here, the first two terms refer to the free energy per unikink of any kind. According to the Burton, Cabrera, and
area of the two different domains: the third term to the for-Frank(BCF) theory;? the following thermodynamic relation
mation of the domain walls, and the fourth term to the straifcan be derived for a domain walln,n_n;?=exp
relaxation energy, whera, is a microscopic cutoff length (—2&/k,T), wheree is kink creation energy for a single kink.
(we assume here that the surface lattice constan, isthe ~ From a statistical analysis of several STM images we have
microscopic cutoff length « andv are the bulk modulus and found a single kink creation energy @f=0.095eV/2a,
Poisson’s ratio of the medium, respectivdfl—)/2mu (2, =a=a=4A).
~0.01a%eV]. The width, (+L)., for which the free en- Consider now the more realistic case of a meandering
ergy per unit area is at its minimum is domain wall trapped between two neighboring walls. Repul-

sive entropic and energetic interactions between the walls
B 0 (k. iCH1) will tend to limit the amount of meandering by making
(H"-)C_We vl : (20 closely spaced domain walls unfavorable. When the walls
begin to collide with each other, i.e., when the mean-square
At room temperature the (21) andc(4x2) domains are displacement becomes a significant fraction of the averaged
about equally populated, i.ep=3, and if we assume that domain-wall spacingL), deviations from linear, “diffusive”
Fwar<<C one finds a critical domain width of about 70 A. behavior must occur. Before continuing, it would be very
The experimentally determined domain width is about 80-9Qllustrative to give an estimate for the entropic repulsion. Let
A, which indicates thafF,, is indeed significantly smaller us, for the sake of simplicity, consider a meandering domain
thanC.* A similar domain pattern formation along the dimer wall trapped between two hard walls with the only restriction
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being that domain walls are not allowed to cross. Each col- 12 - . - T
lision reduces the entropy with abolg In(2). The typical
spacing between successive domain-wall collisions is
L2/(k?). Hence, the free-energy increase per unit length B
along the domain wall is aboud, T(k?)In(2)/L2. Using our 8 _
experimental data ofk?)=0.219a?, L=10a, and T -
=300K gives a free-energy increase of 0.04 meV per unit
domain-wall lengthe, . However, we can get rid of this en-
tropic domain-wall repulsion if we randomize the labeling of
the domain walls upon a collision. However, because we
only observed a limited number of collisions we have ap- ]
plied another scheme: after each collision we have consid- 4
ered both possibilitiesi.e., crossing and reflection of the 0 , ,
walls) and have determined the averaged contribution to the 0 20 40 60
mean-square displacement. The other repulsive interaction, X [a]
which arises here due to the existence of an anisotropic sur- FIG. 2. Mean-square displaceme(iy(x) —y(0)]?) versus po-
fe}ce stress, results ajso in a flattening out of the mean-square ion X rﬁeasured qalong thg domainywall i‘:\ Units @t andg
dISplacement.' The S.Im.p.leSt Schem‘? to acgount for this is trgespec'[ively. Diamonds: experimental data poitite statistical er-
take the continuum limit in the direction, which reduces the | - for ([y(49)— y(0)]?) is estimated to be 0.82 using the proce-
p_roblem to solvmg the _one-d_lmen5|0ne_1l Scxthr[ge_r €aua-  yure outlined in Ref. 14 Dotted line: one-dimensional random
tion for a harmonic oscillatofif the strain relaxation term walker. Solid line: Eq(5) with o oo =0.13 eVAZ2.

CIn(L) is expanded for smalsL around the minimum- cxz) T
energy configuration, the leading harmonic term
~C(6L)?/L?]. Using path integral arguments one finally

[a’]

4%

< (y(x)-y(0)) *>

0.219af) can clearly be observed for larger length scales

find<L3 (>100 A). We have also depicted the theoretical cuifzq.
(5)] using a surface stress anisotropy @fx2)—02x1
ko T(k2)L2 =0.13eVA? (the error in the only free parameter 4 2

{[y(x)—y(0)]?)~ e —0,x1, IS estimated to be about 0.04 @&?). We suggest

that the slight oscillation with a period of about &5(=100

A) might be due to the fact that neighboring kinks tend to
. (5) repel each other. Using first-principles calculations Garcl

and Northrup found an anisotropy of 0.1e¥f for the

In Fig. 2 a plot of the experimentally determined mean_closely related $001) surface. Although similar.calculations
square displacement versuis displayed. Initially the mean- o the G&00D) surface are not presently available, we as-
square displacement exhibits one-dimensional random-walRUMe that a similar anisotropy in the surface stress exists.
behavior, i.e., the mean-square displacement scales linear [N conclusion, the existence of anisotropy of the surface
with x. At larger length scales the influence of the repulsivestress component along the dimer bond for<(®) and
interaction between the domain walls shows up, resulting irf(4>x2) dimers, respectively, is responsible for the sponta-
a slight reduction of the mean-square displacement. Surfadgeeous formation of a striped ¢21)/c(4 < 2) domain pattern
defects such as adsorbates and missing dimer clusters seem clean G&O01). The periodicity of this striped domain pat-

to induce, at least locallyg(4x2) or p(2x2) buckling. tern is, for the case of a vanishing domain-wall free energy,
Therefore, we have only determined the mean-square disndependent of the exact strength of the surface stress anisot-
placement of domain walls that are completely free of thos&opy, o¢4x2)— 02x1. However, the thermally induced me-
surface defects. Two additional complications are that imrandering of the domain walls is sensitive for the exact
most cases it is hard to determine the exact position of a kinktrength of the surface stress anisotropy. By careful analysis
(usually the buckling decays over about ten dimer posilionsof the mean-square displacement we have extracted a value
and that domain walls exhibit some thermal motion at roomof 0.13+0.04eV/(1x1) cell for o¢ux2)—02x1, Which
temperature. In Fig2 a slight deviation from the ideal one- agrees well with the theoretically determined values for the
dimensional random walkdwith (k?)=([y(1)—y(0)]?) is  closely related $001) surface.

X

2C(k?)
l—exp —X
k,TL2

1X. Chen, F. Wu, Z. Zhang, and M. G. Lagally, Phys. Rev. Lett. °R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett.

73, 850(1994. 55, 1303(1985.

2F. Wu, X. Chen, Z. Zhang, and M. G. Lagally, Phys. Rev. Lett. 7O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joannopo-
74, 574(1995. ulos, Phys. Rev. Let61, 1973(1988.

3F. Wu and M. G. Lagally, Phys. Rev. Left5, 2534 (1995. 8A. Garca and J. E. Northrup, Phys. Rev.48, 17 350(1993.

4H. J. W. Zandvliet, B. S. Swartzentruber, W. Wulfhekel, B. J. °J. Dgbrowski, E. Pehlke, and M. Scheffler, Phys. RevA®B 4790
Hattink, and B. Poelsema, Phys. Rev5R R6803(1998. (1994.

SR. Schlier and H. Farnsworth, J. Chem. PH3@. 917 (1959. 0|n Ref. 4 we have used the domain-wall formation enegy,



7292 BRIEF REPORTS PRB 59

Using (+L).=90A andogxz—02x1=0.13eVA? we find

rather than the domain-wall free energy,, . Using the free
energy is 1.34me&V/ (Fa

energy here is, however, more appropriate. If we assume that a that the domain-wall

kink with a length ofk units costs energke then the partition ~0.04 meVA).
function Z becomes 1IN, C. Bartelt, T. L. Einstein, and E. D. Williams, Surf. S&i76

. 308 (1992.
@ kelkT 12\, K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc.
. S London, Ser. A243 299 (1951).
and the domain-wall free energper unit lengtha) 84, J. W. Zandvliet, H. K. Louwsma, P. E. Hegeman, and B.
o ~ - B B Poelsema, Phys. Rev. Le#5, 3890(1995.
Fuai=—KTInZ=E, kTm(mﬁ)_Ewall 1.3 mev. 14G. Ayrault and G. Ehrlich, J. Chem. Phy0, 281 (1974.

Z:eEWaII/kT( 1+2

+e elkT



