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Summary & Conclusions - Markov-reward models are often 
used to analyze the reliability & performability of computer 
systems. One difficult problem therein is the quantification of the 
model parameters. If they are available, eg, from measurement 
data collected by manufacturers, they are, a) generally regarded 
as confidential, and b) difficult to access. 

This paper addresses two ways of dealing with uncertain 
parameters: 1) sensitivity analysis, and 2) Monte Carlo uncertain- 
ty analysis. Sensitivity analysis is relatively fast and cheap but it 
correctly describes only the local behavior of the model outcome 
uncertainty as a result of the model parameter uncertainties. When 
the uncertain parameters are dependent, sensitivity analysis is dif- 
ficult. We extend the classical sensitivity analysis so that the results 
conform better to those of the Monte Carlo uncertainty analysis. 
Monte Carlo uncertainty analysis provides a global view. Since it 
can include parameter dependencies, it is more accurate than sen- 
sitivity analysis. By two examples we demonstrate both approaches 
and illustrate the effects uncertainty and dependence can have. 

1. INTRODUCTION 

There is a considerable & growing interest in the use of 
Markov-reward models for dependability & performability 
modeling of computer systems [27]. A topic that is receiving 
little attention is the uncertainty in model parameters and the 
propagation of this uncertainty to the model outcome. This paper 
focuses on that topic. 

Acronyms 

CTMC continuous-time Markov chain 

MRM Markov-reward model 
SIFT software implemented fault tolerance 
SPN stochastic Petri net 
SPNP SPN package. 

Notation 

bold implies a matrix 
- implies a vector 
X 
S 
Q 
r“ 
_n 
11 
Y 
4 
x_ 
- E 

FA(U uncertainty distribution of 4 
Qi 
F y ( y )  

9( .) 
p(A1,A2) s-correlation between r.v. AI & A2 
pr(A1,Az) rank-correlation between r.v. Al & A2. 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

( X t ,  t L 0): continuous-time Markov chain 
{1 ,..., K } :  state space of X 
generator of X ,  a matrix 
(a:, . . . ,a:) : initial probability vector of X 
( n l , .  . . , n ~ )  : steady-state probability vector of X 
( r l ,  ..., r K ) :  reward vector 
- r -T steady-state performability of X 
(A1,.  . . ,An) : vector of uncertain model-parameters 
(XI,. . . ,A,,) : a realization of 4 
( c l ,  ..., E , ) :  vector of very small quantities, E ;  < < 1 

derivative of Q with respect to Ai, a matrix 
induced distribution of Y given FA 
implies a sample value 
indicator function: S(True) = 1, B(Fa1se) =O 

1.1 Markov-Reward Models 

Markov-reward models can combine performance & 
reliability aspects of a system in the following way. A CTMC 
X = ( X t ,  t 2 0) is defined on a finite state space S = 
{ 1,2,. . . , K }  . The elements s E S are structure states since every 
s describes the system structure in terms of the number of opera- 
tional components. Given s E S ,  the system performance is 
described by the reward rate r,. The rewards for all possible 
states are denoted by E .  

The CTMC X is completely described by Q & 3’. 
Whenever X is aperiodic and irreducible, the stationary (steady- 
state) distribution 3 is unique, does not depend on KO,  and is 
obtained by solving the system of linear equations: 

Also, 

’The singular & plural of an acronym are always spelled the same. Y = Tar. 
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In this paper, 

the normalization of the probabilities is integrated with -@ 

we deal only with uncertainty in the non-zero rates of Q. 
we restrict our attention to steady-state measures; they are 
also useful for bounding transient measures [23; 25: chapter 
61. 

aim now is to derive F y ( y )  = Pr{ Y I y }  . In general, analytic 
methods cannot be used for usual Markov-reward models. One 
therefore resorts to Monte Carlo simulation [9, 15, 16, 20, 241. 

Perturbation Analysis 

One tries to obtain insight into the deviation 1 Y( 4 - Y( & I 
given a bound on the perturbation 116 - al[ 121. In the context 

= - 0. 

From an abstract point of view, we can interpret a Markov- 
reward model as a function 5 of the model structure M and the 
model parameters 8: Y( & = 5,( A). When there is uncertain- 
ty about the values of 4 they are treated as r.v. and their (joint) 
probability distribution quantifies the uncertainty about their 
values. In general the ‘average model outcome’ does not equal 
the ‘outcome of the model, evaluated at the average value of 
the parameters’. The equality holds only when 5 ,  is linear in 
A. A complicating factor is the usual s-dependence of the 
uncertainties. 

of Markov-reward models, Van Dijk [8] recently obtained some 
interesting results. However, it seems difficult to apply them 
to general models, and to include s-dependencies between the 
uncertainties. We do not treat perturbation analysis in this paper. 

4 

We extend our earlier analytic work [ 131 in which we ad- 
dressed only a 1-dimensional case. Now we address sensitivities 
with respect to more than 1 model parameter, and extend the 
use of sensitivities to propagate uncertainties (section 2). Sec- 
tion 3 discusses s-dependence between uncertainties, and sec- 
tion 4 provides a concise overview of Monte Carlo uncertainty 
analysis. Section 5 applies the methods to the simple Markov- 
reward model treated before [13]. Section 6 applies these 

in order to investigate the impact of coverage uncertainty. 

Assumptions (Markov-reward models) 

1. The number of states in the Markov-reward models is methods to a model Of a faUlt-tOlerant flight Control Computer, 
finite. 

2. The Markov chain is aperiodic and irreducible. 
3. We address uncertainty only in the non-zero rates of 

4. Q(A) is linear in the components A , ,  . . . , A,, of A. ’4  

the Q-matrix. 2. SENSITIVITY ANALYSIS 

This section evaluates the sensitivity of Y( A) with respect 
to A. A Taylor-series expansion for Y=r.z as a function of 
4 is derived. As a special case we address the 1-dimensional 
sensitivity of Y with respect to A. Then the sensitivity results 
are combined with howledge about he of the in- 
put parameters. 

2.1 Derivation of Sensitivities 

1.2 Propagation of Uncertainties 

The effect Of uncertainty about the parameters On 

the model predictions can be analyzed in three ways: sensitivi- 
ty analysis, uncertainty analysis, perturbation analysis. 

Sensitivity Analysis 

Sw is evaluated for a specific value h_ (most likely 
scenario), yielding Y(X_). Then, as,/aA is evaluated at A = 
A, yielding insight into how Y(  1) changes when X_ is changed 
by 5. The interpretation of the derivatives alone is difficult if 
there is not indication what values for 5 are reasonable. Fur- 
thermore this approach is accurate only when E is small enough. 
Still, it is often seen in the Markov-reward modeling field [6, 
10, 141; these 3 papers emphasize calculation of the derivatives 
(sensitivities). To a certain extent the sensitivities are combin- 
ed with knowledge about the uncertainty of model parameters 
in [4]. 

Assumption #4 greatly simplifies the analysis. We can 
write, 

n 

Q ( 4  = e0 + AiQi, 
i = l  

the Qo,Ql,. . . ,Q, are constants. 

This implies that the first-order derivative of Q(A) with respect 
to Ai equals Qi and that all second- and higher-order derivatives 
equal 0. Differentiate (1) with respect to Ai: 
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The sum is over all k! different orders in which one can multiply 
the kl matrices (QIQ-'(A)), the k2 matrices (Q2Q-'(A)), ..., and 
the k,, matrices (Q,Q-'(A)). For matrices that are not linear in 
A, eq (3) becomes intrinsically more complicated. Using (3) 
we obtain the Taylor-series expansion of db) around A = A: 

Q ( k )  = the set of all nk k-tuples ( i l  ,..., i) E {I ,..., . Ik .  

Finally, Y(&+c) = c.dX_+c). 

2.2 1-Dimensional Sensitivity Analysis 

Then (3) becomes: 
Let n= 1 (only 1 parameter, A); then Q(A) = + AQl. 

aka(n) - -  - ( - l ) k - k ! . ~ A ) .  (QIQ-l(A))k, k=1,2, ... 
aAk 

The Taylor-series expansion of 3 around A = A, is: 

m 

( - E Q ~ Q - ' ( ~ ) ) ~  = d h ~ z  + E Q ~ Q - ' ( X ) ) - ' .  (4) 
k = O  

This is an alternating series for which the last equality in (4) 
holds if, for k =  1,2,. . . , 

These two requirements give the radius of convergence of the 
series expansion: 

For small models we can often derive dA) symbolically, 
and the Taylor-series expansion is not needed at all. For 
moderate-size models with one uncertain parameter we can use 
the exact expression (4). For larger models the first few terms 
of this alternating Taylor-series expansion can be taken. The 
error made in summing only the first k elements is smaller than 
the absolute value of element ( k +  1). 

2.3 Using Sensitivities to Propagate Uncertainties 

In classical sensitivity analysis, the propagation of the 
uncertainties is based on the first-order Taylor-series expansion 
of the model. Based on this approximation the mean & variance 
of the model predictions r are calculated. Two directions of 
generalization can be considered: 

improve the approximation of the model by taking more terms 

calculate more moments of than the mean & variance. 
of its Taylor-series expansion. 

The classical sensitivity analysis proceeds by approximating 
the real model, Y( d)=~-dA),  by its first-order Taylor-series 
approximation around 4 = E{A}, ie, for all & E R" one 
approximates: 

Let E{E} = (E{rl},  ..., E{aK}). 

The linearity of the original model around A = E{A} deter- 
mines how good this approximation is. For the variance of Y, 
use: 

In (3, the sensitivity of performability measures with respect 
to model parameters is combined with the uncertainty of these 
parameters to show the effect of parameter uncertainties. Eq 
(5) shows that s-dependence between the input parameters in- 
fluences the variance in the output measure. If the uncertain 
input parameters are s-independent, the second sum vanishes. 

When one tries to approximate higher-order moments of 
the model prediction by the first-order Taylor-series expansion, 
many higher-order cross-product moments appear. These terms 
disappear only when the r.v. are s-independent. In that case, 
the skewness of the distribution of ~ L I )  is: 

Now consider a second-order Taylor-series approximation 
for the model Y( 15) =dA) ' E .  The mean value of the approx- 
imation for Y(@ depends on the covariances between the 
parameters: 



150 I E  :EE TRANSACTIONS ON RELIABILITY, VOL. 44, NO. 1 ,  1995 MARCH 

E{Y(&} = Y(E{A}) + Yz f: a2Y(E{A3) -Var{Ai} an,' 
i =  1 

Using this quadratic approximation, the variance and all higher- 
order moments of Y depend on many higher-order cross-moment 
terms. It is impractical to consider these expressions. 

Summarizing, sensitivity analysis can be used only for 
analyzing local behavior. It is difficult to account for s- 
dependencies between parameters. For many Markov-reward 
models, sensitivities are difficult or very costly to obtain. 

3.  UNCERTAINTY DEPENDENCIES 

In (5) & (6) the covariances between the parameters are 
important in calculating the propagation of the uncertainties on 
the parameter values to the model prediction;? s-Dependencies 
between uncertainties in the model parameters can exist because 
they - 

are physically induced (assumed to be captured by the model 
itself), or 
stem from the fact that parameter choices are based on com- 
mon knowledge or information sources (this should be 
reflected in the choice of FA). 

These s-dependencies are important when parameters are not 
estimated from measurements but merely guessed-at by experts 
[221. 

s-Dependencies between r.v. can be measured by s- 
correlations or rank-correlations. The p (X, Y) measures the 
degree of linear relationship between X & Y: 

Let Fx & F y  be the Cdf's of X & Y respectively. The 
rank-correlation, 

measures the degree of monotone relationship between X & Y 

Two model parameters guessed by the same expert should 
be assumed to be s-correlated because the expert tends to be 
either on the high side, or on the low side for both guesses. 
The idea is to model the information sources by so-called la- 
tent variables & and to couple the uncertain model parameters 
4 to these latent variables 6: The degree of coupling depends 
on the degree-of-subjectivity of the information source on which 
the uncertainty distribution of the parameters is assessed; ie, 
for parameters Ai whose distribution is obtained from informa- 
tion source gj, more subjectivity in Sj means that p,(Aj ,Sj )  
is higher. Two variables each having pr with Cj have an 

t 191. 

approximate rank-correlation p,' between each other (the ex- 
act value depends on the bivariate distribution) [22]. 

From a computational point of view it is important that, 
conditional upon the value of & the uncertainty distributions 
of the parameters are s-independent . Consequently only 
2-dimensional probability distributions may be used for sampl- 
ing s-correlated r . v . 

4. MONTE CARLO UNCERTAINTY ANALYSIS 

For most practical problems, the Cdf F y ( y )  = Pr{Y 5 
y} , induced by FA(&), cannot be obtained analytically. But this 
distribution can be estimated by Monte Carlo simulation. Take 
m samples . . . ,X, from FA(&); evaluate the model for these 
samples. The result is, for i = l ,  ..., m: yi = Y ( A : = & ) .  The 
sample mean b { y } ,  standard deviation 6{y}, and quantiles of 
Y, can be estimated in a standard way 118: chapter 11.16; 281. 

4.1 Probability Distributions and Entropy 

An important question in uncertainty analysis is how to 
choose a particular uncertainty distribution from the incomplete 
knowledge that one has about the uncertain variable. We follow 
the maximum-entropy approach [ 1 1,2 1,221. If one only knows, 
eg, that the uncertain parameter takes values in [ab], then the 
maximum-entropy distribution is uniform on [a,b], denoted by 
U[a,b]. Similarly, if one knows only the order of magnitude 
of an uncertain parameter, then just take the logs of the boun- 
daries; eg, it is known that loglo(parameter) is in [-4, -21, then 
the maximum-entropy distribution is the log-uniform distribu- 
tion on denoted LU[10-4, lo-*]. 

4.2 Diagonal-Band Distribution 

Drawing a realization h for a 1-dimensional r.v. A with 
Cdf FA can be done by the inverse-transform technique. For 
the generation of s-dependent r.v., the basic idea is to generate 
s-dependent WO, 11 numbers U, ,. . . ,U, and then apply the in- 
verse transforms for each of the variables individually. This can 
be done in many ways, because a joint distribution is not en- 
tirely characterized by its marginals and s-correlations. For in- 
stance one could use s-dependent s-normal r.v. for the genera- 
tion of s-dependent uniform r.v. [17, 201. Alternatively, in- 
teresting from a theoretical view, use that joint distribution for 
the generation of s-dependent uniforms which has maximum- 
entropy, given the specified s-correlations [22: chapter 21. For 
our calculations we used the computationally very attractive 
diagonal-band distributions [7; 22: chapter 31. 

The diagonal-band distribution Gd( U,  V )  is a 1-parameter 
bivariate distribution defined on the unit square [0,1] x [0,1]. 
Between parameter d E [-1,1] and the s-correlation p ( U,  V )  , 
the following relation exists: 
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A realization ( u , v )  for ( U, V )  having a diagonal-band distribu- 
tion Gd is calculated as follows. Let U be a realization of the 
uniform(0,l) r.v. U ,  and v'  a realization from a 
uniform( U -d,u + d )  distribution. Then select v as follows: 

v=-v', if v' < 0, 

v=2-v ' ,  if v' > 1 ,  

v = v ' ,  otherwise. 

6. COVERAGE UNCERTAINTY 
IN THE SIFT COMPUTER 

We discuss a sensitivity analysis and a Monte Carlo uncer- 
tainty analysis of a Markov-reward model of the SIFT com- 
puter system [26,29]. In particular, we focus on the uncertain- 
ty in the coverage factors of failures. It is not only very dif- 
ficult to obtain accurate coverage factors of real systems, but 
these factors highly influence the system dependability & per- 
formability [l - 31. 

6.1 SIFT System 

5. EXAMPLE: 1-UNIT, 1-STANDBY SYSTEM 

This was addressed in [13]. The performability of the 
system was studied modeling it as a 5-state CTMC. A Monte- 
Carlo uncertainty analysis and a classical sensitivity analysis 
assessed the effect of the uncertainties in the failure & repair 
rates. We apply the extended sensitivity analysis derived in this 
paper as (6). We summarize the main data. The performability 
Y = L - H  can be obtained in closed-form as: 

The SIFT system was designed for highly dependable in- 
flight control [26, 291. SIFT consists of multiple processors, 
interconnected by multiple busses. The processors are assign- 
ed dynamically to form triple-modular and quintuple-modular 
redundant groups. The processors in a group operate, in a loose- 
ly coupled way, redundantly on the same task. When all pro- 
cessors in a group finish their task, the processors synchronize 
and compare results. Processors vote on each other's results, 
and a processor is configured out of its group when a majority 
of a group determines it has failed. In a similar way the pro- 
cessors also vote on the correctness of busses. 

6.2 Stochastic Petri-Net Model for the SIFT System 
' ( A A  + AB + @.)I; 

Notation 

AA, AB failure rate of unit [A, E!] 
ip repair rate. 

Consider scenarios S4 & S5 from [13]. AA & AB have 
LU(10-4, lo-') and @ has U(0.5, 1.5) uncertainty distributions. 
In one scenario the failure rates are s-independent and in the 
other one completely s-dependent: 

p,.(AA,AB) = 1  - COV{AA,AB} = 5.147. 

The repair rate is always s-independent of the failure rates. 

TABLE 1 
The Mean Performability, E{?, Calculated in 3 Ways 

sensitivity analysis 
Monte Carlo 

failure rate classical extended uncert. analysis 

independent 0.9856 0.9849 0.9848 
dependent 0.9856 0.9844 0.9839 

Table 1 presents the new results and compares them to those 
previously calculated. The classical sensitivity analysis over- 
estimates the mean performability . The extended sensitivity 
analysis, based on a quadratic approximation of the model, gives 
accurate results for the s-independent failure rates. It gives im- 
proved results, indicating the right direction of change, for the 
s-dependent failure rates. 

Figure 1. SPN Model of the Dependability of the SIFT 
Computer 

The Markov-reward model of the SIFT computer uses the 
SPN as given in figure 1 (we used the package SPNP for our 
analysis [5,6]). The system consists of a configuration of Np pro- 
cessors and Nb busses. Tokens in the places procup and busup 
represent, respectively, processors and busses that are up. These 
operational components can fail via the transitions covfail* and 
uncovfail* with component failure rates of hE & A!', respective- 
ly. '. Covered failures (transitions covfait*) result in the 

'The * notation signifies either proc or bus throughout the sentence in 
which it is used. 
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movement of one token from place *up to place *down. Un- 
covered failures (transitions uncovfaiI*) result in the movement 
of a single token to place fatal. Once a token enters this place, 
all tokens are flushed into place reset via the immediate tran- 
sition flush. Then the whole system is down, and after a manual 
repair (transition boot with rate p), the system becomes opera- 
tional again. 

When processors or busses have failed in a covered way, 
they are repaired via transitions rep* with rate I/... When all 
processors & busses have failed in this way and the special situa- 
tion occurs that all tokens are in places *down, the system is 
fully down. It requires manual repair established via the im- 
mediate transition handreset. This flushes all tokens from 
places *down to place reset. The coverage-factor is: 

e* = XE/(hf + A.") = Prlfailure is coveredlthe failure 
occurs}. 

Numerical Values 

p=o.1.  

Assumptions 

1 .  The SIFT computer is operational whenever at least 2 

2 .  r$,nb)  = S(system is operational). 
3. rfnp,nb) = min(np, nb). 
4. Failure rates, AE & AI,  are r.v. 

processors and 2 busses are operational. 

Notation 

S 

Yd, Yp [dependability, performability] measure 

Yd is obtained by using rd; Y, is obtained by using rP. 

(np,nb) E S= (0 ,..., Np} x (0 ,..., Nb} 

TABLE 2 
Uncertainty Assumptions on the Marginal Distributions 

disrriburion mean std.dev. coeff. of var. 

A;, A i  LU[10-4, lo-'] 2.150.10-3 2.497.10-3 1.162 
Ai ,  hi LU[10-6, lo4] 2.150.10-5 2.497.10-5 1.162 

Table 2 shows that A: has a distribution with support on [L,r.], 
and that AI has a distribution with support on [L/a., r./a.] 
where cr*=lOO. This implies, for c*: If p , ( A f , A I ) = l ,  then 
A:= a A I ,  ca is fixed, and equals: 

C* = a * / ( ~ * + l )  = 100/101 = 0.990099. 
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Whenever p,( AE,A!')=O, the c. varies between the maximum 
value d ( a .  + 1) and the minimum value a./(a. + (r./l*)), 
which in this case equals 0.5. The precise distribution of c.  
depends on the s-correlation between the failure rates and can 
be calculated by numerical integration or by Monte Carlo 
simulation. 

We consider 3 different scenarios, T1 - T3, that differ only 
in the degree of coupling between the failure rates. We introduce 
3 latent variables: $</,, and C:,,, which couple the covered & 
uncovered failure rates for processors & busses respectively, 
and "eP,b which couples STIu & S:,,. Table 3 presents the 
amount of coupling. 

6.3 Sensitivity Analysis 

We want to obtain the sensitivities ay/&, and aY/acb. A 
difficulty is that Y is calculated as a function of the failure rates 
XE and X I ,  and not of the c.. From c.=XE/( XE+ X I )  one can 
use the chain rule, and obtain: 

The model is evaluated for the average-parameter scenario from 
table 2 using the SPNP package. It also calculates the first order 
derivatives: 

An increase in processor coverage increases the system 
dependability & performability. An increase in the bus coverage 
yields a higher system dependability but, surprisingly, a lower 
system performability. An increase of the bus coverage implies 
that failures of busses more often proceeds along the line of 
individual failures, than along the line of a single, non-covered 
catastrophic failure. The rp is such that the latter, however, is 
better from a performability point of view. 

The uncertainties in the failure rates are propagated to Yd 
& Yp by combining the assumptions on the uncertainties of the 
failure rates with the sensitivities, ie, by using a linear approx- 
imation for dl) .  Table 4 shows the results for T1, T2, T3. 
The approximations for the mean values are s-independent of 
the degree of s-dependence between the r.v. The standard devia- 
tions increase appreciably as a function of the s-dependence. 
It might seem difficult to calculate the standard deviations 
because the covariances in (7) have to be calculated. This can 
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be done by numerical integration or Monte Carlo simulation. 
A separate calculation is not necessary because these values are 
delivered almost automatically by the following Monte-Carlo 
uncertainty analysis. 

TABLE 4 
Uncertainty Propagation by Classical Sensitivity Analysis 

E { yd) E{Yp) O{yd) dY,) 
T1 0.996792 4.973 180 0.002768 0.018684 
T2 0.996792 4.973 180 0.002952 0.02221 1 
T3 0.996792 4.973180 0.003137 0.0259 17 

6.5 Evaluation of SIFT Uncertainty Study 

When we compare the sensitivity-analysis results with the 
Monte-Carlo-uncertainty analysis results, we see that for the 
mean and standard deviation of the steady-state dependability 
& performability , the approximations of the sensitivity analysis 
are good. Of course, the Monte Carlo uncertainty analysis gives 
more results, the most surprising one that with a low s- 
dependence between the failure rates, better coverage implies 
a better system, whereas with a high s-dependence better 
coverage implies a worse system. 
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samples each, using the 
the results for Y, & Yp’ 

The distributions of Yd & Yp are skewed to the left: the 50% 
quantile is much closer to the 95 % quantile than to the 5 % quan- 
tile. Going from T1 via T2 to T3, we observe 2 trends in the 
samples: 
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