Anisotropic off-normal incidence optical reflection from GaP (110) surfaces

C. M. J. Wijers and G. P. M. Poppe, Faculty of Applied Physics, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands

This article contains a theoretical study for off-normal incidence surface induced optical anisotropy (SIOA). The discrete dipole approximation was used to calculate the off-normal incidence optical response of slabs. By means of the two slab approach those results were converted to semi-infinite reflectivities. The calculated ellipsometric parameter $\Delta \alpha$ shows large variations near the Brewster angle, but only the p-polarized reflection has a clearly increased SIOA sensitivity. So experimentally a straightforward determination of $\Delta \alpha$ should be preferred. Advantages have to be sought in the optical observation of surface state related phenomena at sub-bandgap conditions.

1. Introduction

The experimental observation of surface induced optical anisotropy (SIOA) shown by (10) surfaces of cubic materials has reopened the discussion about the theoretical interpretation of optical reflection$^{1-4}$. At first, an improvement was sought in a modified continuum approach5,6. With the aim to incorporate local field effects Mochán and Barrera added discrete elements to the continuum approach7. Wijers and Emmett1 started a discrete dipole description of SIOA. Using results obtained before by Ewald8 and Litzman and Rózsà9,10, Wijers and Del Sole2 calculated the SIOA of a GaP (110) surface by means of the two slab approach for perpendicular incidence. The hybrid discrete-continuum character of this method has been overcome by Poppe and Wijers11 using the asymptotic continuation approach. That even the hybrid technique used in ref 2 offers substantial progress will be shown in this paper. It offers the first calculation of SIOA for off-normal incidence. Because the required full incorporation of retardation has been included already from the very beginning, it suffices to describe only the technical modifications necessary to turn the method into a feasible approach. Despite the complexity of the mathematics, the transparency of the solution from the physics point of view remains due to the usage of only four starting points1,2.

2. Optical response of slabs

2.1. Description of the configuration. The crystalline bulk is located in the upper halfspace and the electromagnetic beam impinges from the lower halfspace9,10. For GaP 110 the inter-layer spacing d becomes:

$$d = (\sqrt{2}/4, 1/2, \sqrt{2}/4) \alpha$$

(1)

α represents the lattice constant. For off-normal incidence we define k_n, the component of k along the surface, as:

$$k = (k_x, k_y, k_z) = (k_{||}, k_z)$$

(2)

k represents the wave vector of the beam. k_z being different from zero, results in an increased role of retardation for off-normal incidence.

2.2. Dipole theory for slabs. The basic starting points of the description, e.g. using Hertz potentials and the principles of induction, superposition and parallel translational symmetry, have been treated in ref 2. After combination they yield the general equations of dipole theory for slabs ($\alpha_0 = 4\pi \epsilon_0 \alpha^2$, $a = \alpha^2/\sqrt{2}$):

$$p_i = \epsilon_0 \left[E_{ext,i} + \alpha_0 \sum_{j} \overrightarrow{f}_{ij} \cdot \overrightarrow{p}_j \right]$$

(3)

$$\overrightarrow{f}_{ij} = \alpha^2 \left[\nabla \nabla S_j(r, k) \right] \exp(ikq \cdot \overrightarrow{r} - iq \cdot \overrightarrow{r})$$

(4)

$$S_j(r, k) = \sum_{\sigma} \exp(ikq \cdot \overrightarrow{r} - iq \cdot \overrightarrow{r})$$

(5)

The p_i's, used in (3), refer to the characteristic dipoles of plane i, the $p_{i,00}$ as described already in ref 2. The description (3-5) is fully dyadic in three dimensions. Like for normal incidence, also here it is not necessary to use the full 3d approach. We start from the equations derived in ref 12:

$$\overrightarrow{f}_{ij} = \frac{2\pi \alpha^2}{|s_1 \times s_2|} \sum_{pq} (k_{pq}^2 \hat{1} - \kappa_{pq} \hat{Q}) \exp(ik_{pq} \cdot \overrightarrow{r} - ik_{pq} \cdot \overrightarrow{r})$$

(6)

$$k_{pq} = (k_{||}^p, k_{||}^q, \text{Sign}(z_i - z_j)k_{pq})$$

(7a)

$$\kappa_{pq} = (k_{||}^2 - |k_{||}^p + k_{||}^q|^2)^{1/2}$$.

(7b)

The meaning of the symbols, e.g. the surface reciprocal lattice vector \overrightarrow{g}_{pq}, has been given in ref 2. Only values of 0° and 90° for the anisotropic azimuth angle Ω will be considered. $\Omega = 0^\circ$ will be treated in detail, $\Omega = 90^\circ$ follows by analogy. Since in that case $k_y = 0$, the xy and yz-components of \overrightarrow{f}_{ij} disappear (then the pq-terms in the summation at (6) become antisymmetric). In ref 2 the interaction matrix M was defined through:

$$\tilde{M}_{ij} = \overrightarrow{a}_{i}^{-1} \delta_{ij} - \alpha_0 \overrightarrow{f}_{ij}$$

(8)

where \overrightarrow{a}_{i} builds the polarizability tensor, being diagonal for GaP, like \tilde{M}_{i}. So it holds that for $\Omega = 0^\circ$ for any \tilde{M}_{i} the xz-component is the only nonzero off-diagonal element. It is not difficult to see that in that case M can be organized such that it becomes blockwise. The first block will contain xy-components.
and corresponds to s-polarization. The elements of this block are given by (scalar type):

\[f_{ij}^{u} = \text{c}_{\text{STAT},yy} + \frac{2\pi ia^3k^2}{|s_1 \times s_2| k_z} (i = j) \]

\[f_{ij}^{s} = \frac{2\pi ia^3}{|s_1 \times s_2|} \sum_{pq} (k^2 - q_{pq}^2) \exp (ik_{pq} \cdot (r_i - r_j)) (i \neq j). \]

For \(\text{c}_{\text{STAT},yy} \) use 0.9090. The solutions of the block \(M_s \) can be found independently and yield the dipole strength's through:

\[p_i^s = \sum_j (M_{ij}^s) u E_{\text{EXT},j}. \]

The other block containing the \(xz \)-components and corresponding with \(p \)-polarization, will be described using \(2d \)-vectors/ dyads. The elements of this block \(M_p \) are:

\[f_{ii}^{u} = \text{c}_{\text{STAT},xx} + \frac{2\pi ia^3 (k^2 - k_z^2)}{|s_1 \times s_2|} \]

\[f_{ij}^{u} = \frac{2\pi ia^3}{|s_1 \times s_2|} \sum_{pq} (k^2 - q_{pq}^2) \exp (ik_{pq} \cdot (r_i - r_j)) (i \neq j). \]

\[f_{ii}^{s} = \text{c}_{\text{STAT},zz} + \frac{2\pi ia^3 (k^2 - k_z^2)}{|s_1 \times s_2|} \]

\[f_{ij}^{s} = \frac{2\pi ia^3}{|s_1 \times s_2|} \sum_{pq} (k^2 - q_{pq}^2) \exp (ik_{pq} \cdot (r_i - r_j)) (i \neq j). \]

The ellipsometric angles \(\Psi, \Delta \) follow from the standard expression:

\[r_s/r_p = \tan \Psi e^{i\Delta}. \]

In this convention \(\Delta \) will run from 0 to \(\pi \) by varying the angle of incidence \(\theta \) from 0 to \(\pi/2 \).

3. Reflection coefficient for semi-infinite crystals

Equations (24) and hence also (25) from ref 2 can be used unaltered for \(\theta \) different from 0. All we need is a different expression for \(q_u \). We define the quantities \(\zeta \) and \(\gamma \) as:

\[\zeta = \epsilon_1 - \sin^2 \theta \]

\[\gamma = [2(\sqrt{\epsilon_2^2 + \epsilon_z^2 - \zeta})^{1/2}/\epsilon_2 (\epsilon_2 \neq 0)]. \]

Using \(\gamma \) the expression for \(q_u \) becomes:

\[q_u = -\left[\frac{1}{\gamma} + i \frac{\epsilon_2 \gamma}{2} \right] k \]

\(k \) being the length of \(k \). The actual conversion is done by [2.24]:

\[r = r_A r_B - \exp [iq_2 (d_B - d_A)] t_B r_A. \]

\[r_A = \exp [iq_2 (d_A - d_B)] r_B. \]

Labels A and B refer to the two slabs of different thickness. The continuum description enters our model through the bulk dielectric constant \(\epsilon \). Equivalency with the discrete approach is shown in ref 11.

4. Numerical results for semi-infinite GaP (110)

Two photon energies \(\hbar \omega \) will be investigated, yielding case I with \(\hbar \omega = 2.7212 \text{ eV} \) and case II with \(\hbar \omega = 3.6056 \text{ eV} \), both being in the region of GaP 110 surface states. Bulk polarizabilities \(\sigma_b \) and surface polarizabilities \(\sigma_s \) have been obtained like in ref 2.

<table>
<thead>
<tr>
<th>Case I: (\hbar \omega = 2.7212 \text{ eV})</th>
<th>Case II: (\hbar \omega = 3.6056 \text{ eV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_b)</td>
<td>0.129427 + i 0.83507 + i 10^{-4}</td>
</tr>
<tr>
<td>(\sigma_s)</td>
<td>0.139011 + i 3.60561 + i 10^{-3}</td>
</tr>
<tr>
<td>(\sigma_{s\sigma})</td>
<td>0.133615 + i 1.36056 + i 10^{-3}</td>
</tr>
<tr>
<td>(\sigma_{s\pi})</td>
<td>0.128262 + i 7.26597 + i 10^{-4}</td>
</tr>
</tbody>
</table>

625
C M J Wijers and G P M Poppe: Optical reflection from GaP (110) surfaces

(ref 2) about an 'optical surface region' of about 6 layers. The Brewster minimum can be observed in the p-polarized reflectance R_p for any thickness. Dependency from slab thickness is most prominent in the ellipsometric angle Ψ if the angle of incidence β is in between the Brewster angle and grazing incidence.

By means of the two slab approach (ref 2) the optical response for semi-infinite GaP (110) has been calculated, which will be discussed now. Figure 1 shows R_p for both cases and the two anisotropic azimuth angles $\Omega = 0^\circ$ and $\Omega = 90^\circ$. All curves show clearly the Brewster minimum, but on this scale only for case II the anisotropy is strong enough to be seen directly. There the minimum is also clearly different from zero. It is important to note here already, that at the place of the minima there is still anisotropy. In Figure 2 we show the s- and p-polarized reflectance differences obtained for the two cases. With difference results will be meant difference between $\Omega = 90^\circ$ and $\Omega = 0^\circ$ data. The s-polarized results are smoothly dropping off for increasing β. Since also the overall s-polarized results do not change dramatically in the same range, this direction of polarization is not interesting from the experimental point of view. The zero in ΔR_p can clearly be observed in this figure for both cases.

This phenomenon takes place just before the Brewster minima will be attained. Since the angle Ψ is less sensitive for anisotropy than Δ, we discuss only the latter. Figure 3 shows the ellipsometric difference angle $\delta\Delta$. This difference angle clearly demonstrates that near the Brewster minimum strong effects can be expected. For case I a full sweep of 360° has been found. The sudden jump upward at $\beta = 74.5^\circ$ however has no physical meaning, since one can always add a multiple of 360°. Case II displays a more moderate behaviour, having a minimum of -10.3° for $\beta = 76.5^\circ$ and a half width of 4.6°. The sensitivity of Δ is obviously due to the contribution of r_p to (18). This has been investigated separately by looking at the figure of merit $\Delta R_p/R_p$, shown in Figure 4. The higher this figure of merit, the higher will be the theoretically possible signal to noise ratio. Since R_p by definition is positive, $\Delta R_p/R_p$ will not exceed 2.0. This value is almost the maximum for case I, being 1.8. Case II produces a much smaller maximum of 0.22 for $\beta = 78.4^\circ$. This is however still a factor of 8.5 better than for perpendicular incidence. These theoretical values can only be obtained in experiment, if the reproducibility of the angle of incidence is close to perfect. In that sense case II represents the easier frequency. Despite those problems the higher sensitivity
for SIOA will be found according to this model near Brewster’s minimum and especially the optical observation of surface state related phenomena at subbandgap conditions may benefit from that.

5. Conclusions and remarks

In this article has been shown how variation of the angle θ influences surface induced optical anisotropy (SIOA). The angular dependent total response for both slabs and semi-infinite bulk has been discussed. As to the latter the hybrid technique (ref 2), used before to calculate semi-infinite results, turned out to be equally well usable. Rather against expectation, the p- and not the s-polarization turned out to be the experimentally more sensitive direction. Especially for low absorption, as is the case at subbandgap conditions, this sensitivity becomes apparent in δA near the Brewster angle, but the experimentally preferable quantity should be ΔR_p at the same angle. As a final remark it should be kept in mind that the theoretical approach used for this article predicts very well the overall response, but produces too high values for the difference results (ref 2). However we think that the main conclusions of this article will not be affected by this comment.

References

8. P P Ewald, Ann Phys, 49, 117 (1916); 54, 519 and 557 (1917).