
Data & Knowledge Engineering 11 (1993) 207-233 207
North-Holland

DATAK 183

On the selection of secondary indices
in relational databases

Suni l C h o e n n i a'*, H e n k M. B l a n k e n a and Thie l C h a n g b
aUniversity of Twente, Department of Computer Science, P.O. Box 217, 7500 AE Enschede,
The Netherlands

bAdministration Office: G.A.K., Department of Research and Development, P.O. Box 8300,
1005 CA Amsterdam, The Netherlands

Received 11 November 1992
Revised 21 June 1993

Abstract

An important problem in the physical design of databases is the selection of secondary indices. In general,
this problem cannot be solved in an optimal way due to the complexity of the selection process. Often use is
made of heuristics such as the well-known ADD and DROP algorithms. In this paper it will be shown that
frequently used cost functions can be classified as super- or submodular functions. For these functions several
mathematical properties have been derived which reduce the complexity of the index selection problem.
These properties will be used to develop a tool for physical database design and also give a mathematical
foundation for the success of the before-mentioned A D D and DROP algorithms.

Keywords. Physical database design; secondary index selection; A D D and DROP algorithms; supermodular
functions; submodular functions.

1. Introduction

Physical database design is an important step in designing databases and aims to generate
efficient storage structures for the data. One of the choices that has to be made is that of
selecting efficient access paths. Most relational database systems provide indices as one of
their main access paths. Indices can be considered as auxiliary files that allow to retrieve
tuples satisfying certain selection predicates without having to examine the whole relation.
On the other hand, updating the database causes an index to be updated to remain
consistent with the new database state. So, an index speeds up retrieval and slows down
maintenance.

In general two types of indices can be distinguished, namely primary and secondary indices
[8]. In the case of a primary index, the tuples in the relation are ordered on the indexed
attribute. This is not the case for a secondary index; from now on we concentrate on
secondary indices.

A relational database consists of many stored relations and each stored relation can have
many secondary indices. The index set of a (relational) database is the set of indices that are
selected for the database. A cost function estimates the cost of processing a workload for a
database with a given index set. In this cost function the benefits and the drawbacks of

* Corresponding author.

0169-023X/93/$06.00 (~) 1993 - Elsevier Science Publishers B.V. All rights reserved

208 S. Choenni et al.

indices are taken into account. The problem of secondary index selection, further denoted as
the SIS problem, is NP-complete as demonstrated in [10]. The problem for a single relation
can be solved by examining 2 ~ possible index sets, in which n represents the number of
candidate indices in the database. The aim is of course to find the optimal (or a near-
optimal) index set without having to examine all sets [1]. Much research has been devoted to
the SIS problem using analytical approaches [6, 16, 21], heuristic approaches [5, 11, 13, 24]
or combinations of both approaches [2, 3]. The cost function in the approaches differs on
two main points. First, some of the approaches use at most one index per relation to process
an operation [5, 6, 11] while others use all usable indices [2, 3, 13, 16, 24]. Second, some
approaches concern the SIS problem for a single relation [13, 16] while others concern the
SIS problem for more than one relation [3, 5, 6, 11, 21].

Whang et al. [21, 23] proposes the so-called separability approach. In this approach, which
can be applied if the DBMS satisfies certain conditions, the SIS problem for the whole
database is split up into many, smaller problems, namely one SIS problem per relation.
After determining the optimal set of indices for each relation, the union of these sets will be
the solution for the whole database. With this approach we have to inspect ~ 7= 1 2hi, in which
r is the number of relations in the database and n i is the number of candidate indices for the
ith relation. So, the complexity has been reduced from IlT_~ 2 ~i to F~ 7= ~ 2 hi. From now on we
concentrate on the SIS problem for a relation. It is important to note that in general even for
this restricted case, exhaustive search is not a feasible solution.

An important part of a cost function is the so-called retrieval function which estimates the
number of page accesses needed to fetch the tuples addressed by an ordered list of pointers.
Schkolnick [16] uses a simple but unrealistic retrieval function in his cost function leading to
the nice property of 'regularity'. On the basis of experiments Schkolnick estimates that the
regularity property decreases the complexity to 2v-~* log n on the average, in which n is
again the number of candidate indices.

Barcucci et al. [2, 3] adopt a more realistic retrieval function and show that their cost
function also satisfies by approximation the regularity property. They solve the SIS problem
by utilizing regularity combined with the ADD and DROP algorithms. The ADD and
D R O P algorithms use heuristics and are described in [24].

Until now we discussed approaches that consider the total load on the database as a
whole. An optimal index set for the whole load is searched for. Another approach is
followed in [15]. There an ideal storage structure is determined for each load operation
separately. Such a storage structure includes an index set. Then these storage structures are
combined to get a storage structure which will be profitable for the total load on the
database.

In this paper we describe super- and submodular functions and their mathematical
properties. Supermodularity appears to be equivalent to the before-mentioned regularity.
We consider some generally accepted retrieval functions and show that the corresponding
cost functions are a combination of super- and subrnodularfunctions. Based on mathematical
properties we develop an algorithm that reduces the complexity in optimizing the cost
function. In a rough sense this algorithm is a partly generalization of [15]. Instead of single
operations, we consider groups of operations and this reduces the complexity of combination
steps. It is certainly not claimed that the algorithm is sufficient to solve the SIS problem in
general, but it is a step in the direction of the optimal solution. In this paper also attention is
paid to the ADD and DROP algorithms. It appears that the mathematical properties of
submodular functions give these algorithms a sound, mathematical foundation. So we show
that justifying these algorithms by considering supermodular functions, as is done by
Barcucci et al., is mathematically not correct.

The organization of the paper is as follows. In Section 2 we present some assumptions

On the selection of secondary indices 209

related to the SIS problem and derive a general cost function. In the cost function, a
retrieval function plays a part. In Section 3 we describe the behaviour of the retrieval
function under influence of an increasing number of indices. This behaviour introduces the
concepts of super- and submodularity which are defined more precisely in Section 4. We
derive relevant, mathematical properties for these functions. Then we establish the relation-
ship between these functions and the SIS problem and show how the properties can be
applied in optimizing pure super- or submodular functions. The general cost function
introduced in Section 2 gives rise to three specific cost functions depending on the chosen
retrieval function. In Section 5 it will be proved that the specific cost functions are not pure
super- or submodular but behave sometimes as a super- and sometimes as a submodular
function. Section 6 describes an algorithm to utilize the derived properties of super- and
submodular functions in solving the SIS problem. In Section 7 it is shown that submodular
cost functions provide a foundation for the DROP and ADD algorithms. Section 8 concludes
the paper and gives directions for further research.

2. General cost function

In this paper we will deal with relational databases. A relation R is defined over some
attributes, such as, al , a 2 an, and is a subset of the Cartesian product dom(al)×
dom(a2) × . . . x dom(an). Dorn(a~) is the set of values assumed by the attribute a t.
Databases are stored on an external paged memory. Many relational database management
systems (DBMS) store only tuples of one relation on a page. Examples of such DBMSes are
Ingres and System R [20]. From now on we assume that pages contain only tuples of one
relation. For a given value a E dom(aj), use of an index produces a list of tuple identifiers
(TIDs). These TIDs allow direct retrieval of the stored tuples possessing the value a for
attribute aj. For example, if an index is organized as a B +-tree, leaf pages consist of (value,
TID-list) pairs for every unique value of the indexed attribute.

The costs of processing a workload depends on many factors, such as storage costs,
number of page accesses, processor time, etc. In this paper we consider the number of page
accesses as the only cost factor.

Finally, we assume that the cardinality of the relations remains constant. To be more
precise, the frequency of tuple insertions and tuple deletions is such that the total number of
tuples of each relation remains constant in two consecutive choices of index sets.

Workload on a relation
We distinguish four possible operations in the workload on a database; queries, updates,

insertions and deletions. Each of these operations include one or more steps.
• Query

(1) Select the relevant tuples from the data pages
(2) Output the relevant tuples to user

• Update of tuples
(1) Select the relevant tuples from the data pages
(2) Update the specified attributes and rewrite the data pages
(3) Update the relevant indices

• Deletion of tuples
(1) Select the relevant tuples from the data pages
(2) Remove the tuples and rewrite the data pages
(3) Update the relevant indices

210 S. Choenni et al.

• Insertion of tuples
(1) Select the location(s) where the tuples will be stored
(2) Insert the tuples and rewrite the data pages
(3) Update the relevant indices

We concentrate on steps that influence index selection. The first step of an operation of the
workload is always the selection of the relevant tuple(s). The execution of this step clearly
depends on the available set of indexes, so it has to be taken into account. The second step is
never influenced by the availability of indexes, so it can be ignored, while the third step, if
present, depends only on the presence of indexes. This means that only the first and third
step of an operation are taken into account from now on.

Let us elaborate on the first step of an operation w of the workload W. Consider the
selection of all tuples satisfying a condition that is formulated in conjunctive normal form.
We assume that if a usuable index is available, it will be used. The following actions are
distinguished:
(1) Access all indices corresponding to attributes specified in the query which are usable

search arguments; this gives a list of tuple identifiers (TIDs) per index.
(2) Intersect the lists in order to determine the TIDs of the tuples that satisfy the

conjunction of the conditions on the attributes of an index exists for.
(3) Retrieve the tuples according to the result of the previous action.
(4) Discard the tuples not satisfying the condition on the attributes without an index (false

drops).
The total cost of selecting the relevant tuples is the sum of the costs resulting from each

action. The cost of actions 2 and 4 can be neglected because they take place in main
memory. So the costs of selecting tuples for an operation w with an index set A (denoted as
Csel(A, w)) is the sum of the cost of action 1 (Cind(A, w)) and the cost of action 3
(Cret(Tw(A))), in which Tw(A) represents the number of tuples to be retrieved). For the
used abbreviations, see Table 1.

Updating an index on attribute a h requires roughly reading and writing of the index page
with the old attribute value and doing the same for the new value. The insertion and deletion
of an index requires a reading and writing of the relevant index page. The costs to keep an
index up to date will be defined as the maintenance c o s t (C m a i n ((O l h))) of an index. For a
more accurate cost estimation for updates of indices we refer to [18].

Taking into account a workload W consisting of a set of operations (queries, updates,
insertions, deletions) and the frequency of each operation w E W (fw) the general cost
function for the SIS problem is of the form:

T a b l e 1

Lis t of u sed symbo l s

O:h, 0%
A , A '
W
w

P
nR
SF
T~(A)

= a t t r ibu tes of a r e la t ion R

= index sets
= w o r k l o a d
= an o p e r a t i o n in the w o r k l o a d
= n u m b e r of pages in file in which a re la t ion is s to red
= n u m b e r of tup les in r e l a t ion R
= se lec t iv i ty fac tor of a (rec iproca l of the n u m b e r of d i f fe ren t values)

= n u m b e r of tup les to be r e t r i eved in p rocess ing w wi th index set A
Cind(A , w) = costs to fo rm the o r d e r e d TID- l i s t for w using index set A
Cre,(Tw(A)) = costs for r e t r i ev ing Tw(A) tup les g iven an o rde r ed TID- l i s t

Cse,(A , w) = C, nd(A , w) + C, , (Tw(A))
C~,o,n(A) = m a i n t e n a n c e cost of an index set A

On the selection of secondary indices 211

CF(A) = ~ fw* Csel(m, w) -[- ~ fmain({Oth}),
w~W ahEA

in which
A = an index set,
fw = the frequency of the operat ion w contained in the workload W,
Cs~t(A, w) = C,nd(A, w) + C,e,(Tw(A)),
Cmai, ({ ah }) = the maintenance costs of the index set { a h).

Note , the maintenance cost of an index depends on the frequencies of the insertions,
deletions and updates. Fur thermore , each of these operations entails different cost as will be
discussed in Section 5.

The SIS problem can now be formulated as 'minimize the function CF'. In other words,
find an index set A in an efficient way such that the costs are minimal in processing a
workload W. To solve this problem it is necessary to characterize the behaviour of the
function C~ r This is the subject of the next section.

3. Behavior of the retrieval function Cre t

In this section we will discuss the influence of index sets on retrieval cost. The number of
page accesses needed to retrieve tuples indicated by an ordered TID-list is given by Cre r
Given the condition that the tuples must satisfy and given the index set A, the length of the
TID-l is t can be estimated. To estimate the length it is assumed that attributes are mutually
independent and that the attributes values are uniformly distributed, see further on. There
are for a given TID-list still several ways to estimate the number of page accesses, see
Section 5. A general remark about the function Cr~t can, however, be made.

It can easily be shown that Cr~ t is a monotonous non-increasing function of the index set A.
I f the index set is empty , the file has to be scanned sequentially and this amounts to p page
accesses, where p is the number of pages in the file in which the relation is stored. I f an index
can be used to retrieve the tuples, an ordered list of TIDs will be generated. This TID-list
will be used to fetch the relevant tuples and we assume the list to be ordered on page
n u m b e r so that the retrieval requires at most p page accesses. Additional, usable indexes
cause the genera ted list of TIDs to become shorter, so the number of page accesses does not
increase.

Let us consider the effect of index sets o n f re t by means of an example.

Example 3.1. Consider the relation Person(id.nr, name, salary, age, gender, education)
consisting of 400.000 tuples and the following query:

S E L E C T name
F R O M Person
W H E R E education = 'secondary school' A N D

salary = 2000 A N D
age = 21

Suppose that the selectivity factors SF of the attributes education, salary and age are
SFed,catio n = 1 , SFsala,y = 1 respectively Slag ~ = ~0. Fur thermore , a page contains 20 tuples.

Le t us compare the addition of an index on education to three index sets A = I~,
A ' = {salary} and A " = {salary, age}. Solving the query with the index set A requires

212 S. Choenni et al.

400.000/20 = 20.000 page accesses; when an index on education is added to the index set A,
400.000/10 = 40.000 tuple retrievals are required, which implies again a cost of 20.000 page
accesses.

Solving the query with A' requires 10.000 tuple retrievals; this means at most 10.000 page
accesses as retrieving cost. The addition of education to the index set A' leads to at most
1000 page accesses as retrieval cost.

Using the index sets A" respectively A"U {education} leads to at most 200 respectively 20
page accesses.

It is clear that adding an index on education to the empty index set does not help much,
while the addition of the same index to the set A' causes a big gain. Moreover , the addition
of the index on education to A" gives, although less, still a substantial gain. These obser-
vati0ns are the basis to characterize the function Cre t.

In the example above, it is shown that addition of an index to a bigger index set can be
sometimes more profitable than the addition of the same index to a smaller index set. For
instance, adding an index on education to A' is more profitable than adding the index to A.
But sometimes the reverse also holds. The addition of the index on education to A' brings
much more than the addition of the index to A". Taking these observations into account and
considering the fact that Cre ~ is a monotonous non-increasing function, Cret may be
characterized according to Fig. 1.1

The index sets in Fig. 1 are organized as 0 C A ~ C A 2 C • • • C A n. Function 1 represents
the retrieval cost as function of the index s e t s A i, while Function 2 represents the retrieval
cost with the index sets to which index a h is added. The index sets in the area marked by I
satisfy the observation that the addition of index a h to a bigger index set is more profitable
than the addition of the same index to a smaller set, i . e . [ACret(Aj , a h) [becomes bigger with
the increase of the index sets. In the following we will refer to this observation as
Observation 1. The index sets in the area marked by II of Fig. 1 satisfy the observat ion that
the addition of an index to a smaller index set is more profitable than the addition of the

1

~ ~ rct (A j , a h)1
C ret

A 1 A2 Aj An index sets

Fig. 1. Characterization of the function C,,,.

1 For convenience's sake we have drawn a continuous function which has to be of course a discrete function.

On the selection of secondary indices 213

index to a bigger set, i.e. IACr~,(Ap ah)l becomes smaller with the increase of the index sets.
We shall refer to this as Observation 2.

Assuming that A and A' are in the same area, the observations can be written in formula
form as:

IC~e,(Tw(A' U {a~})) - C~et(Tw(A')) I

IC~,(Tw(A U {a~,})) - C,e,(T~(A)) I for any A C_ A', a'h ~ A' (1)

o r

[Cret(Tw(A' U { a ~ })) - Cre,(Tw(A')) I <

IC~e,(Tw(A U {a~})) - C,et(Tw(A)) I for any A C A', a ~ E ' A ' . (2)

The following proposition shows that the behaviour of the general cost function CF is totally
determined by the two observations.

Proposition 3.1. The behaviour of the cost function

CF(A) = ~ f.,* Cset(A , W) + Z Cmain((Olh}),
wCW ah~A

is determined by the function Cre ,.

ProoL Because the maintenance cost of an index and the access cost to an index is constant
this means that the cost function can be expressed as the sum of a constant function and a
retrieval function Cre ,. So, the form of the cost function is determined by Cre, and C,e t on his
turn is determined by Observations 1 and 2. []

In the next section sub- and supermodular functions are defined. The relationship between
these functions and the observations described in this section are exposed. Finally, the way
in which sub- and supermodular functions can contribute to the solution of the SIS problem,
is described.

4. Super- and submodular functions

In the previous section two observations has been made. In this section it will be shown
that the first observation leads to cost functions that are submodular, while the second
observation causes supermodular cost functions. These functions will be characterized and it
will be shown how totally submodular or totally supermodular cost functions can be
optimized. In Section 5 we will show that often cost functions are not totally submodular or
totally supermodular. For these cost functions we will combine the optimizing techniques
which are valid for cost functions considering only one of the observations. This will be the
subject of Section 6.

We start this section with a little variant on the general definition of supermodular
functions with regard to sets, as presented in [25, 19]. Then we will manipulate the
supermodular functions, such that it will be suitable to derive some properties which can be
used in optimizing these kinds of functions. Finally we will generalize these results to
submodular functions.

214 S. Choenni et al.

Definition 4.1. Let N be a finite set and G be a function defined as G: P(N)---~ E, in which
P (N) is the power set of N. We say that G is supermodular if:

G (X) + G (Y) < G (X U Y) + G (X A Y) VX, Y c _ N . (3)

Because we will often make use of the incremental value of adding an element e L to a set E
we describe the class of super- and submodular functions in a more proper form with regard
to our purpose.

Proposition 4.1. Let G be a supermodular function defined on a finite set P(N) then definition
4.1 is equivalent with the following statement:

G(E' U {eh}) - G(E')>i G(E U {e~,})- G(E) for any E C E' C N and e' h ~ E ' .
(4)

A shorter notation for (4) is:

A G(E' U e 'h) >! A G(E U e 'h) for any E C_ E' C N and e ' h ~ E' .

Proof (3) f f (4). Take E C_ E ' , X = E U {eL} and Y = E ' in (3). This yields

G(E U {e;,}) + G(E') <~ G((E U {e;,}) U E') + G((E U {e~}) n E ') <=>

G(E U {e~}) + G(E') <~ G(E' U {e;,}) + G(E)¢~

G(E' tO {e;,}) - G(E') >! G(E tO {e;}) - G (E) .

(4) ~ (3). Let {e 1 , er} = X~Y. Note that X'xY represents the set {e i] e i E X ^ e i ~ Y}.
From (4) we obtain

G(Y U {e 1}) - G(Y) >! G(X n Y U {e, }) - G (X n Y)

G(Y U {e 1, e : }) - G (Y U {el}) ~> G (X A Y U {el, e2}) - G (X N Y U {e,})

G (Y U { e l , e 2 , . . . , er}) - G (Y U { e l , e 2 , e r _ l })

G(X N Y U {el , e 2 , . . . , e r }) - - G(X A Y{e 1, e 2 , er_l}) .

Summing all these inequalities yields

G(VU X) - G(Y) I> G(X) - G (X n Y) ~

G(X) + G(Y) <~ G(XO Y) + G(XQ Y) . []

Suppose we want to minimize the supermodular function G defined on a finite set P (N) , in
o ther words to find the set MINC_ N such that G(MIN)<<-G(E) for any E C_ N. The
Proposit ions 4.2 and 4.3 defined below, provide us techniques to avoid exhaustive searching
for a supermodular function. The intuitive ideas of these techniques are to divide the
elements of N into three groups.
(1) A group of elements which will never belong the the set MIN. These elements are

achieved by applying Proposition 4.2, which is defined below.
(2) A group of elements which will belong always to the set MIN. These elements are

determined by Proposition 4.3, which is also defined below.

On the selection of secondary indices 215

(3) A group of elements that require further exploration. This group contains all the
elements not belonging to the previous groups.

The following proposition provides a technique to detect elements which will never belong
to the set MIN. Suppose element e~ is added to a set E. If the value of G does not decrease
then it will also not decrease if e h is added to a set E' containing E. This means that e h will
not be a member of MIN. The proof of the proposition follows directly from (4).

Proposition 4.2. Let G be a supermodular function defined on the finite set P(N). Then the
following holds:

If G(E U {e~)) 1> G(E) then G(E' U {e~})/> G(E') for any E C E' C N
and e' h ~ E' .

The following proposition identifies the elements that are certainly a member of the set
MIN. Suppose that element e;, is eliminated from a set E. If the value of G does not reduce
by this elimination, it will not reduce if e h is eliminated from a set E ' contained in E. So, e~
must be added to the solution MIN.

Proposition 4.3. Let G be a supermodular function defined on the finite set P(N). Then the
following holds:

If G(E\{e'h}) > G(E) then G(E'\{e'h}) > G(E') for any E' C E and e' h ~ E' .

Proof. The dual form of Proposition 4.1 is:

G(E'\{e;,}) - G(E')>i G(E~{e;,}) - G(E) for any E ' C E and e;, ~ E ' .

So, AG(E'\e'h) > AG(E'Xe'h) . []

The relationship between these optimizing techniques and the SIS problem will be
clarified. Suppose that only the second observation plays a role in the SIS problem. Then
according to Proposition 3.1 and Proposition 4.1 the cost function CF (see Section 3) will
behave like a supermodular function. So, Propositions 4.2 and 4.3 can be used. Note, the
Propositions 4.1, 4.2 and 4.3 can easily be translated to the context of the SIS problem by
replacing the s'upermodular function G by a supermodular cost function CF, N by the set of
all attributes of a relation, the sets E, E ' by the index sets A, A' and the element e~ by the
attribute t~. The SIS problem is solved if an index set MIN is found such that the cost of
processing a workload with MIN will be minimal. One way to do this is by an ordered
exhaustive search of all subsets represented by a full graph, in which each node represents a
subset of NA, the set of all attributes of the relation, and each link between two nodes
indicates that a node can be reached from the other by adding or discarding an element to or
f rom the other node. The root of the graph is the empty set and the bot tom of the graph is
the full index set, the set consisting of all relevant attributes. An example of a full graph is
given by Fig. 2.

Propositions 4.2 and 4.3 can help us to avoid an exhaustive search if the cost function
behaves like a supermodular function. Applying these propositions means that we can
construct a smaller graph without loosing the optimal set of indices. Proposition 4.2 justifies
the cutting of nodes and links starting from the root of the search tree while Proposition 4.3
can be applied to cut nodes and links starting from the bottom of the tree. Proposition 4.2
states that, if the addition of an index a~ to an existing index set A causes an increase in costs

216 S. Choenni et al.

{}

{a} {b} {c} {d}

{a,b} /a,c} {a,d} {b,c} /b,d} {c,d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

Fig. 2. Example of a full graph.

then the same will happen for all index sets A' containing A. So, ~;, is not a good index
candidate. Proposition 4.3 asserts that, if the elimination of an index c~, to an existing index
set A causes an increase of the costs then the same will happen for each A' subset of A. So,
c~ h, is a good index candidate. The following example illustrates the power of the proposi-
tions.

Example 4.1. Suppose we have a relation R = {a, b, c, d} on which a workload is defined.
Fur thermore , the cost function which estimates the processing cost of the workload behaves
like a supermodular function. Without applying the supermodular optimizing propositions all
the nodes of Fig. 2 have to be evaluated to find the optimal set. Applying the propositions
leads to the graph of Fig. 3. The numbers below the index sets are the processing cost for the
workload, e.g. processing the workload with {} costs 40 page accesses. We start with the
empty set as root and the set {a, b, c, d} as bottom. Applying Proposition 4.2, by taking
A = {} and o~ = b, to the root of the graph discards b as index candidate because the
addition of b increases the cost. Applying Proposition 4.3, by taking A = {a, b, c, d} and
a~, = c, to the bottom of the graph adds c to the optimal set, because the drop of c causes an
increase in cost. The consequence is that we have to consider from now on only subsets
which do not contain b and must contain c.

So, only 12 sets have to be evaluated now to achieve the optimal set of secondary indices
instead of 16.

Note that the cutting procedure starts always by evaluating 2n + 2 sets. Then the
Propositions 4.2 and 4.3 are applied. This process is repeated one level lower and is
continued until it is no longer possible to add or to discard attributes as indices.

The reduction of the complexity of course depends on how often Propositions 4.2 and 4.3
can be applied successfully.

Now the relationship between the SIS problem in which only the second observation plays a
role and the theory of supermodular function has been established we will introduce briefly
submodular functions. The relationship between submodular functions and the SIS problem
in which only the first observation plays a role is then easy to establish. Cost functions in
which only the first observation plays a role will lead to a submodular cost function.

On the selection of secondary indices 217

{}
40

{a} .[b} {c} (d}
34 42 38 37

{a,c} {c,d}
33 36

{a,b,c} {a,b,d} {a,c,d} {b,c,d}
41 43 31 42

{a,b,c,d}

42

Fig. 3. E x a m p l e of the r educed graph.

Definition 4.2. Let N be a finite set and G be a function defined as G: P(N)--> •, in which
P (N) is the power set of N.

We say that G is submodular if:

G(X) + G(Y) >i G(X U Y) + G(X fq Y) VX, Y C N . (5)

Proposition 4.4. Let G be a submodular function defined on a finite set P(N) then Definition
4.2 is equivalent with the following statement:

G(E' U {e~}) - G(E') <~ G(E U {e~}) - G(E) for any E C E' C N and e'hJ~E'.
(6)

A shorter notation for (6) is:

AG(E' U e'h) <<- AG(E t3 e'h) for any E C E' C N and e'h~E' .

The proof of this proposition can be constructed in exactly the same way as the proof of
Proposit ion 4.1.

For submodular functions we can derive similar propositions as for supermodular functions
which may contribute in the reduction of the optimization of these functions. These
propositions can be applied in the same way as done for supermodular functions. We will
give now the propositions for submodular functions in terms of the SIS problem, i.e E, E'
are considered as index sets and e~ is considered as an index.

The following proposition holds for submodular functions and is analogous to Proposition
4.3. So, it can be used to select advantageous indices. It says that if an index e~ is
advantageous for an index set E, it will be advantageous als0 for each index set E ' which
contains E. So, e~ must be added to the optimal set of indices.

218 s. Choenni et al.

Proposition 4.5. Let G be a submodular function defined on the finite set P(N) . Then the
following holds:

I f G (E U {eL}) < G(E) then G(E ' U {eL}) < G(E ') for any E C_ E' C N and
e L S E ' .

The proof of this proposition follows directly from Proposition 4.4.
The following proposition identifies the elements that can be discarded and is thus the

equivalent of Proposition 4.2 for supermodular functions. It says that an index e L that
reduces the costs when eliminated from a set E will also reduce the costs if e L is eliminated
from any E ' contained in E.

Proposition 4.6. Let G be a submodular function defined on the finite set P(N) . Then the
following holds:

I f G(E\{eL}) <- G(E) then G(E'\{eL)) <<- G(E ') for E ' C E and e L E E' .

The proof of this proposition can be constructed in the same way as the proof of Proposition
4.3.

Until now we have shown how to optimize cost functions which are either super- or
submodular. How to decide whether a cost function is sub- or supermodular? The following

2 proposition helps us.

Proposition 4.7. Let N be a finite set, G and M functions defined as G: P(N)---~ R and M:
N---~ R. I f A G (E U eL) can be written as A G (E U e'h) = M(e'h) -- S (E U eL), in which S(.) is a
function, E C N and e L E N then G is a supermodular function if S is monotonous non-
increasing and G is submodular if S is monotonous non-decreasing.

Proof. Take E C E ' C N and e'h~fE'. We obtain:

A G (E ' U eL) - A G (E U eL) = (M(e'h) - S (E ' U eL)) - (M(eL) - S (E U eL))

= S(E U e L) - S(E ' U eL).

If S is a monotonous non-increasing function, then S (E ' U eL)<~ S(E U e~). Therefore ,
A G (E ' U eL) >i A G (E U eL). If S is a monotonous non-decreasing function then the following
holds: S(E' U eL) >t S (E U eL). Therefore, A G (E ' U eL) <~ A G (E U eL). []

Note, the cost function CF of Section 2 can be written according to Proposition 4.7 as:

A C F (A U aL) = C,~,,n({aL}) -- ~ f,~(C~e,(A, w) - C~et((A U {aL}), w)).
w E W

The first part of the function is the maintenance cost of the added index a L, while the second
part indicates the gain achieved by adding the index.

To prove when and under which condition a cost function which has the form of CF is
super- or submodular, we have to determine when and under which condition the second
part of the function, thus C, el(A, w) - C s e l ((A U {oiL}), w), is monotonous non-increasing or
monotonous non-decreasing.

2 This can be reached of course also by proving Proposition 4.1 or 4.4 but is not very practical.

On the selection of secondary indices 219

We have presented some techniques to achieve complexity reduction for supermodular as
well as for submodular functions. In general we expect that a cost function will be a
combination of super- and submodular functions. How to apply the propositions then will be
discussed in Section 6.

5. Specific cost functions

In this section we shall take a closer look at and analyse different cost functions. These
functions are based on the general cost function of Section 2 and differ only in the retrieval
function. Table 2 gives the specific symbols of this section which are used to construct the
specific cost functions.

The cost to derive an ordered TID-list, C~,d(A, w), will be expressed in C~,d, which
represents the access cost to a single index. The blocking factor (B F) of an index is the
average number of {value, TID-list} pairs per page and will among others be used in the
formula for C,i,d. In the particular case when indices are organized as a B+-tree
Csind(ah) = [1OgBF~ nR] q- [SF~nR/BF~h] - 1. The first term is the height of the index tree

and the second term is the number of leaf level blocks which are accessed.
Recall from Section 2 that the cost function C F consists of two parts, the maintenance cost

of indices (C ~ i ~) and the selection cost of relevant tuples (C~t). These costs will be the
subject of the following subsections.

5.1 Maintenance cost o f indices

The maintenance cost due to insertions or deletions of tuples requires an adjustment of all
the indices. To perform this task we have to access the right index pages for all indices of the
index set and to rewrite the index page. Let Ci, s be the cost to place a pair {key, TID} after
the last pair that has the same key in an index file and Cd~ ~ the deletion cost of a pair {key,
TID} or insertion cost of the same pair with any key. 3 Then the maintenance cost due an
insertion is expressed by:

Cth E A

Then maintenance cost due to deletion is expressed by:

C del(Olh) •
ahEA

Table 2
Additional notations

NA = full index set, i.e., contains all attributes of relation R
SNA W = set of attributes involved in the WHERE part of an operation w
SNA u = set of attributes which has to be updated
Cmain(A) = maintenance cost of an index set A
C (A) = C~a,n(A) + Ewe w fwC,.d(A, w)
Cs~e(ah) = costs to access to an index a h
BEth = the blocking factor of an index on a h

3 The formulae for Ci, s and Cd,t can be found in [24] in the case indices are organized as B +-trees.

220 S. Choenni et al.

The maintenance cost due to tuple updates require deletions of the pairs {value, TII)} with
the old values and the insertions of the pairs with the new values. An estimation for the cost
is :

E 2Cdel(Oth),
a h E A N S N A u

in which SNA, is the set of attributes which has to be updated for update u.
Let I be the set of tuple insertions, D the set of tuple deletions and U the set of tuple

updates. If we take the frequencies of each insertion f/, deletion fd and update f , into
account, then the maintenance cost of an index set A can be written as:

Cmain(A)= E fii E Cins(Oth) q- E fd E Cdel(Oth) I E fu E 2Cdel(Oth) .
i E l a h E A d E D a h E A lIEU a h E A A S N A u

5.2 Selection costs of relevant tuples

Recall that the selection costs (Cset) of relevant tuples in processing an operation w with
an index set A consists of two parts. The first part is the cost required to form the TIDs lists
of tuples which can be resolved with index set A (Cind). The second part is the cost required
to retrieve the tuples which remain after the intersection of the TIDs lists (Cre,).

The expected number of page accesses to form the lists of TIDS when an operation w
requires a selection on relation R is:

w)= E
a h E A O S N A w

in which SNA w is the set of attributes involved in the W H E R E part of w.
The number of tuples Tw(A) that has to be retrieved for w after intersecting the TIDs lists

is:

Tw(A) = nR 1-I SFa .
a h E A A S N A w

There are several functions available to retrieve the tuples given an ordered TID-list. Some
of them will be discussed in the next subsection.

5.3 Retrieval functions

The simplest retrieval function one can think of, assumes that each TID results in one
page access. Although this assumption is not very realistic, especially not when the blocking
factor is large, it is used in several cost functions [13, 16]. The first retrieval function we
consider is a variant of this simple function. Suppose T is the number of tuples that has to be
retrieved and p the number of pages on which the tuples of a relation are stored. Then the
expected number of page accesses (NPA) is the minimum of {p, T}, further denoted as
rain{p, T}.

In the second function the retrieval of T tuples is modelled as drawing T tuples from p
pages with replacement of the tuples, i.e. a tuple can be selected more than once at a time.
This leads to the following formula NPAca,de,,s = p(1 - (1 - 1 /p) r) . The justification of the
formula can be found in [7, 26].

The third retrieval function deals with the retrieving strategy based on drawing T tuples
from p pages without replacement, i.e., a tuple cannot be selected more than once at a time.
This strategy leads to the following formula NPA Vao = p(1 - 1-IT= 1 ((nd - i + 1)/ (n - i + 1)),

On the selection of secondary indices 221

in which n is the total number of tuples and d = 1 - 1/p. The proof of this formula can be
found in [26, 12]. For practical reasons several researchers approximate this function [4, 14,
22]. A simple and good approximation of the function given by Bernstein et al. [4] is:

NPA Bernstein
p for T < I P

= ~ T + p) for l p < T < 2 p
for 2p < T .

It is this approximation that will be used in the third retrieval function.

5.4 Three cost functions

We will present three different cost functions CFi, i = 1 ,2 ,3 , based on the earlier
discussed retrieval functions. (Variants of) these cost functions are used by several re-
searchers, see among others [2, 3, 6, 13, 16, 18, 24]. In the first cost function CFI we use the
retrieval formula Cre,(Tw(A))= rain{p, Tw(A)} to retrieve Tw(A) tuples. So, the following
holds for processing a workload W:

CFI(A) = Cmain(A) q- ~ f~(C~,d(Z, w) + min(p , Tw(A)}) .
w ~ W

Because the maintenance cost of an index and the access cost to an index is constant we will
denote them as Cm~,d. Thus,

CFI(A) = Cmi,d(A) + ~ fw min{p, T~(A)} ,
w E W

in which Cm~,d(A) = Cma~,(A) + E w~ w f~Ci,~(A, w).
The following proposition describes the behaviour of CF~.

Proposition 5.1. The cost function CFI(A) is supermodular for a workload W on the domain
of index sets A for which holds: V w E W: Tw(A) <~ p and submodular on the domain of index
sets A for which holds: Vw ~ W: T~(A) > p.

For the proof of the proposition we refer to appendix A. To illustrate the use of the
proposition we give the following example.

Example 5.1. Consider a workload consisting of one operation w, a relation R with the set of
attributes {a, b, c, d, e} and the function CF 1. The task is to select an optimal set of
secondary indices. According to Proposition 5.1 each index set belongs to either the
supermodular part or the submodular part. Consider two initial index sets the empty index
set {} and the full index set NA. Let us assume that processing the operation with N A leads
to less than p retrievals, i.e. Tw(NA)< p, and processing the operation with {} leads to
T~({})~>p. So, {} belongs to the submodular part of CF~ and N A belongs to the
supermodular part. Suppose that the processing cost for w with {} is 40 and the processing
cost with NA is 30. Assume further that we have computed the processing cost for w with the
index sets given in Table 3.

Because the index set {} belongs to the submodular part we can apply Proposition 4.5.
This proposition says that an index is desired on the attributes a, c and e for all index sets
belonging to the submodular part (because all these index sets includes the empty set index
set). Applying Proposition 4.3 for the set NA, which belongs to the supermodular part

222

Table 3
Processing cost of q with several index sets

S. Choenni et al.

a~, {} U {a~,) CF~ a' h NA\{a'h} CFj

a {a} 39 a {b, c, d, e} 32
b {b} 41 b {a, c, d, e} 29
c {c} 38 c {a, b, d, e} 38
d {d} 42 d {a, b, c, e} 35
e {e} 38 e {a, b, c, d} 28

results in the conclusion that an index on the attribute a, c and d is desired for all the index
sets belonging to the supermodular part (because all these index sets are a subset of NA).

Then, it is easy to see that an index on the attributes a and c is desired for all index sets.
So, a and c will always belong to the optimal set. The gain achieved by applying the
Propositions 4.5 and 4.3 is that instead of evaluating 25 sets we have now to evaluate 20 sets
to find the optimal set if the remaining index sets will be explored by an exhaustive search.

In Section 6 this idea will be generalized for workloads consisting more than one
operation.

In the second cost function CF 2 we use the formula of Cardenas to retrieve Tw(A) tuples. So,
the following formula can be derived for CF2:

CF2(A) = Cmind(A) + ~ p (] -- (l -- 1/p)Tw(A)).
w~W

The following proposition describes the behaviour of CF 2.

Proposition 5.2. The cost function CF 2 is supermodular, under the addition of an index OLh,
for a workload W on the domain of index sets A for which holds Vw E W: T~(A)<-
1/(SF~, - 1) logp 1/p(1/SF~) and submodular on the domain of index sets for which holds:
Vw E ~V: Tw(A) > 1/(SF~ - 1) logp_l /p(1/SF~) .

For a proof of the proposition we refer to the appendix. This result was earlier achieved by
[2, 3]. In these papers it is asserted that it is reasonable to approximate CF 2 as a pure
supermodular function. This means that Propositions 4.2 and 4.3 can be applied to optimize
CF 2 •

In the third cost function CF 3 we use the retrieval function of Bernstein resulting in the
following formula for CF3:

(rw(A)
CF3(A) = Cmind(A) + Z ~I(Tw(A) +P)

wew [p

for Tw(A)<~ ½p
for ½ p < Tw(A)<~2p
for Tw(A) > 2p .

The following proposition describes the behaviour of CF 3. For the proof we refer to the
appendix.

Proposition 5.3. The cost function CF3(A) is supermodular for a workload W on the domain
of index sets A for which holds: Vw E W: Tw(A) <~ 2p and submodular on the domain of
index sets A for which holds: Vw E W: Tw(A) > 2p.

On the selection of secondary indices 223

The fact that the maximal number of page accesses will be reached in a finite number of
tuple retrievals for the cost functions CF 1 and CF 3 entails the practical significance of
submodularity for these functions.

If we had assumed in CF 1 that each retrieval causes one page access than the CFI would be
a supermodular function whatever the number of tuple retrievals would be [16]. For CF 3 it is
also valid that the ceiling of the function NPA B tein makes submodularity of practical
importance. The fact that in the formula of Cardenas, NPAcard = p(1 - (1 - 1/p)T) used
in CF2, the maximal number of page accesses will be reached if the number of retrievals will
be infinite, declares why submodularity hardly plays a role in this cost function.

5.5 Index sets

In this section we derive some properties for index sets in view of super- and submodular
functions. Two index sets that play an important role in the optimizing techniques of sub-
and supermodular functions are the empty index set {} and the full index set N A . The
following proposition summarizes some properties for those index sets and for index sets in
general.

Proposition 5.4. Let W be a workload and CF be a cost function o f the following form

~ supermodular on the index sets A i f Vw E W: Tw(A) <<- kp, k = 1, 2
CF(A) = [submodular on the index sets A if Vw E W: T~(A) > kp .

Then the following holds:
(1) The empty set belongs to the submodular part o f CF, i.e. Vw E W: Tw({}) > kp.
(2) I f Vw E W: Tw(NA) >1 kp then the optimal set o f CF is {}.
(3) Let Asu p be a fixed index set for which holds Vw E W: Tw(As ,p)<-kp then CF is

supermodular for all index sets A satisfying A~,p C A C N A .
(4) Let As , b be a fixed index set for which holds Vw E W: Tw(A~,b)>>-kp then CF is

submodular for all index sets A satisfying A C As , b C N A .

Proof. Processing operations with the empty set implies a sequential scan for the operations,
thus, Tw({}) = nR. Because the blocking factor (BF) is in general bigger than 2, the situation
n R <- kp = knR /BF can never occur. So, (1) holds.

If Vw E W: Tw(NA) >- kp then this will also hold for each index set because each index set
is a subset of the full index set and T w is monotonous non-increasing. So, for all index sets
the retrieval cost for each query will be p page accesses. Each index set except the empty
index set may entail maintenance cost. So, the empty index set will always be an optimal
index set. So, (2) holds.

If Vw E W: Tw(A,up) < kp then this will also hold for all index sets A D Asu p because Tw is
monotonous non-increasing. Because each index set is a subset of the full index set (3) holds.

The proof for (4) follows also from the fact that T~ is monotonous non-increasing. []

Corollary. Let Wre d be the set o f operations w o f a workload W such that Tw(NA) < kp. Then
Wre d is relevant for optimizing CF.

Proof. The workload can be split in two groups, Wre d and W\Wre d. For the group W~Wre d the
optimal set is the empty set according item 2 of Proposition 5.4. []

Note, that the corollary contributes to the reduction of the complexity. It says that

224 S. Choenni et al.

operations which requires at least kp tuple retrievals using the full index set can be discarded
from the optimizing process. Instead of evaluating the cost function with the whole workload
we may evaluate the cost function now with a smaller workload.

Summarizing, optimizing a cost function of the form given in Proposition 5.4 for a
workload W, which a corresponding Wred, s t a r t s with the conditions:
(1) Vw E Wred: Tw({}) ~ kp
(2) Vw E W, ea: Tw(NA) < kp.

6. A framework of an algorithm for the SIS problem

This section concerns the utilization of the theory developed in the previous sections in
designing algorithms for the SIS problem. From this theory we know that a workload W can
be replaced by a subset Wre a without any adverse effect. Before considering a workload with
an arbitrary Wre a w e shall first consider a Wre d which consists of exactly one operation
(Section 6.1). We will show how the achieved results of Section 5 may be applied to this
specific Wre a. Section 6.2 will generalize these techniques for a workload with an arbitrary

Wred •

6.1 Index selection for a single operation

For the cost functions CF 1 and CF 3 it is clear from Proposition 5.1 and 5.3 respectively that
processing an operation, each conceivable index set can be classified as belonging to either
the supermodular or submodular part of the cost functions. From the nature of the retrieval
functions used in CF 1 and CF 3 we know that the retrieval cost in processing the operation
will be p page accesses if at least p respectively 2p tuple retrievals are required. So,
processing the operation with index sets which require more than p tuples is not interesting if
CF~ respectively 2p if CF 2 is used as cost function because the retrieval cost will be maximal
in these cases. This implies that for these cost functions the optimal set will be in the
submodular part or it will be the empty set. Once the optimal set of the supermodular part is
known it is easy to decide if this is the optimal set of the function or the empty set.

A technique to walk through the supermodular space will be given. We start by applying
Proposition 4.3 to the full index set because this set belongs to the submodular part and
contains all the subsets in this space. Suppose, this results in the conclusion that the set
{aj a ,} belongs to the optimal set, we call this the supported set Asp t. Then we
evaluate Tw(Asp,). If Tw(A~p,)<~ kp, k = 1 for CF t and k = 2 for CF3, then we can apply
repeatedly the optimizing properties of supermodular function as illustrated in Example 4.1
with as root the set {aj , a,} and as bottom the full index set. This is justified by
Property 3 of Proposition 5.4. If Tw(A~pt) > kp then we do not have any exact techniques to
reduce the complexity further. A heuristic is to enlarge the s e t Asp t with a minimal extra
number of proper indices such that the number of tuple retrievals with the enlarged set
becomes less than kp. In practice database designers can often rely on rules of thumb to
produce such indices for a single operation [15]. Then the optimizing techniques for
supermodular functions may be applied. The eventually solutions depend then on the extra
added indices, the better they will be the better the solution.

6.2 Index selection for an arbitrary workload

The input of the algorithm consists of the cost function CF i, the workload Wre d C W~ the
attributes which have to be indexed according to the database designers and a good index set
for each operation proposed by the database administrator.

The output of the algorithm will be a set of advantageous indices and a set of dis-

On the selection of secondary indices 225

advantageous indices for groups of operations which are subsets of Wre d. By an advantageous
set we mean a set which will belong certainly to the optimal index set and by a disadvantage-
ous set we mean a set which will never belong to the optimal index set. The union of the
groups is Wre d.

Before giving the body of the algorithm we shall take a closer look at the conditions of
super- and submodularity for cost functions which have the form as in Proposition 5.4. This
clarifies the techniques used in the body of the algorithm. As already noticed we can classify
each index set either as sub- or supermodular with regard to a single operation. Considering
the se t Wre d it is theoretically possible to generate the sub- and supermodular index sets for
each w E Wre d. Table 4 gives a hypothetical example for Wre d = { W 1 , . . . , w 6 } and index sets
A 1, . . . , A 5. For the index sets in the table holds A 1 C A : C • • • C A 5.

Starting the optimizing process by applying Proposition 4.3 and taking the full index set as
bot tom this step is legal for some operations with regard to some index sets and for some
not. For example, considering Table 3 and assuming that A 5 is the full index set then
Proposit ion 4.3 would be applied legally for the situations under the solid line in the table.
The application of Proposition 4.3 will generally lead to a statement that a set of attributes
will belong to the optimal set, we call this set the supported set Asptl. AS already said this
s tatement will be not true for all operations. The operations which do not support Asptl c a n

be detected easily by evaluating Tw(Asptl).
The evaluations of Tw(Awt l) for all w E Wre a will generally lead to two groups, one group

G 1 containing the operations for which hold Tw(Awt~)~ kp and the second group G 2
containing the operations for which hold Tw(Asptl) > kp. For group G 1 the proposition is
applied legally and for G 2 no t .

The optimizing process for Ga can be continued by applying the supermodular properties,
taking the full index set as bot tom and Awt ~ as root, finally leading to an advantageous set of
indices Aad 1 ~ Asptl and a disadvantageous set A dis~.

There are several ways to deal with the group G e. We will discuss one possibility which
will be used in the algorithm. We divide G 2 in a minimal number of subgroups G2i such that
it will be possible to find an index se t m spt2 i for each subgroup G2i for which holds
V w E G2i: Tw(Aw,2i) <~ kp. Then it is clear that we can apply the optimizing properties of a
supermodular function for each subgroup a2i by taking A,pt: ~ as root and the full index set as
bot tom. Finally for each subgroup G2i we will find an advantageous set of indices Aad2~ D
Asps: ~ and a disadvantageous set Adi~2 ~.

The dividing process in subgroups will be done on basis of the proposed index sets for the
operations by the database administrator. Suppose we have three operations Wl, w 2 and w 3
which belong to group G 2 for which the database administrator propose the index sets
{a, b, d}, {a, c, d} respectively {a, b, c, d, e}. Then we may choose Aspt2 i = {a, d} because a
and c are important candidates for all the sets. Suppose the evaluation of the number of
tuple retrievals w i t h Aspt2 i results in T,q(A~p,2i) < kp, Tw2(AsptZi) < kp a n d Tw3(Asptei) > kp

Table 4
Sub- and supermodular index sets for several operations

A 1

A 2

A3

A 4

A 5

wl w2 w3 w4 w5 w 6

sub sub sub sub sub sub

sub sub sub sub l suplsub

Isu
sup sup[sub] sup suP l sub

sup sup sup sup sup sup

226 S. Choenni et al.

then w 1 and w 2 will form a subgroup and w 3 another group. Note, in the worst case we will
have subgroups consisting of only one operation.

We will give now an informal description of the algorithm. The first step in the algorithm is
to check the cost function. If the cost function is CF 2 then the optimizing properties of
supermodular functions can be applied. In the other cases we take the full index set minus
the attributes which have to be indexed (NAred) according to the user and apply Proposition
4.3. If this step leads to the support of a set of indices Asp ' then we evaluate V w E
Wred: Tw(Aspt). On the basis of the outcome we discern two groups G 1 containing all w's for
which holds Tw(Aw,) < kp and G 2 contains the remaining w's.

For group G1 we can apply repeatedly the supermodular optimizing propositions taking
Asp ' as root and N A r e d a s bottom finally leading to an advantageous set of indices A~d I and
the disadvantageous set Adisl.

Group G 2 will be divided in several subgroups G2i such that the supermodular properties
can be applied leading for each subgroup Gzi an advantageous set of indices Aad2~ and a
disadvantageous set of indices Adds2 ~.

Note, the algorithm does not propose an index set for the workload but it generates for
groups of operations the advantageous and disadvantageous indices. This information may
be useful in the selection of indices in some approaches. We discuss briefly one alternative to
use this information.

We combine all the advantageous and disadvantageous sets of all the subgroups leading to
an advantageous s e t A ad and a disadvantageous A di s for the whole workload. Then the
original SIS problem is replaced by a more 'simple' one since we do not have to consider the
attributes in A,d and Ad~ ~. Then, the simple SIS problem may be solved by an exhaustive
search.

To get the advantageous s e t A a d 2 and the disadvantageous s e t Adis2 for group G 2 w e have
to combine all the sets A~dZi respectively Adi~2 ~. Then we have to combine Aacl2 with the
advantageous index set of G 1, Aaa ~, resulting in Aad. A similar procedure holds for
achieving A d~ ~. For the combinations of the sets one can use simple or more advances
techniques [15]. A simple technique may be the rule 'if an index is supported by x % of the
operations and it is not a disadvantageous index for the other operations then it belongs to
Aad'. To obtain the set Aa~ ~ a similar rule can be used; 'if an index is disadvantageous for y %
of the operations and it is not an advantageous index for the other operations then it belongs
to Adg~'. If (x, y) = (100, 100) then A~d contains the indices which is advantageous for each
group and A ais the indices which is disadvantageous for all groups. The value for x and y may
be derived from experiments.

7. Foundation for ADD and DROP algorithms

Whang's D R O P algorithm [24] starts by considering the set made up of all possible indices
and, at each step, drops the index which would cause the highest decrease in cost. When the
function value cannot be further lowered by leaving out any of the indices left, the algorithm
attempts to cut out two indices at time, then three indices, and so on, until no further
reductions are possible. The cost function on which this algorithm is applied is quite similar
t o C F 3. The technique to drop one index at a time is just an application of Proposition 4.6
and it is a property of submodular functions. As we can see from Proposition 5.3, C F 3 does
not behave completely as a submodular function. Later on in this section we shall discuss the
consequence of applying the submodular property on this cost function.

Whang compares his algorithm which the A D D type algorithm with regard to the same
cost function C F 3. An A D D type algorithm starts from an empty set and, at each step, it
adds the index most capable of reducing the cost and it stops when there are no more

On the selection of secondary indices 227

cost-reducing indices. This rule is just an application of Proposition 4.5 which is also a
proper ty of submodular functions. So, the A D D and the D R O P algorithms are not
competit ive but are supplementary in the case of a submodular function.

We discuss the consequence of applying the submodular properties to CF 3. Applying the
A D D algorithm to this cost function starting with an empty index set is a legal step
(Proposit ion 5.4). Suppose this step results in an advantageous index set. In the A D D
algorithm one of the elements of this set will be chosen, let us call this set Aaa. Then it is not
necessary that Aaa will belong to the submodular part for all operations. In general, for some
operations Aaa will be in the submodular part, while for others in the supermodular part.
Applying again the A D D algorithm means that this is applied illegally to the groups of
operations for which hold that Aaa was in the supermodular part. At each addition of an
index to Aaa we may expect in general that the number of operations for which the A D D
algorithm is applied illegally will grow.

Another point is that once an attribute is added as an index to A aa, it will always belong to the
set. So, if on a moment a disadvantageous index is added to Aaa, which may be the case when
most of the operations behave like supermodular, then this will be always in the index set.

Applying the D R O P algorithm on CF 3 will be in general a bad start from a theoretical
point of view because the set belongs to the supermodular part. But the D R O P algorithm
will never eliminate an advantageous index (compare Proposition 4.6 with Proposition 4.3
which we apply). The D R O P algorithm eliminates the indices which would be a candidate
for further exploration. This is probably the reason why the optimal index set may be
missed. The success of the D R O P algorithm is that it provides all advantageous indices.

It is noteworthy that when the A D D and D R O P algorithms are allowed to apply this can
be performed in one step instead of the several steps described above. This is justified by
Propositions 4.5 and 4.6.

8. Concluding remarks and further research

We have described the problem of secondary index selection, the so-called SIS problem.
Adding an index to a set of selected indexes can cause, among others depending on the cost
function, two different results. The first result is that ' the addition of an index to a bigger
index set is more profitable than the addition of the same index to a smaller index set'. This
is called Observation 1. The opposite observation (Observation 2) implies that ' the larger an
index set the less the gain of an index addition will be'. It has been shown that in reality both
observations can occur.

Situations in which the first observation holds can be captured by submodular functions;
the second observation is covered by supermodular functions. Mathematical properties of
sub- and supermodular functions have been derived. It appears that SIS problems that can
be described completely by submodular (or supermodular) functions can be solved easily,
that means with a low complexity.

We have analysed three representative cost functions and we exposed that two of the cost
functions cannot be classified as a pure super- or submodular function. Depending on the
workload, a sub- or a supermodular function is obtained. To deal with this situation we
developed an algorithm that forms groups of operations of the workload. It then determines
disadvantageous and advantageous indices for each group. In a rough sense this can be
considered as a partly generalization of [15]. On basis of a conceptual schema and each
query separately an ideal storage structure (so among others secondary indices) for the
relations is determined. Then all the ideal storage structures are combined to determine the
eventually storage structure. In this paper, instead of considering each query separately we
presented a technique to consider groups of queries.

228 S. Choenn i et al.

The analysis of the cost functions in terms of super- and submodular functions gives also a
better understanding of the ADD and DROP algorithms. They have been described as being
successful [24] but the mathematical foundation behind the success has not been given. It
appears that these algorithms are based on the mathematical properties of submodular
functions.

It should be noticed that in [2, 3, 16] it was already pointed out how to handle supermodu-
lar functions. But the lack of a complete mathematical foundation of super- and submodular
functions has led to confusions. For example, Barcucci et al. [3] have proved that a variant of
cost function CF 2 could be considered as supermodular and then they applied the optimizing
properties of these functions. After this process was finished they applied the heuristic
DROP and ADD algorithms to reduce the complexity further. It is clear that this step
cannpt be justified because the ADD and DROP algorithms are based on properties of
submodular functions.

A topic for future research is the elaboration and implementation of the algorithm
described in this paper in a tool for physical database design [9]. The application of the
algorithm to real problems and the evaluation of the results have to be done in the future. A
last research topic concerns the extension of the theory to operations that concern more than
one relation, that is to joins.

Appendix A. Derivation of the behaviour of specific cost functions

In this appendix the proofs of the Propositions 5.1, 5.2 and 5.3 are given.

Proposition 5.1. The cost function CFI(A) & supermodular for a workload W on the domain
of index sets A for which holds: Vw E W: T~(A) <<-p and submodular on the domain of index
sets A for which holds: Vw E W: T~(A) > p.

Proof. Suppose that a'h~A. Then the following holds:

ACFa(A U a'n) = CF,(A U {a;,}) - CFI(A) = Cmi.d(A U {o~})

+ ~ L rain{p, Tw(a U {a~,})}
w E W

= Cm~.d({a~}) + ~ f~(min{p, T~(A U {~;.})} - rain{p, Tw(A)})
wEW

Cmi"d({ a'h}) -- (~ew fw(min(p' Tw(A)} - rain{ p, SF~j. T.,(A)})).

It is obvious from Fig. 4 that

min{p, T~(A)} - min{p, SF~ T~(A)}

[Tw(A)(1 - SF~) for Tw(A) <p

= I ~ - S F ~ h Tw(A) for p ~ Tw(A) ~ p
P SF~,~,

for T~(A) > SF~----~ "

On the selection of secondary indices 229

~ g e
a c ~ s ~ s

TwSE.,
"I'~(A) i %

i

P p/SF 4 # tuples to be
retrieved

Fig. 4. Expected number of page accesses using the retrieval function min{p, Tw(A)}.

Because Tw is a monotonous non-increasing function, - T w is monotonous non-decreasing.
So, we conclude that min { p, T w (A) } - rain { p, SF,~ Tw (A) } is monotonous non-increasing
for Tw(A) < p and monotonous non-decreasing for Tw(A) >t p. Because the sum of monoto-
nous non-decreasing functions is a monotonous non-decreasing function and the sum of
non-increasing functions is a non-increasing function the following holds:
(1) If Vw E W: T~(A) < p then E ~ w (rain{p, Tw(A)} - min{p, SF~T~(A)}) will be

monotonous non-increasing.
(2) If V w E W: T,~(A)>~p then E~E w (min{p, Tw(A)}- min{p, SF=aT~(A)}) will be

monotonous non-decreasing.
Therefore, according to Proposition 4.7 CFI(A) is a supermodular function if Vw E W:

Tw(A) < p and submodular if Vw E W: T~(A) >-p. []

Proposition 5.2. The cost function CF 2 is supermodular, under the addition of an index t~ h,
for a workload W on the domain of index sets A for which holds Vw E W: Tw(A)<-
1/(SF~ - 1) logp_l/p(1/SF~) and submodular on the domain of index sets for which holds:
Vw E W: Tw(A) > I/(SF~z - 1) logp_l/p(1/SF~).

Proof. Suppose that a'hf[A. Then the following holds:

A CF2(A I,J or'h) = CF2(A U {oe~}) - CF2(A)

= Cmina(A U {Oe~}) + £ f~p(1 - (1 - l ip) rW<aU{~'a}))
wEW

-(Cmind(A)+ ~ fwp(1--(l--1/p)r'(A)))

= Cmind({Ollh}) q- £ f w (p (1 - - (1 - - 1/p) r'(aU{~a}))
wEW

- p (1 - (1 - 1/p)rw(a)))

= C"i"d({ah}')-- (~ w f~(p(1 --(1
1/p) r~(A))

- p (1 - (1 -
/

230 S. Choenni et al.

T h e der iva t ive of p (1 - (1 - 1/p) rw(A)) -p(1 - (1 - 1/p)T~(A)SF~) with r e spec t to Tw(A),
d'(T~(A)) is:

: s d (T~(A)) p F.~Tw(A)(1 1/p)SF~Jw(A)log 1 1

- p T ' (A) (l - l /p)r~(A) log(1-1) .

C o n s i d e r i n g d'(T~(A)) we see tha t d'(Tw(A)) <~ 0 for T~(A) <~ (1 / S F ~ - 1) l o g p _ l / p (1 / S F ~)

and d'(Tw(A))>0 otherwise . T h e r e f o r e , accord ing to P ropos i t i on 4.7 CF2(A) is super -
m o d u l a r if Vw E W: T~(A) <- (1 / S F ~ : - 1) logp_l/p(1/SF~) and s u b m o d u l a r if Vw ~ W:
Tw(A)> I/(SF,~ - 1)logp_l/p(1/SF,~ ~. []

Proposition 5.3. The cost function CFa(A) is supermodular for a workload W on the domain
of index sets A for which holds: Vw E W: T~(A) <~ 2p and submodular on the domain of
index sets A for which holds: Vw E W: T~(A) > 2p.

Proof . S u p p o s e tha t a 'h~A. Then the fo l lowing holds for CF3(A U ah):

CF3(A U {a~,}) = Cmind(A U {ot~})

[Tw(A)SF~

+ ~] 3 (T~(A)SF~

LP

for Tw(A) <-
2SF~

p 2__fl__p
+ p) for ~ < Tw(A)<~ SF~

for Tw(A)> 2p
SFoz "

It is obv ious f rom Fig. 5 tha t ACF3(A U a'h) d e p e n d s on the se lec t iv i ty fac tor SF~A. F o r
SF~,~ >i 1 the fo l lowing holds :

page
accesses

m

0.Sin

l

0.5m 2m 8m
tuples

Function 1 represents the number of tuples(T~(A)) that have to be retrieved considering an index set A while the other
functions represent the number of tuples that have to be retrieved considering an index set (A U {a~}) with different

1 selectivity factors SF~,,. for t~. In function 2, SF~, = ~,1 in function 3, 8F,~ k > ~ and in function 4, SF,~, < ~.

Fig. 5. Expected number of page accesses using the retrieval function NPA B,r,,,,i,-

On the selection of secondary indices

A CF3(A t_J a'h) = C,ni,,a({Ot'h})

T~(A)(1 - SF~)

1
- SF~) + Tw(A)(3 - 5 p

1

1
- ~ ~ T ~ (A) (1 - SF~)

w ~ W

2 1
-~ - -~ T~(A)SF~

0

1
for T~(A) < ~p

for p P <~ T~(A)< 2SF~

for ~ <~ T~(A)< 2p

2p
for 2p ~< T~(A) < S!7------~

2p
for T~(A)>~ ~r~S '~'- "

231

For SF~ < ~, ACF3(A tJ t~'h) becomes:

ACF3(A U a'h) = C,,,~,d({a'h})

1
T.(A)(1 - SF~h) for T. (A) < ~ p

T~(A) - SF~ + 5 p f o r ~ < T . , (A) < 2 p

- T~(A)SF~ + p

1 2
--~ Tw(A)SF~ +-~ P

for 2p<~ T~(A)< P
2SF,~

P 2.__LP
for ~ < T,,(A))

SF~
- ~ h

2p
for T~(A)~ SF,,I, .

In the case of SF., ~ ~ we can distinct two situations. It can easily be verified for SF >
h a~

that T~(A)(1 - S F . ,) + X p is non-decreasing on p/2 <~ T~(A)<p/2SF.~, while it is non-
increasing on this area for } ~< T~(A) <~ 1.

Because T~ is a monotonous non-increasing and - T ~ monotonous non-decreasing the
following holds:

1 1 1
-4 <<" Tw(A) ~< 3:T,~(A)(1 - SF.~) for Tw(A) < ~ p is non-increasing,

1 _ S F ~) + 1 P KTw(A)< P---P--- T~(A) -~ -~ p for ~ ~ 2SF~

is non-increasing,

1 p
Tw(A)(1 - SF~) for ~ ~< Tw(A) < 2p is non-increasing,

2p
23 31 Tw(A)SF~ ~ for 2p ~< Tw(A) < ~ is non-decreasing,

232 S. Choenni et al.

1 1
SF~ < ~: T ~ (A) (1 - SF, z) for T~(A)<~ p is non-increasing,

Tw(A) - SF,~) + -~ p for ~ ~< Tw(A) < ~ is non-increasing,

P - Tw(A)SF~ + p for 2p ~< Tw(A) < ~ is non-decreasing,

1 T~(A)SF,~ + 2 p 2p - 3 3 p for ~ < Tw(a)<_ ~ is non-decreasing.

Keeping in mind that the sum of non-increasing respectively non-decreasing functions is a
non-increasing respectively non-decreasing function we conclude that when all SF~h <~ ~,
CF3(A) is supermodular if Vw E W: Tw(A) < 2p and submodular if Vw ~ W: Tw(A) >!
2p. []

References

[1] H.D. Anderson and P.B. Berra, Minimum cost
selection of secondary indexes for formatted files,
ACM Trans. Database Syst. 2 (1977) 68-90.

[2] E. Barcucci, A. Chiuderi, R. Pinzani and M.C.
Verri, Index selection in relational databases,
Proc. Mathematical Fundamentals of Database
Syst. 89 (1989) 24-36.

[3] E. Barcucci, R. Pinzani and R. Sprugnoli, Opti-
mal selection of secondary indexes, IEEE Trans.
Software Engrg. 16 (1) (1990) 32-38.

[4] P.A. Bernstein, N. Goodman, E. Wong, C.L.
Reeve and J.B. Rothnie, Query processing in a
system for distributed databases (SDD-1), ACM
Trans. Database Syst. 6 (4) (1981) 602-625.

[5] R. Bonanno, D. Maio and P. Tiberio, An ap-
proximation algorithm for secondary index selec-
tion in relational database physical design, Com-
put. J. 28 (4) (1985) 398-405.

[6] F. Bonfatti, D. Maio and P. Tiberio, A
separability-based method for secondary index
selection in physical database design, methodolo-
gy and tools for data base design, S. Ceri, ed.
(North-Holland, Amsterdam, 1983) 149-160.

[7] A.F. Cardenas, Analysis and performance of in-
verted database structures, Commun. ACM 18
(5) (1975) 253-263.

[8] R. Choenni, H.M. Blanken and S.C. Chang,
Index selection in relational databases, to appear
in Proc. lnternat. Conf. on Computing and Infor-
mation (1993).

[9] R. Choenni, H.M. Blanken and S.C. Chang, On
the automation of physical database design, Proc.
ACM Syrup. Applied Computing (1993) 358-368.

[10] D. Comer, The difficulty of optimum index selec-
tion, ACM Trans. Database Syst. 3 (4) (1978)
440-445.

[11] S. Finkelstein, M. Schkolnick and P. Tiberio,
Physical database design for relational databases,
ACM Trans. Database Syst. 13 (1) (1988) 91-
128.

[12] A.H. Haitsma, A combinatorial problem related
to the selection of indices for a file, Memoran-
dum Nr. 98, Department of Applied Mathe-
matics, Twente University of Technology, En-
schede, 6p., 1975.

[13] M.Y.L. Ip, L.V. Saxton and V.V. Raghavan, On
the selection of an optimal set of indexes, IEEE
Trans. Software Engrg. SE-9 (2) (1983) 135-143.

[14] W.S. Luk, On estimating block accesses in data-
base organizations, Commun. ACM 26 (11)
(1983) 945-948.

[15] S. Rozen and D. Shasha, A framework for au-
tomating database design, Proc. Internat. Conf.
on Very Large Databases (1991) 401-411.

[16] M. Schkolnick, The optimal selection of sec-
ondary indices for files, lnformat. Syst. 1 (1975)
141-146.

[17] M. Schkolnick, A survey of physical database
design methodology and techniques, Proc. Inter-
nat. Conf. on Very Large Databases (1978) 474-
487.

[18] M. Schkolnick and P. Tiberio, Estimating the cost
of updates in a relational database, ACM Trans.
Database Syst. 10 (2) (1985) 163-179.

[19] D.M. Topkis, Minimizing a submodular function
on a lattice, Operat. Res. 26 (2) (1978) 304-
321.

[20] J.D. Ullman, Principles of Database and Knowl-
edge-Base Systems, Vol. I (Computer Science
Press, Rockville, MD, 1988).

[21] K. Whang, G. Wiederhold and D. Sagalowicz,
Separability- An approach to physical database
design, Proc. lnternat. Conf. on Very Large Data
Bases (1981) 487-500.

On the selection of secondary indices 233

[22] K. Whang, G. Wiederhold and D. Sagalowicz,
Estimating block accesses in database organiza-
tions: a closed noniterative formula, Commun.
ACM 26 (11) (1983) 940-944.

[23] K. Whang, Property of separability in physical
design of networkmodel databases, Informat.
Syst. 10 (1) (1984) 57-63.

[24] K. Whang, Index selection in relational databases
in: S. Ghosh, Y. Kambayashi and K. Tanaka
(eds), Proc. Foundations of Data Organization,
(1987) 487-500.

[25] L.A. Wolsey, Maximising real-valued submodu-
lar functions: Primal and dual heuristics for loca-
tion problems, Math Operat. Res. 7 (3) (1982)
410-425.

[26] S.B. Yao, Approximating block accesses in data-
base organizations, Commun. ACM 20 (4) (1977)
260-261.

Sunii Choenni holds a master
degree in Theoretical Compu-
ter Science from the Delft
University of Technology.
Currently, he is a Ph.D. candi-
date at the Computer Science
department of the University
of Twente. During November
'92 until February '93 he was a
visiting researcher at the Uni-
versity of Genoa (Italy). His
research topics are physical
design of relational and ob-
ject-oriented databases.

Henk M. Blanken joined, after
receiving his master degree in
Mathematics, in 1966 Philips
Computer Industry (Apel-
doom, The Netherlands). In
1971 he joined the University
of Twente as an associate pro-
fessor of Compmer Science.
From this university he re-
ceived a Ph.D. degree in
Computer Science in 1984.
During a one-year visit to the
IBM Scientific Center at

Heidelberg he contributed to the AIM/II project. His
current research interests are non-standard database
applications and storage structures.

Thiel Chang was born in
Leiden, The Netherlands, in
1942. He received his degree
in Mathematics from the Uni-
versity of Leiden. He joined
the computer science arena in
1978. During the last 12 years
he has held many senior man-
agement positions at large
Software and Maintenance de-
partments. Currently, he
heads the Research & De-
velopment department of the

GAK. He has given invited talks on his research at
conferences and working groups in Europe and served
in program committees on conferences. He is a mem-
ber of the ACM. His current research interests are
software engineering, knowledge-based reusable soft-
ware design, workflow management, expert systems,
object-oriented databases and software development
based on specification languages.

