
Data & Knowledge Engineering 11 (1993) 207-233 207 
North-Holland 

DATAK 183 

On the selection of secondary indices 
in relational databases 

Suni l  C h o e n n i  a'*, H e n k  M.  B l a n k e n  a and Thie l  C h a n g  b 
aUniversity of Twente, Department of Computer Science, P.O. Box 217, 7500 AE Enschede, 
The Netherlands 

bAdministration Office: G.A.K., Department of Research and Development, P.O. Box 8300, 
1005 CA Amsterdam, The Netherlands 

Received 11 November 1992 
Revised 21 June 1993 

Abstract 

An important problem in the physical design of databases is the selection of secondary indices. In general, 
this problem cannot be solved in an optimal way due to the complexity of the selection process. Often use is 
made of heuristics such as the well-known ADD and DROP algorithms. In this paper it will be shown that 
frequently used cost functions can be classified as super- or submodular functions. For these functions several 
mathematical properties have been derived which reduce the complexity of the index selection problem. 
These properties will be used to develop a tool for physical database design and also give a mathematical 
foundation for the success of the before-mentioned A D D  and DROP algorithms. 

Keywords. Physical database design; secondary index selection; A D D  and DROP algorithms; supermodular 
functions; submodular functions. 

1. Introduction 

Physical database design is an important step in designing databases and aims to generate 
efficient storage structures for the data. One of the choices that has to be made is that of 
selecting efficient access paths. Most relational database systems provide indices as one of 
their main access paths. Indices can be considered as auxiliary files that allow to retrieve 
tuples satisfying certain selection predicates without having to examine the whole relation. 
On the other hand, updating the database causes an index to be updated to remain 
consistent with the new database state. So, an index speeds up retrieval and slows down 
maintenance. 

In general two types of indices can be distinguished, namely primary and secondary indices 
[8]. In the case of a primary index, the tuples in the relation are ordered on the indexed 
attribute. This is not the case for a secondary index; from now on we concentrate on 
secondary indices. 

A relational database consists of many stored relations and each stored relation can have 
many secondary indices. The index set of a (relational) database is the set of indices that are 
selected for the database. A cost function estimates the cost of processing a workload for a 
database with a given index set. In this cost function the benefits and the drawbacks of 
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indices are taken into account. The problem of secondary index selection, further denoted as 
the SIS problem, is NP-complete as demonstrated in [10]. The problem for a single relation 
can be solved by examining 2 ~ possible index sets, in which n represents the number of 
candidate indices in the database. The aim is of course to find the optimal (or a near- 
optimal) index set without having to examine all sets [1]. Much research has been devoted to 
the SIS problem using analytical approaches [6, 16, 21], heuristic approaches [5, 11, 13, 24] 
or combinations of both approaches [2, 3]. The cost function in the approaches differs on 
two main points. First, some of the approaches use at most one index per relation to process 
an operation [5, 6, 11] while others use all usable indices [2, 3, 13, 16, 24]. Second, some 
approaches concern the SIS problem for a single relation [13, 16] while others concern the 
SIS problem for more than one relation [3, 5, 6, 11, 21]. 

Whang et al. [21, 23] proposes the so-called separability approach. In this approach, which 
can be applied if the DBMS satisfies certain conditions, the SIS problem for the whole 
database is split up into many, smaller problems, namely one SIS problem per relation. 
After  determining the optimal set of indices for each relation, the union of these sets will be 
the solution for the whole database. With this approach we have to inspect ~ 7= 1 2hi, in which 
r is the number of relations in the database and n i is the number of candidate indices for the 
ith relation. So, the complexity has been reduced from IlT_~ 2 ~i to F~ 7= ~ 2 hi. From now on we 
concentrate on the SIS problem for a relation. It is important to note that in general even for 
this restricted case, exhaustive search is not a feasible solution. 

An important part of a cost function is the so-called retrieval function which estimates the 
number of page accesses needed to fetch the tuples addressed by an ordered list of pointers. 
Schkolnick [16] uses a simple but unrealistic retrieval function in his cost function leading to 
the nice property of 'regularity'. On the basis of experiments Schkolnick estimates that the 
regularity property decreases the complexity to 2v-~* log n on the average, in which n is 
again the number of candidate indices. 

Barcucci et al. [2, 3] adopt a more realistic retrieval function and show that their cost 
function also satisfies by approximation the regularity property. They solve the SIS problem 
by utilizing regularity combined with the ADD and DROP algorithms. The ADD and 
D R O P  algorithms use heuristics and are described in [24]. 

Until now we discussed approaches that consider the total load on the database as a 
whole. An optimal index set for the whole load is searched for. Another approach is 
followed in [15]. There an ideal storage structure is determined for each load operation 
separately. Such a storage structure includes an index set. Then these storage structures are 
combined to get a storage structure which will be profitable for the total load on the 
database. 

In this paper we describe super- and submodular functions and their mathematical 
properties. Supermodularity appears to be equivalent to the before-mentioned regularity. 
We consider some generally accepted retrieval functions and show that the corresponding 
cost functions are a combination of super- and subrnodularfunctions. Based on mathematical 
properties we develop an algorithm that reduces the complexity in optimizing the cost 
function. In a rough sense this algorithm is a partly generalization of [15]. Instead of single 
operations, we consider groups of operations and this reduces the complexity of combination 
steps. It is certainly not claimed that the algorithm is sufficient to solve the SIS problem in 
general, but it is a step in the direction of the optimal solution. In this paper also attention is 
paid to the ADD and DROP algorithms. It appears that the mathematical properties of 
submodular functions give these algorithms a sound, mathematical foundation. So we show 
that justifying these algorithms by considering supermodular functions, as is done by 
Barcucci et al., is mathematically not correct. 

The organization of the paper is as follows. In Section 2 we present some assumptions 
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related to the SIS problem and derive a general cost function. In the cost function, a 
retrieval function plays a part. In Section 3 we describe the behaviour of the retrieval 
function under influence of an increasing number of indices. This behaviour introduces the 
concepts of super- and submodularity which are defined more precisely in Section 4. We 
derive relevant, mathematical properties for these functions. Then we establish the relation- 
ship between these functions and the SIS problem and show how the properties can be 
applied in optimizing pure super- or submodular functions. The general cost function 
introduced in Section 2 gives rise to three specific cost functions depending on the chosen 
retrieval function. In Section 5 it will be proved that the specific cost functions are not pure 
super- or submodular but behave sometimes as a super- and sometimes as a submodular 
function. Section 6 describes an algorithm to utilize the derived properties of super- and 
submodular functions in solving the SIS problem. In Section 7 it is shown that submodular 
cost functions provide a foundation for the DROP and ADD algorithms. Section 8 concludes 
the paper and gives directions for further research. 

2. General cost function 

In this paper we will deal with relational databases. A relation R is defined over some 
attributes, such as, al ,  a 2 . . . . .  an, and is a subset of the Cartesian product dom(al)× 
dom(a2) × . . .  x dom(an). Dorn(a~) is the set of values assumed by the attribute a t. 
Databases are stored on an external paged memory. Many relational database management 
systems (DBMS) store only tuples of one relation on a page. Examples of such DBMSes are 
Ingres and System R [20]. From now on we assume that pages contain only tuples of one 
relation. For a given value a E dom(aj), use of an index produces a list of tuple identifiers 
(TIDs). These TIDs allow direct retrieval of the stored tuples possessing the value a for 
attribute aj. For example, if an index is organized as a B +-tree, leaf pages consist of (value, 
TID-list) pairs for every unique value of the indexed attribute. 

The costs of processing a workload depends on many factors, such as storage costs, 
number of page accesses, processor time, etc. In this paper we consider the number of page 
accesses as the only cost factor. 

Finally, we assume that the cardinality of the relations remains constant. To be more 
precise, the frequency of tuple insertions and tuple deletions is such that the total number of 
tuples of each relation remains constant in two consecutive choices of index sets. 

Workload on a relation 
We distinguish four possible operations in the workload on a database; queries, updates, 

insertions and deletions. Each of these operations include one or more steps. 
• Query 

(1) Select the relevant tuples from the data pages 
(2) Output the relevant tuples to user 

• Update of tuples 
(1) Select the relevant tuples from the data pages 
(2) Update the specified attributes and rewrite the data pages 
(3) Update the relevant indices 

• Deletion of tuples 
(1) Select the relevant tuples from the data pages 
(2) Remove the tuples and rewrite the data pages 
(3) Update the relevant indices 
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• Insertion of tuples 
(1) Select the location(s) where the tuples will be stored 
(2) Insert the tuples and rewrite the data pages 
(3) Update the relevant indices 

We concentrate on steps that influence index selection. The first step of an operation of the 
workload is always the selection of the relevant tuple(s). The execution of this step clearly 
depends on the available set of indexes, so it has to be taken into account. The second step is 
never influenced by the availability of indexes, so it can be ignored, while the third step, if 
present,  depends only on the presence of indexes. This means that only the first and third 
step of an operation are taken into account from now on. 

Let  us elaborate on the first step of an operation w of the workload W. Consider the 
selection of all tuples satisfying a condition that is formulated in conjunctive normal form. 
We assume that if a usuable index is available, it will be used. The following actions are 
distinguished: 
(1) Access all indices corresponding to attributes specified in the query which are usable 

search arguments; this gives a list of tuple identifiers (TIDs) per index. 
(2) Intersect the lists in order to determine the TIDs of the tuples that satisfy the 

conjunction of the conditions on the attributes of an index exists for. 
(3) Retrieve the tuples according to the result of the previous action. 
(4) Discard the tuples not satisfying the condition on the attributes without an index (false 

drops). 
The total cost of selecting the relevant tuples is the sum of the costs resulting from each 

action. The cost of actions 2 and 4 can be neglected because they take place in main 
memory.  So the costs of selecting tuples for an operation w with an index set A (denoted as 
Csel(A, w)) is the sum of the cost of action 1 (Cind(A, w)) and the cost of action 3 
(Cret(Tw(A))), in which Tw(A ) represents the number of tuples to be retrieved). For the 
used abbreviations, see Table 1. 

Updating an index on attribute a h requires roughly reading and writing of the index page 
with the old attribute value and doing the same for the new value. The insertion and deletion 
of an index requires a reading and writing of the relevant index page. The costs to keep an 
index up to date will be defined as the maintenance c o s t  ( C m a i n ( ( O l h ) ) )  of an index. For a 
more accurate cost estimation for updates of indices we refer to [18]. 

Taking into account a workload W consisting of a set of operations (queries, updates, 
insertions, deletions) and the frequency of each operation w E  W (fw) the general cost 
function for the SIS problem is of the form: 

T a b l e  1 

Lis t  of  u sed  symbo l s  

O:h, 0% 
A , A '  
W 
w 

P 
nR 
SF 
T~(A)  

= a t t r ibu tes  of a r e la t ion  R 

= index  sets  
= w o r k l o a d  
= an o p e r a t i o n  in the w o r k l o a d  
= n u m b e r  of pages  in file in which  a re la t ion  is s to red  
= n u m b e r  of  tup les  in r e l a t ion  R 
= se lec t iv i ty  fac tor  of  a ( rec iproca l  of the n u m b e r  of  d i f fe ren t  values)  

= n u m b e r  of  tup les  to  be r e t r i eved  in p rocess ing  w wi th  index  set  A 
Cind(A , w) = costs  to  fo rm the o r d e r e d  TID- l i s t  for w using index  set  A 
Cre,(Tw(A)) = costs  for r e t r i ev ing  Tw(A ) tup les  g iven  an  o rde r ed  TID- l i s t  

Cse,(A , w) = C, nd(A , w) + C, , (Tw(A))  
C~,o,n(A ) = m a i n t e n a n c e  cost  of an index  set  A 
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CF(A) = ~ fw* Csel(m, w) -[- ~ fmain({Oth}), 
w~W ahEA 

in which 
A = an index set, 
fw = the frequency of the operat ion w contained in the workload W, 
Cs~t(A, w) = C,nd(A, w) + C,e,(Tw(A)), 
Cmai, ({ ah }) = the maintenance costs of the index set { a h ). 

Note ,  the maintenance cost of  an index depends on the frequencies of the insertions, 
deletions and updates.  Fur thermore ,  each of these operations entails different cost as will be 
discussed in Section 5. 

The  SIS problem can now be formulated as 'minimize the function CF'. In other  words, 
find an index set A in an efficient way such that the costs are minimal in processing a 
workload W. To solve this problem it is necessary to characterize the behaviour  of  the 
function C~ r This is the subject of the next section. 

3. Behavior of  the retrieval function Cre t 

In this section we will discuss the influence of index sets on retrieval cost. The number  of 
page accesses needed to retrieve tuples indicated by an ordered TID-list  is given by Cre r 
Given the condition that the tuples must satisfy and given the index set A,  the length of the 
TID-l is t  can be estimated.  To estimate the length it is assumed that attributes are mutually 
independent  and that the attributes values are uniformly distributed, see further on. There  
are for a given TID-list  still several ways to estimate the number  of page accesses, see 
Section 5. A general remark  about  the function Cr~t can, however,  be made.  

It  can easily be shown that Cr~ t is a monotonous non-increasing function of the index set A. 
I f  the index set is empty ,  the file has to be scanned sequentially and this amounts  to p page 
accesses, where p is the number  of pages in the file in which the relation is stored. I f  an index 
can be used to retrieve the tuples, an ordered list of TIDs  will be generated.  This TID-list  
will be used to fetch the relevant tuples and we assume the list to be ordered on page 
n u m b e r  so that the retrieval requires at most p page accesses. Additional,  usable indexes 
cause the genera ted list of  TIDs  to become shorter,  so the number  of page accesses does not 
increase. 

Let  us consider the effect of index sets o n  f re t  by means of an example.  

Example  3.1. Consider the relation Person(id.nr, name, salary, age, gender, education) 
consisting of 400.000 tuples and the following query: 

S E L E C T  name 
F R O M  Person 
W H E R E  education = 'secondary school'  A N D  

salary = 2000 A N D  
age = 21 

Suppose that the selectivity factors SF of the attributes education, salary and age are 
SFed,catio n = 1 ,  SFsala,y = 1 respectively Slag ~ = ~0. Fur thermore ,  a page contains 20 tuples. 

Le t  us compare  the addition of an index on education to three index sets A = I~, 
A ' =  {salary} and A " =  {salary, age}. Solving the query with the index set A requires 
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400.000/20 = 20.000 page accesses; when an index on education is added to the index set A,  
400.000/10 = 40.000 tuple retrievals are required, which implies again a cost of 20.000 page 
accesses. 

Solving the query with A'  requires 10.000 tuple retrievals; this means at most  10.000 page 
accesses as retrieving cost. The addition of education to the index set A'  leads to at most  
1000 page accesses as retrieval cost. 

Using the index sets A" respectively A"U {education} leads to at most 200 respectively 20 
page accesses. 

It is clear that adding an index on education to the empty  index set does not help much,  
while the addition of the same index to the set A'  causes a big gain. Moreover ,  the addition 
of the index on education to A" gives, although less, still a substantial gain. These obser- 
vati0ns are the basis to characterize the function Cre t. 

In the example above,  it is shown that addition of an index to a bigger index set can be 
sometimes more  profitable than the addition of the same index to a smaller index set. For  
instance, adding an index on education to A'  is more  profitable than adding the index to A. 
But sometimes the reverse also holds. The addition of the index on education to A'  brings 
much more  than the addition of the index to A". Taking these observations into account and 
considering the fact that Cre ~ is a monotonous  non-increasing function, Cret may be 
characterized according to Fig. 1.1 

The  index sets in Fig. 1 are organized as 0 C A ~ C A 2 C • • • C A n. Function 1 represents  
the retrieval cost as function of the index s e t s  A i, while Function 2 represents the retrieval 
cost with the index sets to which index a h is added. The index sets in the area marked  by I 
satisfy the observation that the addition of index a h to a bigger index set is more  profitable 
than the addition of the same index to a smaller set, i . e .  [ACret(Aj ,  a h )  [ becomes bigger with 
the increase of the index sets. In the following we will refer to this observation as 
Observation 1. The index sets in the area marked by II of Fig. 1 satisfy the observat ion that 
the addition of an index to a smaller index set is more profitable than the addition of the 

1 

~ ~  rct ( A j , a  h )1 
C ret 

A 1 A2 Aj An index sets 

Fig. 1. Characterization of the function C,,,. 

1 For convenience's sake we have drawn a continuous function which has to be of course a discrete function. 
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index to a bigger set, i.e. IACr~,(Ap ah)l becomes smaller with the increase of the index sets. 
We shall refer to this as Observation 2. 

Assuming that A and A' are in the same area, the observations can be written in formula 
form as: 

IC~e,(Tw(A' U {a~})) - C~et(Tw(A')) I 

IC~,(Tw(A U {a~,})) - C,e,(T~(A)) I for any A C_ A', a'h ~ A' (1) 

o r  

[Cret(Tw(A' U { a ~ } ) )  - Cre,(Tw(A')) I < 

IC~e,(Tw(A U {a~})) - C,et(Tw(A)) I for any A C A', a ~ E ' A ' .  (2) 

The following proposition shows that the behaviour of the general cost function CF is totally 
determined by the two observations. 

Proposition 3.1. The behaviour of the cost function 

CF(A) = ~ f.,* Cset(A , W) + Z Cmain((Olh}), 
wCW ah~A 

is determined by the function Cre ,. 

ProoL Because the maintenance cost of an index and the access cost to an index is constant 
this means that the cost function can be expressed as the sum of a constant function and a 
retrieval function Cre ,. So, the form of the cost function is determined by Cre, and C,e t on his 
turn is determined by Observations 1 and 2. [] 

In the next section sub- and supermodular functions are defined. The relationship between 
these functions and the observations described in this section are exposed. Finally, the way 
in which sub- and supermodular functions can contribute to the solution of the SIS problem, 
is described. 

4. Super- and submodular functions 

In the previous section two observations has been made. In this section it will be shown 
that the first observation leads to cost functions that are submodular,  while the second 
observation causes supermodular cost functions. These functions will be characterized and it 
will be shown how totally submodular or totally supermodular cost functions can be 
optimized. In Section 5 we will show that often cost functions are not totally submodular or 
totally supermodular.  For  these cost functions we will combine the optimizing techniques 
which are valid for cost functions considering only one of the observations. This will be the 
subject of Section 6. 

We start this section with a little variant on the general definition of supermodular  
functions with regard to sets, as presented in [25, 19]. Then we will manipulate the 
supermodular  functions, such that it will be suitable to derive some properties which can be 
used in optimizing these kinds of functions. Finally we will generalize these results to 
submodular  functions. 
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Definition 4.1. Let  N be a finite set and G be a function defined as G: P(N)---~ E, in which 
P ( N )  is the power  set of N. We say that G is supermodular  if: 

G ( X ) + G ( Y ) < G ( X U Y ) + G ( X A Y )  VX, Y c _ N .  (3) 

Because we will often make use of the incremental value of adding an element  e L to a set E 
we describe the class of super- and submodular  functions in a more  proper  form with regard 
to our  purpose.  

Proposition 4.1. Let G be a supermodular function defined on a finite set P(N)  then definition 
4.1 is equivalent with the following statement: 

G(E' U {eh} ) -  G(E')>i G(E U {e~,})- G(E) for any E C E' C N and e' h ~ E '  . 
(4) 

A shorter notation for (4) is: 

A G( E' U e 'h ) >! A G( E U e 'h ) for any E C_ E' C N and e ' h ~ E' . 

Proof  (3) f f  (4). Take  E C_ E ' ,  X = E U {eL} and Y = E '  in (3). This yields 

G(E U {e;,}) + G(E')  <~ G((E U {e;,}) U E')  + G((E U {e~}) n E ' )  <=> 

G(E U {e~}) + G(E')  <~ G(E' U {e;,}) + G(E)¢~ 

G(E'  tO {e;,}) - G(E' )  >! G(E tO {e;}) - G ( E ) .  

(4) ~ (3). Let  {e 1 . . . .  , er} = X~Y. Note that X'xY represents the set {e i ] e i E X ^ e i ~ Y}.  
From (4) we obtain 

G(Y  U {e 1}) - G(Y)  >! G(X  n Y U {e, }) - G ( X  n Y) 

G(Y  U {e 1, e : } ) -  G ( Y U  {el} ) ~> G ( X A  Y U  {el, e2} ) - G ( X N  Y U  {e,}) 

G ( Y U  { e l ,  e 2 , . . .  , er} ) - G ( Y U  { e l ,  e 2 . . . .  , e r _ l }  ) 

G(X  N Y U {el ,  e 2 , . . . ,  e r }  ) - -  G(X  A Y{e 1, e 2 . . . .  , er_l} ) . 

Summing all these inequalities yields 

G(VU X) - G(Y) I> G(X) - G ( X n  Y ) ~  

G(X) + G(Y) <~ G(XO Y) + G(XQ Y) .  [] 

Suppose we want to minimize the supermodular  function G defined on a finite set P ( N ) ,  in 
o ther  words to find the set MINC_ N such that G(MIN)<<-G(E) for any E C_ N. The 
Proposit ions 4.2 and 4.3 defined below, provide us techniques to avoid exhaustive searching 
for a supermodular  function. The intuitive ideas of these techniques are to divide the 
elements  of N into three groups. 
(1) A group of elements which will never  belong the the set MIN. These elements are 

achieved by applying Proposition 4.2, which is defined below. 
(2) A group of elements which will belong always to the set MIN. These elements  are 

determined by Proposition 4.3, which is also defined below. 
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(3) A group of elements that require further exploration. This group contains all the 
elements not belonging to the previous groups. 

The following proposition provides a technique to detect elements which will never belong 
to the set MIN. Suppose element e~ is added to a set E. If the value of G does not decrease 
then it will also not decrease if e h is added to a set E' containing E. This means that e h will 
not  be a member  of MIN. The proof of the proposition follows directly from (4). 

Proposition 4.2. Let G be a supermodular function defined on the finite set P(N). Then the 
following holds: 

If  G(E U {e~)) 1> G(E) then G(E' U {e~})/> G(E') for any E C E' C N 
and e' h ~ E' . 

The  following proposition identifies the elements that are certainly a member  of the set 
MIN. Suppose that element e;, is eliminated from a set E. If the value of G does not reduce 
by this elimination, it will not reduce if e h is eliminated from a set E '  contained in E. So, e~ 
must be added to the solution MIN. 

Proposition 4.3. Let G be a supermodular function defined on the finite set P(N). Then the 
following holds: 

If  G(E\{e'h} ) > G(E) then G(E'\{e'h} ) > G(E') for any E' C E and e' h ~ E' . 

Proof.  The dual form of Proposition 4.1 is: 

G(E'\{e;,}) - G(E')>i G(E~{e;,}) - G(E) for any E ' C  E and e;, ~ E ' .  

So, AG(E'\e'h) > AG(E'Xe'h) . [] 

The relationship between these optimizing techniques and the SIS problem will be 
clarified. Suppose that only the second observation plays a role in the SIS problem. Then 
according to Proposition 3.1 and Proposition 4.1 the cost function CF (see Section 3) will 
behave like a supermodular function. So, Propositions 4.2 and 4.3 can be used. Note,  the 
Propositions 4.1, 4.2 and 4.3 can easily be translated to the context of the SIS problem by 
replacing the s'upermodular function G by a supermodular cost function CF, N by the set of 
all attributes of a relation, the sets E, E '  by the index sets A, A' and the element e~ by the 
attribute t~. The SIS problem is solved if an index set MIN is found such that the cost of 
processing a workload with MIN will be minimal. One way to do this is by an ordered 
exhaustive search of all subsets represented by a full graph, in which each node represents a 
subset of NA,  the set of all attributes of the relation, and each link between two nodes 
indicates that a node can be reached from the other by adding or discarding an element  to or 
f rom the other  node. The root  of the graph is the empty set and the bot tom of the graph is 
the full index set, the set consisting of all relevant attributes. An example of a full graph is 
given by Fig. 2. 

Propositions 4.2 and 4.3 can help us to avoid an exhaustive search if the cost function 
behaves like a supermodular function. Applying these propositions means that we can 
construct a smaller graph without loosing the optimal set of indices. Proposition 4.2 justifies 
the cutting of nodes and links starting from the root of the search tree while Proposition 4.3 
can be applied to cut nodes and links starting from the bottom of the tree. Proposition 4.2 
states that,  if the addition of an index a~ to an existing index set A causes an increase in costs 
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{} 

{a} {b} {c} {d} 

{a,b} /a,c} {a,d} {b,c} /b,d} {c,d} 

{a,b,c} {a,b,d} {a,c,d} {b,c,d} 

{a,b,c,d} 

Fig. 2. Example  of  a full graph.  

then the same will happen for all index sets A' containing A. So, ~;, is not a good index 
candidate. Proposition 4.3 asserts that, if the elimination of an index c~, to an existing index 
set A causes an increase of the costs then the same will happen for each A' subset of A. So, 
c~ h, is a good index candidate. The following example illustrates the power of the proposi- 
tions. 

Example 4.1. Suppose we have a relation R = {a, b, c, d} on which a workload is defined. 
Fur thermore ,  the cost function which estimates the processing cost of the workload behaves 
like a supermodular function. Without applying the supermodular optimizing propositions all 
the nodes of Fig. 2 have to be evaluated to find the optimal set. Applying the propositions 
leads to the graph of Fig. 3. The numbers below the index sets are the processing cost for the 
workload,  e.g. processing the workload with {} costs 40 page accesses. We start with the 
empty set as root and the set {a, b, c, d} as bottom. Applying Proposition 4.2, by taking 
A = {} and o~ = b, to the root of the graph discards b as index candidate because the 
addition of b increases the cost. Applying Proposition 4.3, by taking A = {a, b, c, d} and 
a~, = c, to the bottom of the graph adds c to the optimal set, because the drop of c causes an 
increase in cost. The consequence is that we have to consider from now on only subsets 
which do not contain b and must contain c. 

So, only 12 sets have to be evaluated now to achieve the optimal set of secondary indices 
instead of 16. 

Note that the cutting procedure starts always by evaluating 2n + 2 sets. Then the 
Propositions 4.2 and 4.3 are applied. This process is repeated one level lower and is 
continued until it is no longer possible to add or to discard attributes as indices. 

The reduction of the complexity of course depends on how often Propositions 4.2 and 4.3 
can be applied successfully. 

Now the relationship between the SIS problem in which only the second observation plays a 
role and the theory of supermodular function has been established we will introduce briefly 
submodular functions. The relationship between submodular functions and the SIS problem 
in which only  the first observation plays a role is then easy to establish. Cost functions in 
which only the first observation plays a role will lead to a submodular cost function. 
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{} 
40 

{a} .[b} {c} (d} 
34 42 38 37 

{a,c} {c,d} 
33 36 

{a,b,c} {a,b,d} {a,c,d} {b,c,d} 
41 43 31 42 

{a,b,c,d} 

42 

Fig. 3. E x a m p l e  of the  r educed  graph.  

Definition 4.2. Let  N be a finite set and G be a function defined as G: P(N)--> •, in which 
P ( N )  is the power set of N. 

We say that G is submodular if: 

G(X) + G(Y) >i G(X  U Y) + G(X fq Y) VX, Y C N .  (5) 

Proposition 4.4. Let G be a submodular function defined on a finite set P(N) then Definition 
4.2 is equivalent with the following statement: 

G(E' U {e~})  - G(E') <~ G(E U {e~})  - G(E) for any E C E' C N and e'hJ~E'. 
(6 )  

A shorter notation for (6) is: 

AG(E'  U e'h) <<- AG(E t3 e'h) for any E C E' C N and e'h~E' . 

The proof  of this proposition can be constructed in exactly the same way as the proof  of 
Proposit ion 4.1. 

For  submodular functions we can derive similar propositions as for supermodular functions 
which may contribute in the reduction of the optimization of these functions. These 
propositions can be applied in the same way as done for supermodular functions. We will 
give now the propositions for submodular functions in terms of the SIS problem, i.e E, E' 
are considered as index sets and e~ is considered as an index. 

The following proposition holds for submodular functions and is analogous to Proposition 
4.3. So, it can be used to select advantageous indices. It says that if an index e~ is 
advantageous for an index set E,  it will be advantageous als0 for each index set E '  which 
contains E. So, e~ must be added to the optimal set of indices. 
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Proposition 4.5. Let G be a submodular function defined on the finite set P(N) .  Then the 
following holds: 

I f  G (E  U {eL} ) < G(E)  then G(E '  U {eL} ) < G(E ' )  for any E C_ E'  C N and 
e L S E ' .  

The proof  of this proposition follows directly from Proposition 4.4. 
The following proposition identifies the elements that can be discarded and is thus the 

equivalent of Proposition 4.2 for supermodular functions. It says that an index e L that 
reduces the costs when eliminated from a set E will also reduce the costs if e L is eliminated 
from any E '  contained in E. 

Proposition 4.6. Let G be a submodular function defined on the finite set P(N) .  Then the 
following holds: 

I f  G(E\{eL} ) <- G(E)  then G(E'\{eL) ) <<- G(E ' )  for E '  C E and e L E E'  . 

The proof  of this proposition can be constructed in the same way as the proof  of Proposition 
4.3. 

Until now we have shown how to optimize cost functions which are either super- or 
submodular. How to decide whether a cost function is sub- or supermodular? The following 

2 proposition helps us. 

Proposition 4.7. Let N be a finite set, G and M functions defined as G: P(N)---~ R and M: 
N---~ R. I f  A G ( E  U eL) can be written as A G ( E  U e'h) = M(e'h) -- S (E  U eL), in which S(.) is a 
function, E C N and e L E N then G is a supermodular function if S is monotonous non- 
increasing and G is submodular if  S is monotonous non-decreasing. 

Proof. Take E C E '  C N and e'h~fE'. We obtain: 

A G ( E '  U eL) - A G ( E  U eL) = (M(e'h) - S (E '  U eL) ) - (M(eL) - S (E  U eL)) 

= S(E  U e L ) -  S(E '  U eL). 

If S is a monotonous non-increasing function, then S ( E ' U  eL)<~ S(E  U e~). Therefore ,  
A G ( E '  U eL) >i A G ( E  U eL). If S is a monotonous non-decreasing function then the following 
holds: S(E'  U eL) >t S (E  U eL). Therefore,  A G ( E '  U eL) <~ A G ( E  U eL). [] 

Note,  the cost function CF of Section 2 can be written according to Proposition 4.7 as: 

A C F ( A  U aL) = C,~,,n({aL} ) -- ~ f,~(C~e,(A, w) - C~et((A U {aL} ), w)).  
w E W  

The first part of the function is the maintenance cost of the added index a L, while the second 
part indicates the gain achieved by adding the index. 

To prove when and under which condition a cost function which has the form of CF is 
super- or submodular, we have to determine when and under which condition the second 
part  of the function, thus C, el(A, w) - C s e l ( ( A  U {oiL}), w), is monotonous non-increasing or 
monotonous  non-decreasing. 

2 This can be reached of course also by proving Proposition 4.1 or 4.4 but is not very practical. 
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We have presented some techniques to achieve complexity reduction for supermodular as 
well as for submodular functions. In general we expect that a cost function will be a 
combination of super- and submodular functions. How to apply the propositions then will be 
discussed in Section 6. 

5. Specific cost functions 

In this section we shall take a closer look at and analyse different cost functions. These 
functions are based on the general cost function of Section 2 and differ only in the retrieval 
function. Table 2 gives the specific symbols of this section which are used to construct the 
specific cost functions. 

The cost to derive an ordered TID-list, C~,d(A, w),  will be expressed in C~,d, which 
represents the access cost to a single index. The blocking factor ( B F )  of an index is the 
average number  of {value, TID-list} pairs per page and will among others be used in the 
formula for C,i,d. In the particular case when indices are organized as a B+-tree 
Csind(ah)  = [1OgBF~ nR] q- [SF~nR/BF~h ] - 1. The first term is the height of the index tree 

and the second term is the number of leaf level blocks which are accessed. 
Recall from Section 2 that the cost function C F  consists of two parts, the maintenance cost 

of indices ( C ~ i ~ )  and the selection cost of relevant tuples (C~t). These costs will be the 
subject of the following subsections. 

5.1 Maintenance cost o f  indices 

The maintenance cost due to insertions or deletions of tuples requires an adjustment of all 
the indices. To perform this task we have to access the right index pages for all indices of the 
index set and to rewrite the index page. Let Ci, s be the cost to place a pair {key, TID} after 
the last pair that has the same key in an index file and Cd~ ~ the deletion cost of a pair {key, 
TID} or insertion cost of the same pair with any key. 3 Then the maintenance cost due an 
insertion is expressed by: 

Cth E A 

Then maintenance cost due to deletion is expressed by: 

C del( Olh ) • 
ahEA 

Table 2 
Additional notations 

NA = full index set, i.e., contains all attributes of relation R 
SNA W = set of attributes involved in the WHERE part of an operation w 
SNA u = set of attributes which has to be updated 
Cmain(A ) = maintenance cost of an index set A 
C ... .  (A) = C~a,n(A ) + Ewe w fwC,.d(A, w) 
Cs~e(ah) = costs to access to an index a h 
BEth = the blocking factor of an index on a h 

3 The formulae for Ci, s and Cd,t can be found in [24] in the case indices are organized as B +-trees. 
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The maintenance cost due to tuple updates require deletions of the pairs {value, TII)} with 
the old values and the insertions of the pairs with the new values. An estimation for the cost 
is :  

E 2Cdel(Oth), 
a h E A N S N A  u 

in which SNA,  is the set of attributes which has to be updated for update u. 
Let  I be the set of tuple insertions, D the set of tuple deletions and U the set of tuple 

updates. If we take the frequencies of each insertion f/, deletion fd and update f ,  into 
account, then the maintenance cost of an index set A can be written as: 

Cmain(A)= E fii E Cins(Oth) q- E fd E Cdel(Oth) I E fu E 2Cdel(Oth) . 
i E l  a h E A  d E D  a h E A  lIEU a h E A A S N A  u 

5.2 Selection costs of  relevant tuples 

Recall that the selection costs (Cset) of relevant tuples in processing an operation w with 
an index set A consists of two parts. The first part is the cost required to form the TIDs lists 
of tuples which can be resolved with index set A (Cind). The second part is the cost required 
to retrieve the tuples which remain after the intersection of the TIDs lists (Cre,). 

The expected number of page accesses to form the lists of TIDS when an operation w 
requires a selection on relation R is: 

w)= E 
a h E A O S N A  w 

in which SNA w is the set of attributes involved in the W H E R E  part of w. 
The number  of tuples Tw(A ) that has to be retrieved for w after intersecting the TIDs lists 

is:  

Tw(A) = nR 1-I SFa . 
a h E A A S N A  w 

There  are several functions available to retrieve the tuples given an ordered TID-list. Some 
of them will be discussed in the next subsection. 

5.3 Retrieval functions 

The simplest retrieval function one can think of, assumes that each TID results in one 
page access. Although this assumption is not very realistic, especially not when the blocking 
factor is large, it is used in several cost functions [13, 16]. The first retrieval function we 
consider is a variant of this simple function. Suppose T is the number of tuples that has to be 
retrieved and p the number of pages on which the tuples of a relation are stored. Then the 
expected number  of page accesses (NPA) is the minimum of {p, T}, further denoted as 
rain{p,  T}. 

In the second function the retrieval of T tuples is modelled as drawing T tuples from p 
pages with replacement of the tuples, i.e. a tuple can be selected more than once at a time. 
This leads to the following formula NPAca,de,,s = p(1 - (1 - 1 /p) r ) .  The justification of the 
formula can be found in [7, 26]. 

The third retrieval function deals with the retrieving strategy based on drawing T tuples 
from p pages without replacement,  i.e., a tuple cannot be selected more than once at a time. 
This strategy leads to the following formula NPA Vao = p(1 - 1-IT= 1 ((nd - i + 1)/ (n  - i + 1)), 
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in which n is the total number of tuples and d = 1 - 1/p. The proof of this formula can be 
found in [26, 12]. For practical reasons several researchers approximate this function [4, 14, 
22]. A simple and good approximation of the function given by Bernstein et al. [4] is: 

NPA Bernstein 
p for T <  I P  

= ~ T + p )  for l p < T < 2 p  
for 2p < T .  

It is this approximation that will be used in the third retrieval function. 

5.4 Three cost functions 

We will present three different cost functions CFi, i = 1 ,2 ,3 ,  based on the earlier 
discussed retrieval functions. (Variants of) these cost functions are used by several re- 
searchers, see among others [2, 3, 6, 13, 16, 18, 24]. In the first cost function CFI we use the 
retrieval formula Cre,(Tw(A))= rain{p, Tw(A)} to retrieve Tw(A ) tuples. So, the following 
holds for processing a workload W: 

CFI(A ) = Cmain(A) q- ~ f~(C~,d(Z, w) + min(p ,  Tw(A)} ) . 
w ~ W  

Because the maintenance cost of an index and the access cost to an index is constant we will 
denote them as Cm~,d. Thus, 

CFI(A) = Cmi,d(A) + ~ fw min{p,  T~(A)} , 
w E W  

in which Cm~,d(A ) = Cma~,(A ) + E w~ w f~Ci,~(A, w). 
The following proposition describes the behaviour of CF~. 

Proposition 5.1. The cost function CFI(A ) is supermodular for a workload W on the domain 
of  index sets A for which holds: V w E W: Tw( A) <~ p and submodular on the domain of  index 
sets A for which holds: Vw ~ W: T~(A) > p. 

For the proof of the proposition we refer to appendix A. To illustrate the use of the 
proposition we give the following example. 

Example 5.1. Consider a workload consisting of one operation w, a relation R with the set of 
attributes {a, b, c, d, e} and the function CF 1. The task is to select an optimal set of 
secondary indices. According to Proposition 5.1 each index set belongs to either the 
supermodular part or the submodular part. Consider two initial index sets the empty index 
set {} and the full index set NA. Let us assume that processing the operation with N A  leads 
to less than p retrievals, i.e. Tw(NA)< p, and processing the operation with {} leads to 
T~({})~>p. So, {} belongs to the submodular part of CF~ and N A  belongs to the 
supermodular part. Suppose that the processing cost for w with {} is 40 and the processing 
cost with NA is 30. Assume further that we have computed the processing cost for w with the 
index sets given in Table 3. 

Because the index set {} belongs to the submodular part we can apply Proposition 4.5. 
This proposition says that an index is desired on the attributes a, c and e for all index sets 
belonging to the submodular part (because all these index sets includes the empty set index 
set). Applying Proposition 4.3 for the set NA,  which belongs to the supermodular part 
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Table 3 
Processing cost of q with several index sets 

S. Choenni et al. 

a~, {} U {a~,) CF~ a' h NA\{a'h} CFj 

a {a} 39 a {b, c, d, e} 32 
b {b} 41 b {a, c, d, e} 29 
c {c} 38 c {a, b, d, e} 38 
d {d} 42 d {a, b, c, e} 35 
e {e} 38 e {a, b, c, d} 28 

results in the conclusion that an index on the attribute a, c and d is desired for all the index 
sets belonging to the supermodular part (because all these index sets are a subset of NA). 

Then,  it is easy to see that an index on the attributes a and c is desired for all index sets. 
So, a and c will always belong to the optimal set. The gain achieved by applying the 
Propositions 4.5 and 4.3 is that instead of evaluating 25 sets we have now to evaluate 20 sets 
to find the optimal set if the remaining index sets will be explored by an exhaustive search. 

In Section 6 this idea will be generalized for workloads consisting more than one 
operation.  

In the second cost function CF 2 we use the formula of Cardenas to retrieve Tw(A ) tuples. So, 
the following formula can be derived for CF2: 

CF2(A ) = Cmind(A ) + ~ p ( ]  -- ( l  --  1/p)Tw(A)). 
w~W 

The following proposition describes the behaviour of CF 2. 

Proposition 5.2. The cost function CF 2 is supermodular, under the addition of an index OLh, 
for a workload W on the domain of index sets A for which holds Vw E W: T~(A)<- 
1/(SF~, - 1) logp 1/p(1/SF~) and submodular on the domain of index sets for which holds: 
Vw E ~V: Tw(A ) > 1/(SF~ - 1) logp_l /p(1/SF~) .  

For  a proof  of the proposition we refer to the appendix. This result was earlier achieved by 
[2, 3]. In these papers it is asserted that it is reasonable to approximate CF 2 as a pure 
supermodular  function. This means that Propositions 4.2 and 4.3 can be applied to optimize 
CF 2 • 

In the third cost function CF 3 we use the retrieval function of Bernstein resulting in the 
following formula for CF3: 

( rw(A)  
CF3(A)  = Cmind(A) + Z ~I(Tw(A) +P) 

wew [p 

for Tw(A)<~ ½p 
for ½ p <  Tw(A)<~2p 
for Tw(A) > 2p . 

The following proposition describes the behaviour of CF 3. For the proof  we refer to the 
appendix. 

Proposition 5.3. The cost function CF3(A ) is supermodular for a workload W on the domain 
of index sets A for which holds: Vw E W: Tw(A ) <~ 2p and submodular on the domain of 
index sets A for which holds: Vw E W: Tw(A ) > 2p. 
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The fact that the maximal number of page accesses will be reached in a finite number of 
tuple retrievals for the cost functions CF 1 and CF 3 entails the practical significance of 
submodularity for these functions. 

If we had assumed in CF 1 that each retrieval causes one page access than the CFI would be 
a supermodular function whatever the number of tuple retrievals would be [16]. For CF 3 it is 
also valid that the ceiling of the function NPA B . . . .  tein makes submodularity of practical 
importance. The fact that in the formula of Cardenas, NPAcard . . . .  = p(1 - (1 - 1/p)T) used 
in CF2, the maximal number of page accesses will be reached if the number of retrievals will 
be infinite, declares why submodularity hardly plays a role in this cost function. 

5.5 Index sets 

In this section we derive some properties for index sets in view of super- and submodular 
functions. Two index sets that play an important role in the optimizing techniques of sub- 
and supermodular functions are the empty index set {} and the full index set N A .  The 
following proposition summarizes some properties for those index sets and for index sets in 
general. 

Proposition 5.4. Let W be a workload and CF be a cost function o f  the following form 

~ supermodular on the index sets A i f  Vw E W: Tw(A ) <<- kp, k = 1, 2 
CF(A)  = [ submodular on the index sets A if  Vw E W: T~(A)  > kp . 

Then the following holds: 
(1) The empty set belongs to the submodular part o f  CF, i.e. Vw E W: Tw({}) > kp. 
(2) I f  Vw  E W: Tw(NA ) >1 kp then the optimal set o f  CF is {}. 
(3) Let  Asu p be a fixed index set for which holds Vw E W: Tw(As ,p)<-kp  then CF is 

supermodular for all index sets A satisfying A~,p C A C N A .  
(4) Let  As ,  b be a fixed index set for which holds Vw E W: Tw(A~,b)>>-kp then CF is 

submodular for  all index sets A satisfying A C As ,  b C N A .  

Proof. Processing operations with the empty set implies a sequential scan for the operations, 
thus, Tw({}) = nR. Because the blocking factor (BF) is in general bigger than 2, the situation 
n R <- kp = knR /BF  can never occur. So, (1) holds. 

If Vw E W: Tw(NA ) >- kp then this will also hold for each index set because each index set 
is a subset of the full index set and T w is monotonous non-increasing. So, for all index sets 
the retrieval cost for each query will be p page accesses. Each index set except the empty 
index set may entail maintenance cost. So, the empty index set will always be an optimal 
index set. So, (2) holds. 

If Vw E W: Tw(A,up) < kp then this will also hold for all index sets A D Asu p because Tw is 
monotonous non-increasing. Because each index set is a subset of the full index set (3) holds. 

The proof for (4) follows also from the fact that T~ is monotonous non-increasing. [] 

Corollary. Let Wre d be the set o f  operations w o f  a workload W such that Tw(NA ) < kp. Then 
Wre d is relevant for optimizing CF. 

Proof. The workload can be split in two groups, Wre d and W\Wre d. For the group W~Wre d the 
optimal set is the empty set according item 2 of Proposition 5.4. [] 

Note, that the corollary contributes to the reduction of the complexity. It says that 
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operations which requires at least kp tuple retrievals using the full index set can be discarded 
from the optimizing process. Instead of evaluating the cost function with the whole workload 
we may evaluate the cost function now with a smaller workload. 

Summarizing, optimizing a cost function of the form given in Proposition 5.4 for a 
workload W, which a corresponding Wred, s t a r t s  with the conditions: 
(1) Vw E Wred: Tw({} ) ~ kp 
(2) Vw E W, ea: Tw(NA ) < kp. 

6. A framework of  an algorithm for the SIS problem 

This section concerns the utilization of the theory developed in the previous sections in 
designing algorithms for the SIS problem. From this theory we know that a workload W can 
be replaced by a subset Wre a without any adverse effect. Before considering a workload with 
an arbitrary Wre a w e  shall first consider a Wre d which consists of exactly one operation 
(Section 6.1). We will show how the achieved results of Section 5 may be applied to this 
specific Wre a. Section 6.2 will generalize these techniques for a workload with an arbitrary 

Wred • 

6.1 Index selection for a single operation 

For the cost functions CF 1 and CF 3 it is clear from Proposition 5.1 and 5.3 respectively that 
processing an operation,  each conceivable index set can be classified as belonging to either 
the supermodular  or submodular part of the cost functions. From the nature of the retrieval 
functions used in CF 1 and CF 3 we know that the retrieval cost in processing the operation 
will be p page accesses if at least p respectively 2p tuple retrievals are required. So, 
processing the operation with index sets which require more than p tuples is not interesting if 
CF~ respectively 2p if CF 2 is used as cost function because the retrieval cost will be maximal 
in these cases. This implies that for these cost functions the optimal set will be in the 
submodular part or it will be the empty set. Once the optimal set of the supermodular part is 
known it is easy to decide if this is the optimal set of the function or the empty set. 

A technique to walk through the supermodular space will be given. We start by applying 
Proposition 4.3 to the full index set because this set belongs to the submodular part and 
contains all the subsets in this space. Suppose, this results in the conclusion that the set 
{aj . . . . .  a ,}  belongs to the optimal set, we call this the supported set Asp t. Then we 
evaluate Tw(Asp,). If Tw(A~p,)<~ kp, k = 1 for CF t and k = 2 for CF3, then we can apply 
repeatedly the optimizing properties of supermodular function as illustrated in Example 4.1 
with as root the set {aj . . . .  , a,} and as bottom the full index set. This is justified by 
Property 3 of Proposition 5.4. If Tw(A~pt) > kp then we do not have any exact techniques to 
reduce the complexity further. A heuristic is to enlarge the s e t  Asp t with a minimal extra 
number  of proper  indices such that the number of tuple retrievals with the enlarged set 
becomes less than kp. In practice database designers can often rely on rules of thumb to 
produce such indices for a single operation [15]. Then the optimizing techniques for 
supermodular  functions may be applied. The eventually solutions depend then on the extra 
added indices, the better  they will be the better the solution. 

6.2 Index selection for an arbitrary workload 

The input of the algorithm consists of the cost function CF i, the workload Wre d C W~ the 
attributes which have to be indexed according to the database designers and a good index set 
for each operation proposed by the database administrator. 

The output of the algorithm will be a set of advantageous indices and a set of dis- 
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advantageous indices for groups of operations which are subsets of Wre d. By an advantageous 
set we mean a set which will belong certainly to the optimal index set and by a disadvantage- 
ous set we mean a set which will never belong to the optimal index set. The union of the 
groups is Wre d. 

Before giving the body of the algorithm we shall take a closer look at the conditions of 
super- and submodularity for cost functions which have the form as in Proposition 5.4. This 
clarifies the techniques used in the body of the algorithm. As already noticed we can classify 
each index set either as sub- or supermodular with regard to a single operation. Considering 
the se t  Wre d it is theoretically possible to generate the sub- and supermodular index sets for 
each w E Wre d. Table 4 gives a hypothetical example for Wre  d = { W 1 ,  . . . , w 6 }  and index sets 
A 1, . . . ,  A 5. For  the index sets in the table holds A 1 C A :  C • • • C A 5. 

Starting the optimizing process by applying Proposition 4.3 and taking the full index set as 
bot tom this step is legal for some operations with regard to some index sets and for some 
not. For  example, considering Table 3 and assuming that A 5 is the full index set then 
Proposit ion 4.3 would be applied legally for the situations under the solid line in the table. 
The application of Proposition 4.3 will generally lead to a statement that a set of attributes 
will belong to the optimal set, we call this set the supported set Asptl. AS already said this 
s tatement will be not true for all operations. The operations which do not support Asptl c a n  

be detected easily by evaluating Tw(Asptl ). 
The evaluations of Tw(Awt l )  for all w E Wre a will generally lead to two groups, one group 

G 1 containing the operations for which hold Tw(Awt~ )~  kp and the second group G 2 
containing the operations for which hold Tw(Asptl ) > kp. For group G 1 the proposition is 
applied legally and for G 2 no t .  

The optimizing process for Ga can be continued by applying the supermodular properties,  
taking the full index set as bot tom and Awt ~ as root, finally leading to an advantageous set of 
indices Aad 1 ~ Asptl and a disadvantageous set A dis~. 

There  are several ways to deal with the group G e. We will discuss one possibility which 
will be used in the algorithm. We divide G 2 in a minimal number of subgroups G2i such that 
it will be possible to find an index se t  m spt2 i for each subgroup G2i for which holds 
V w  E G2i: Tw(Aw,2i ) <~ kp. Then it is clear that we can apply the optimizing properties of a 
supermodular  function for each subgroup a2i by taking A,pt: ~ as root and the full index set as 
bot tom. Finally for each subgroup G2i we will find an advantageous set of indices Aad2~ D 
Asps: ~ and a disadvantageous set Adi~2 ~. 

The dividing process in subgroups will be done on basis of the proposed index sets for the 
operations by the database administrator. Suppose we have three operations Wl, w 2 and w 3 
which belong to group G 2 for which the database administrator propose the index sets 
{a, b, d}, {a, c, d} respectively {a, b, c, d, e}. Then we may choose Aspt2 i = {a,  d}  because a 
and c are important  candidates for all the sets. Suppose the evaluation of the number  of 
tuple retrievals w i t h  Aspt2 i results in T,q(A~p,2i) < kp, Tw2(AsptZi) < kp a n d  Tw3(Asptei) > kp 

Table 4 
Sub- and supermodular index sets for several operations 

A 1 

A 2 

A3 

A 4 

A 5 

wl w2 w3 w4 w5 w 6 

sub sub sub sub sub sub 

sub sub sub sub l suplsub 

Isu  
sup sup[sub] sup suP l sub 

sup sup sup sup sup sup 
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then w 1 and w 2 will form a subgroup and w 3 another group. Note, in the worst case we will 
have subgroups consisting of only one operation. 

We will give now an informal description of the algorithm. The first step in the algorithm is 
to check the cost function. If the cost function is CF 2 then the optimizing properties of 
supermodular  functions can be applied. In the other cases we take the full index set minus 
the attributes which have to be indexed (NAred) according to the user and apply Proposition 
4.3. If this step leads to the support of a set of indices Asp ' then we evaluate V w E  
Wred: Tw(Aspt). On the basis of the outcome we discern two groups G 1 containing all w's for 
which holds Tw(Aw, ) < kp and G 2 contains the remaining w's. 

For  group G1 we can apply repeatedly the supermodular optimizing propositions taking 
Asp ' as root and N A r e  d a s  bottom finally leading to an advantageous set of indices A~d I and 
the disadvantageous set Adisl. 

Group G 2 will be divided in several subgroups G2i such that the supermodular properties 
can be applied leading for each subgroup Gzi an advantageous set of indices Aad2~ and a 
disadvantageous set of indices Adds2 ~. 

Note,  the algorithm does not propose an index set for the workload but it generates for 
groups of operations the advantageous and disadvantageous indices. This information may 
be useful in the selection of indices in some approaches. We discuss briefly one alternative to 
use this information. 

We combine all the advantageous and disadvantageous sets of all the subgroups leading to 
an advantageous s e t  A ad and a disadvantageous A di s for the whole workload. Then the 
original SIS problem is replaced by a more 'simple' one since we do not have to consider the 
attributes in A,d and Ad~ ~. Then, the simple SIS problem may be solved by an exhaustive 
search. 

To get the advantageous s e t  A a d  2 and the disadvantageous s e t  Adis2 for group G 2 w e  have 
to combine all the sets A~dZi respectively Adi~2 ~. Then we have to combine Aacl2 with the 
advantageous index set of G 1, Aaa ~, resulting in Aad. A similar procedure holds for 
achieving A d~ ~. For the combinations of the sets one can use simple or more advances 
techniques [15]. A simple technique may be the rule 'if an index is supported by x % of the 
operations and it is not a disadvantageous index for the other operations then it belongs to 
Aad'. To obtain the set Aa~ ~ a similar rule can be used; 'if an index is disadvantageous for y %  
of the operations and it is not an advantageous index for the other operations then it belongs 
to Adg~'. If (x, y) = (100, 100) then A~d contains the indices which is advantageous for each 
group and A ais the indices which is disadvantageous for all groups. The value for x and y may 
be derived from experiments. 

7. Foundation for ADD and DROP algorithms 

Whang's D R O P  algorithm [24] starts by considering the set made up of all possible indices 
and, at each step, drops the index which would cause the highest decrease in cost. When the 
function value cannot be further lowered by leaving out any of the indices left, the algorithm 
attempts to cut out two indices at time, then three indices, and so on, until no further 
reductions are possible. The cost function on which this algorithm is applied is quite similar 
t o  C F  3. The technique to drop one index at a time is just an application of Proposition 4.6 
and it is a property of submodular functions. As we can see from Proposition 5.3, C F  3 does 
not behave completely as a submodular function. Later on in this section we shall discuss the 
consequence of applying the submodular property on this cost function. 

Whang compares his algorithm which the A D D  type algorithm with regard to the same 
cost function C F  3. An A D D  type algorithm starts from an empty set and, at each step, it 
adds the index most capable of reducing the cost and it stops when there are no more 
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cost-reducing indices. This rule is just an application of Proposition 4.5 which is also a 
proper ty  of submodular functions. So, the A D D  and the D R O P  algorithms are not 
competit ive but are supplementary in the case of a submodular function. 

We discuss the consequence of applying the submodular properties to CF 3. Applying the 
A D D  algorithm to this cost function starting with an empty index set is a legal step 
(Proposit ion 5.4). Suppose this step results in an advantageous index set. In the A D D  
algorithm one of the elements of this set will be chosen, let us call this set Aaa. Then it is not 
necessary that Aaa will belong to the submodular part for all operations. In general, for some 
operations Aaa will be in the submodular part, while for others in the supermodular  part. 
Applying again the A D D  algorithm means that this is applied illegally to the groups of 
operations for which hold that Aaa was in the supermodular part. At each addition of an 
index to Aaa we may expect in general that the number of operations for which the A D D  
algorithm is applied illegally will grow. 

Another  point is that once an attribute is added as an index to A aa, it will always belong to the 
set. So, if on a moment  a disadvantageous index is added to Aaa, which may be the case when 
most of the operations behave like supermodular,  then this will be always in the index set. 

Applying the D R O P  algorithm on CF 3 will be in general a bad start from a theoretical 
point of view because the set belongs to the supermodular part. But the D R O P  algorithm 
will never eliminate an advantageous index (compare Proposition 4.6 with Proposition 4.3 
which we apply). The D R O P  algorithm eliminates the indices which would be a candidate 
for further  exploration. This is probably the reason why the optimal index set may be 
missed. The success of the D R O P  algorithm is that it provides all advantageous indices. 

It is noteworthy that when the A D D  and D R O P  algorithms are allowed to apply this can 
be performed in one step instead of the several steps described above. This is justified by 
Propositions 4.5 and 4.6. 

8. Concluding remarks and further research 

We have described the problem of secondary index selection, the so-called SIS problem. 
Adding an index to a set of selected indexes can cause, among others depending on the cost 
function, two different results. The first result is that ' the addition of an index to a bigger 
index set is more profitable than the addition of the same index to a smaller index set'. This 
is called Observation 1. The opposite observation (Observation 2) implies that ' the larger an 
index set the less the gain of an index addition will be'. It has been shown that in reality both 
observations can occur. 

Situations in which the first observation holds can be captured by submodular functions; 
the second observation is covered by supermodular functions. Mathematical properties of 
sub- and supermodular  functions have been derived. It appears that SIS problems that can 
be described completely by submodular (or supermodular) functions can be solved easily, 
that means with a low complexity. 

We have analysed three representative cost functions and we exposed that two of the cost 
functions cannot be classified as a pure super- or submodular function. Depending on the 
workload,  a sub- or a supermodular function is obtained. To deal with this situation we 
developed an algorithm that forms groups of operations of the workload. It then determines 
disadvantageous and advantageous indices for each group. In a rough sense this can be 
considered as a partly generalization of [15]. On basis of a conceptual schema and each 
query separately an ideal storage structure (so among others secondary indices) for the 
relations is determined. Then all the ideal storage structures are combined to determine the 
eventually storage structure. In this paper, instead of considering each query separately we 
presented a technique to consider groups of queries. 
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The analysis of the cost functions in terms of super- and submodular functions gives also a 
better understanding of the ADD and DROP algorithms. They have been described as being 
successful [24] but the mathematical foundation behind the success has not been given. It 
appears that these algorithms are based on the mathematical properties of submodular 
functions. 

It should be noticed that in [2, 3, 16] it was already pointed out how to handle supermodu- 
lar functions. But the lack of a complete mathematical foundation of super- and submodular 
functions has led to confusions. For example, Barcucci et al. [3] have proved that a variant of 
cost function CF 2 could be considered as supermodular and then they applied the optimizing 
properties of these functions. After this process was finished they applied the heuristic 
DROP and ADD algorithms to reduce the complexity further. It is clear that this step 
cannpt be justified because the ADD and DROP algorithms are based on properties of 
submodular functions. 

A topic for future research is the elaboration and implementation of the algorithm 
described in this paper in a tool for physical database design [9]. The application of the 
algorithm to real problems and the evaluation of the results have to be done in the future. A 
last research topic concerns the extension of the theory to operations that concern more than 
one relation, that is to joins. 

Appendix A. Derivation of the behaviour of specific cost functions 

In this appendix the proofs of the Propositions 5.1, 5.2 and 5.3 are given. 

Proposition 5.1. The cost function CFI(A ) & supermodular for a workload W on the domain 
of index sets A for which holds: Vw E W: T~(A) <<-p and submodular on the domain of index 
sets A for which holds: Vw E W: T~(A) > p. 

Proof. Suppose that a'h~A. Then the following holds: 

ACFa(A U a'n) = CF,( A U {a;,}) - CFI(A ) = Cmi.d(A U {o~}) 

+ ~ L rain{p, Tw(a U {a~,})} 
w E W  

= Cm~.d({a~}) + ~ f~(min{p, T~(A U {~;.})} - rain{p, Tw(A)}) 
wEW 

Cmi"d( { a'h} ) -- (~ew fw(min(p' Tw(A)} - rain{ p, SF~j. T.,(A)})). 

It is obvious from Fig. 4 that 

min{p, T~(A)} - min{p, SF~ T~(A)} 

[ Tw(A)(1 - SF~) for Tw(A ) <p  

= I ~ - S F ~ h  Tw(A) for p ~ Tw(A ) ~ p 
P SF~,~, 

for T~(A) > SF~----~ " 
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~ g e  
a c ~ s ~ s  

TwSE., 
"I'~(A) i % 

i 

P p/SF 4 # tuples to be 
retrieved 

Fig. 4. Expected number of page accesses using the retrieval function min{p, Tw(A)}. 

Because Tw is a monotonous non-increasing function, - T w is monotonous non-decreasing. 
So, we conclude that min { p, T w (A) } - rain { p, SF,~ Tw (A) } is monotonous non-increasing 
for Tw(A) < p and monotonous non-decreasing for Tw(A ) >t p. Because the sum of monoto- 
nous non-decreasing functions is a monotonous non-decreasing function and the sum of 
non-increasing functions is a non-increasing function the following holds: 
(1) If Vw E W: T~(A) < p  then E ~  w (rain{p, Tw(A)} - min{p, SF~T~(A)})  will be 

monotonous non-increasing. 
(2) If V w E  W: T,~(A)>~p then E~E w (min{p, Tw(A)}-  min{p, SF=aT~(A)}) will be 

monotonous non-decreasing. 
Therefore,  according to Proposition 4.7 CFI(A ) is a supermodular function if Vw E W: 

Tw(A ) < p and submodular if Vw E W: T~(A) >-p. [] 

Proposition 5.2. The cost function CF 2 is supermodular, under the addition of  an index t~ h, 
for a workload W on the domain of index sets A for which holds Vw E W: Tw(A)<- 
1/(SF~ - 1) logp_l/p(1/SF~) and submodular on the domain of  index sets for which holds: 
Vw E W: Tw(A ) > I/(SF~z - 1) logp_l/p(1/SF~ ). 

Proof. Suppose that a'hf[A. Then the following holds: 

A CF2( A I,J or'h) = CF2( A U {oe~}) - CF2( A ) 

= Cmina(A U {Oe~}) + £ f~p(1 - (1 - l ip)  rW<aU{~'a})) 
wEW 

-(Cmind(A)+ ~ fwp(1--(l--1/p)r'(A))) 

= Cmind({Ollh}) q- £ f w ( p ( 1  - -  ( 1  - -  1/p) r'(aU{~a})) 
wEW 

- p ( 1  - (1 - 1/p)rw(a))) 

= C"i"d({ah}')-- ( ~ w  f~(p(1 --(1 
1/p) r~(A)) 

- p ( 1  - ( 1  - 
/ 
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T h e  der iva t ive  of  p (1  - (1 - 1/p) rw(A)) -p(1 - (1 - 1/p)T~(A)SF~) with r e spec t  to Tw(A), 
d'(T~(A)) is: 

: s  d (T~(A)) p F.~Tw(A)(1 1/p)SF~Jw(A)log 1 1 

- p T ' ( A ) ( l -  l /p )r~(A) log(1-1)  . 

C o n s i d e r i n g  d'(T~(A)) we see tha t  d'(Tw(A)) <~ 0 for  T~(A) <~ ( 1 / S F ~  - 1 ) l o g p _ l / p ( 1 / S F ~ )  

and  d'(Tw(A))>0 otherwise .  T h e r e f o r e ,  accord ing  to P ropos i t i on  4.7 CF2(A ) is super -  
m o d u l a r  if Vw E W:  T~(A) <- ( 1 / S F ~ :  - 1) logp_l/p(1/SF~) and  s u b m o d u l a r  if Vw ~ W:  
Tw(A)> I/(SF,~ - 1)logp_l/p(1/SF,~ ~. [] 

Proposition 5.3. The cost function CFa(A ) is supermodular for a workload W on the domain 
of index sets A for which holds: Vw E W: T~(A) <~ 2p and submodular on the domain of 
index sets A for which holds: Vw E W: T~(A) > 2p. 

Proof .  S u p p o s e  tha t  a 'h~A.  Then  the  fo l lowing holds  for  CF3(A U ah):  

CF3(A U {a~,}) = Cmind(A U {ot~}) 

[ Tw(A)SF~ 

+ ~ ]  3 (T~(A)SF~ 

LP 

for  Tw(A ) <- 
2SF~ 

p 2__fl__p 
+ p )  for  ~ < Tw(A )<~ SF~ 

for  Tw(A )> 2p 
SFoz " 

It  is obv ious  f rom Fig.  5 tha t  ACF3(A U a'h) d e p e n d s  on  the  se lec t iv i ty  fac tor  SF~A. F o r  
SF~,~ >i 1 the  fo l lowing holds :  

page 
accesses 

m 

0.Sin 

l 

0.5m 2m 8m 
tuples 

Function 1 represents the number of tuples(T~(A)) that have to be retrieved considering an index set A while the other 
functions represent the number of tuples that have to be retrieved considering an index set (A U {a~}) with different 

1 selectivity factors SF~,,. for t~. In function 2, SF~, = ~,1 in function 3, 8F,~ k > ~ and in function 4, SF,~, < ~. 

Fig. 5. Expected number of page accesses using the retrieval function NPA B,r,,,,i,- 
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A CF3( A t_J a'h) = C,ni,,a( {Ot'h} ) 

T~(A)(1 - SF~) 

1 
- SF~) + Tw(A)(3 - 5 p 

1 

1 
- ~ ~ T ~ ( A ) ( 1 -  SF~) 

w ~ W  

2 1 
-~ - -~ T~(A)SF~ 

0 

1 
for T~(A) < ~p  

for p P <~ T~(A)< 2SF~ 

for ~ <~ T~(A)< 2p 

2p 
for 2p ~< T~(A) < S!7------~ 

2p 
for T~(A)>~ ~r~S '~'- " 
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For SF~ < ~, ACF3(A tJ t~'h) becomes: 

ACF3(A U a'h) = C,,,~,d( {a'h} ) 

1 
T.(A)(1 - SF~h ) for T. (A)  < ~ p 

T~(A) - SF~ + 5  p f o r ~ < T . , ( A ) < 2 p  

- T~(A)SF~ + p 

1 2 
--~ Tw(A)SF~ +-~ P 

for 2p<~ T~(A)< P 
2SF,~ 

P 2.__LP 
for ~ < T,,(A)) 

SF~ 
- ~ h  

2p 
for T~(A)~  SF,,I, . 

In the case of SF., ~ ~ we can distinct two situations. It can easily be verified for SF > 
h a~ 

that T~(A)( 1 - S F . , ) +  X p is non-decreasing on p/2 <~ T~(A)<p/2SF.~,  while it is non- 
increasing on this area for } ~< T~(A) <~ 1. 

Because T~ is a monotonous non-increasing and - T ~  monotonous non-decreasing the 
following holds: 

1 1 1 
-4 <<" Tw(A) ~< 3:T,~(A)(1 - SF.~) for Tw(A ) < ~ p is non-increasing, 

1 _ S F ~ ) +  1 P KTw(A)< P---P--- T~(A) -~ -~ p for ~ ~ 2SF~ 

is non-increasing, 

1 p 
Tw(A)(1 - SF~) for ~ ~< Tw(A ) < 2p is non-increasing, 

2p 
23 31 Tw(A)SF~ ~ for 2p ~< Tw(A) < ~ is non-decreasing, 
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1 1 
SF~ < ~: T ~ ( A ) ( 1 -  SF, z) for T~(A)<~ p is non-increasing, 

Tw(A ) - SF,~) + -~ p for ~ ~< Tw( A ) < ~ is non-increasing, 

P - Tw(A)SF~ + p for 2p ~< Tw(A ) < ~ is non-decreasing, 

1 T~(A)SF,~ + 2 p 2p - 3  3 p for ~ < Tw(a)<_ ~ is non-decreasing. 

Keeping in mind that the sum of non-increasing respectively non-decreasing functions is a 
non-increasing respectively non-decreasing function we conclude that when all SF~h <~ ~, 
CF3(A ) is supermodular if Vw E W: Tw(A ) < 2p and submodular if Vw ~ W: Tw(A ) >! 
2p. [] 

References 

[1] H.D. Anderson and P.B. Berra, Minimum cost 
selection of secondary indexes for formatted files, 
ACM Trans. Database Syst. 2 (1977) 68-90. 

[2] E. Barcucci, A. Chiuderi, R. Pinzani and M.C. 
Verri, Index selection in relational databases, 
Proc. Mathematical Fundamentals of Database 
Syst. 89 (1989) 24-36. 

[3] E. Barcucci, R. Pinzani and R. Sprugnoli, Opti- 
mal selection of secondary indexes, IEEE Trans. 
Software Engrg. 16 (1) (1990) 32-38. 

[4] P.A. Bernstein, N. Goodman, E. Wong, C.L. 
Reeve and J.B. Rothnie, Query processing in a 
system for distributed databases (SDD-1), ACM 
Trans. Database Syst. 6 (4) (1981) 602-625. 

[5] R. Bonanno, D. Maio and P. Tiberio, An ap- 
proximation algorithm for secondary index selec- 
tion in relational database physical design, Com- 
put. J. 28 (4) (1985) 398-405. 

[6] F. Bonfatti, D. Maio and P. Tiberio, A 
separability-based method for secondary index 
selection in physical database design, methodolo- 
gy and tools for data base design, S. Ceri, ed. 
(North-Holland, Amsterdam, 1983) 149-160. 

[7] A.F. Cardenas, Analysis and performance of in- 
verted database structures, Commun. ACM 18 
(5) (1975) 253-263. 

[8] R. Choenni, H.M. Blanken and S.C. Chang, 
Index selection in relational databases, to appear 
in Proc. lnternat. Conf. on Computing and Infor- 
mation (1993). 

[9] R. Choenni, H.M. Blanken and S.C. Chang, On 
the automation of physical database design, Proc. 
ACM Syrup. Applied Computing (1993) 358-368. 

[10] D. Comer, The difficulty of optimum index selec- 
tion, ACM Trans. Database Syst. 3 (4) (1978) 
440-445. 

[11] S. Finkelstein, M. Schkolnick and P. Tiberio, 
Physical database design for relational databases, 
ACM Trans. Database Syst. 13 (1) (1988) 91- 
128. 

[12] A.H. Haitsma, A combinatorial problem related 
to the selection of indices for a file, Memoran- 
dum Nr. 98, Department of Applied Mathe- 
matics, Twente University of Technology, En- 
schede, 6p., 1975. 

[13] M.Y.L. Ip, L.V. Saxton and V.V. Raghavan, On 
the selection of an optimal set of indexes, IEEE 
Trans. Software Engrg. SE-9 (2) (1983) 135-143. 

[14] W.S. Luk, On estimating block accesses in data- 
base organizations, Commun. ACM 26 (11) 
(1983) 945-948. 

[15] S. Rozen and D. Shasha, A framework for au- 
tomating database design, Proc. Internat. Conf. 
on Very Large Databases (1991) 401-411. 

[16] M. Schkolnick, The optimal selection of sec- 
ondary indices for files, lnformat. Syst. 1 (1975) 
141-146. 

[17] M. Schkolnick, A survey of physical database 
design methodology and techniques, Proc. Inter- 
nat. Conf. on Very Large Databases (1978) 474- 
487. 

[18] M. Schkolnick and P. Tiberio, Estimating the cost 
of updates in a relational database, ACM Trans. 
Database Syst. 10 (2) (1985) 163-179. 

[19] D.M. Topkis, Minimizing a submodular function 
on a lattice, Operat. Res. 26 (2) (1978) 304- 
321. 

[20] J.D. Ullman, Principles of Database and Knowl- 
edge-Base Systems, Vol. I (Computer Science 
Press, Rockville, MD, 1988). 

[21] K. Whang, G. Wiederhold and D. Sagalowicz, 
Separability- An approach to physical database 
design, Proc. lnternat. Conf. on Very Large Data 
Bases (1981) 487-500. 



On the selection of secondary indices 233 

[22] K. Whang, G. Wiederhold and D. Sagalowicz, 
Estimating block accesses in database organiza- 
tions: a closed noniterative formula, Commun. 
ACM 26 (11) (1983) 940-944. 

[23] K. Whang, Property of separability in physical 
design of networkmodel databases, Informat. 
Syst. 10 (1) (1984) 57-63. 

[24] K. Whang, Index selection in relational databases 
in: S. Ghosh, Y. Kambayashi and K. Tanaka 
(eds), Proc. Foundations of Data Organization, 
(1987) 487-500. 

[25] L.A. Wolsey, Maximising real-valued submodu- 
lar functions: Primal and dual heuristics for loca- 
tion problems, Math Operat. Res. 7 (3) (1982) 
410-425. 

[26] S.B. Yao, Approximating block accesses in data- 
base organizations, Commun. ACM 20 (4) (1977) 
260-261. 

Sunii Choenni holds a master 
degree in Theoretical Compu- 
ter Science from the Delft 
University of Technology. 
Currently, he is a Ph.D. candi- 
date at the Computer Science 
department of the University 
of Twente. During November 
'92 until February '93 he was a 
visiting researcher at the Uni- 
versity of Genoa (Italy). His 
research topics are physical 
design of relational and ob- 
ject-oriented databases. 

Henk M. Blanken joined, after 
receiving his master degree in 
Mathematics, in 1966 Philips 
Computer Industry (Apel- 
doom, The Netherlands). In 
1971 he joined the University 
of Twente as an associate pro- 
fessor of Compmer Science. 
From this university he re- 
ceived a Ph.D. degree in 
Computer Science in 1984. 
During a one-year visit to the 
IBM Scientific Center at 

Heidelberg he contributed to the AIM/II  project. His 
current research interests are non-standard database 
applications and storage structures. 

Thiel Chang was born in 
Leiden, The Netherlands, in 
1942. He received his degree 
in Mathematics from the Uni- 
versity of Leiden. He joined 
the computer science arena in 
1978. During the last 12 years 
he has held many senior man- 
agement positions at large 
Software and Maintenance de- 
partments. Currently, he 
heads the Research & De- 
velopment department of the 

GAK. He has given invited talks on his research at 
conferences and working groups in Europe and served 
in program committees on conferences. He is a mem- 
ber of the ACM. His current research interests are 
software engineering, knowledge-based reusable soft- 
ware design, workflow management, expert systems, 
object-oriented databases and software development 
based on specification languages. 


