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fits are possible if the Gaussians are less constrained, that is, if more
of their characteristics (amplitude, position, and width) are used. This
is demonstrated in Table I. For the first example, the position of the
Gaussians was held at the extrema ofsin(2�t), as done in [1], but the
remaining parameters were adjusted to minimize the squared error.
The result was a very good fit. Using all parameters, as in the second
example, reduced the squared error even further, by four orders of
magnitude.

As stated in [1], this is a nonlinear least squares curve fitting
problem. Hence, we see the practical importance of suboptimal but
efficient algorithms like the one proposed in that work.
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A Versatile Algorithm for Two-Dimensional
Symmetric Noncausal Modeling

George-Othon Glentis, Cornelis H. Slump, and Otto E. Herrmann

Abstract—In this brief, a novel algorithm is presented for the efficient
two-dimensional (2-D) symmetric noncausal finite impulse response (FIR)
filtering and autoregressive (AR) modeling. Symmetric filter masks of
general boundaries are allowed. The proposed algorithm offers the
greatest maneuverability in the 2-D index space in a computationally
efficient way. This flexibility can be taken advantage of if the shape of
the 2-D mask is nota priori known and has to be dynamically configured.

Index Terms—

Algorithms, filtering, image processing, least mean square error methods,
Toeplitz matrices.

I. INTRODUCTION

Two-dimensional least squares noncausal modeling is of great
importance in a wide range of applications. These include image
restoration, image enhancement, image compression, 2-D spectral
estimation, detection of changes in image sequences, stochastic
texture modeling, edge detection, etc. [1].

Let x(n1; n2) be the input of a linear, space invariant 2-D FIR
filter. The filter’s outputy(n1; n2) is a linear combination of past
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input valuesx(n1 � i1; n2 � i2) weighted by thefilter coefficients
ci ;i over a support region, orfilter maskM:

y(n1; n2) = �

(i ;i )2M

ci ;i x(n1 � i1; n2 � i2): (1)

A fairly general shape for the support region is considered. Thus,M

is allowed to be horizontally convex, i.e., the horizontal line segment
joining any two points(i1; i2); (i1; i3) 2 M lies in M.

The filter is restricted to be linear phase. Thus, the following
conditions should be satisfied [1]:

mask symmetry 8 (i1; i2) 2M; 9(�i1;�i2) 2M

coe�: symmetry ci ;i = c�i ;�i :

Given an input 2-D signalx(n1; n2) and a desired response 2-D
signal z(n1; n2), the optimal mean-squared error (MSE) 2-D FIR
filter is obtained by minimizing the cost function

E [(z(n1; n2)� y(n1; n2))
2
]: (2)

E [�] is the expectation operator. MSE 2-D linear prediction can be
handled as a special case of filtering, settingz(n1; n2) = x(n1; n2)

and excluding the originf(0; 0)g from the filter mask, i.e.,(i1; i2) 2
M � f(0;0)g.

Minimization of (2) with respect to the filter parametersci ;i

leads to a system of linear system of equations, the so-called normal
equations. Any well-behaved linear system solver can be applied for
the inversion of the 2-D normal equations. However, the special
structure of the normal equations gives rise to the development
of cost-effective algorithms for the determination of the unknown
parameters [2]–[4].

In this paper a new, highly efficient algorithm is developed for
the solution of the normal equations in atrue order recursive way
[7]. Filter masks of general, horizontally convex shape are allowed.
Fast recursions are developed for the updating of lower order filter
parameters toward any neighboring point. It can efficiently be applied
for the order-recursive estimation of the 2-D MSE FIR filter and
system identification, accelerating the exhaustive search procedures
required by most of the order determination criteria [8], [9].

II. 2-D SYMMETRIC SUPPORT REGION

Consider the support region depicted in Fig. 1. More precisely,M

consists of a union of intervals:

M =

k

i =�k

mmm(i1);

mmm(i1) = f(i1; i2): � k2(�i1) � i2 � k2(i1)g:

Clearly,k1 = maxfi1: (i1; i2) 2 Mg; k2(i1) = maxfi2: (i1; i2) 2

mmm(i1)g. Then, (1) takes the form

y(n1; n2) = �

k

i =�k

k (i )

i =�k (�i )

ci ;i x(n1 � i1; n2 � i2):

The above equation can be written as a linear regression:

y(n1; n2) = �X
t
M(n1; n2)CM (3)

where the regressor (data vector) and the filter coefficients vector are
defined by (4), (5), and (5a).

The filter coefficients’ symmetry implies that

CM = J CM (6)
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Fig. 1. Symmetric support region.

where J is a matrix with ones in the anti-diagonal, and zeros
elsewhere. Clearly,JJ = I. Minimization of (2), subject to the
symmetry constraint (6), leads to the following linear system of
equations [3]:

(RM + JRMJ )CM = �(DM + JDM) (7)

whereRM = E [XM(n1; n2)X
t
M(n1; n2)] is the input signal au-

tocorrelation matrix, andDM = E [XM(n1; n2)z(n1; n2)] is the
cross-correlation vector between the input and the desired response
signal.

In the sequel, real and homogeneous, random, wide-sense station-
ary 2-D signals will be considered. This implies that the autocor-
relation between two samples depends on the difference of their
coordinates [2]:

E [x(n1 � i1; n2 � i2) x(n1 � j1; n2 � j2)]

= �(i1 � j1; i2 � j2); �(i; j) = �(�i;�j): (8)

The autocorrelation matrixRM is a block matrix of block order
2k1 + 1

RM = [R(i1; j1)] i =�k ���k
j =�k ���k

with entry Toeplitz matrices of the form

R(i1; j1) = E xm(i )(n1; n2)x
t
m(j )(n1; n2)

= [�(i1 � j1; i2 � j2)] i =�k (�i )���k (i )

j =�k (�j )���k (j )

:

D
M

is a block vectorD
M

= [d(i1)]i =�k ���k with entry sub-
vectors d(i1) = [d(i1; i2)]i =�k (�i )���k (i ) where d(i1; i2) =

E [x(n1 � i1; n2 � i2)z(n1; n2)].
In addition to the block Toeplitz structure, the autocorrelation

matrix is perisymmetric, as follows from the symmetry of the support
region and (8), i.e.,R

M
= JR

M
J .

Thus, the normal equations (7) take the form

R
M
C
M

= �D
s
M

(9)

whereDs
M

= 1=2(D
M

+ JD
M
).

III. T HE ALGORITHM

In this section, order-updating recursions are developed for the
passage from lower order parameters to increased order counterparts.
Single-step increments of the filter maskM are allowed each time.
Thus, starting fromM, an increased order maskMi is constructed
with the addition of two symmetrically located neighboring samples.

Let us consider the increased order support region depicted in
Fig. 2:

M
i

=M[ f(i1; k2(i1) + 1)g [ f(�i1;�k2(i1)� 1)g:

The data vector associated with the increased order maskMi is
partitioned in such a way that the lower order data vector appears,
i.e.,

X
M

(n1; n2) =W
t
i

x(n1 + i1; n2 + k2(i1) + 1)

X
M
(n1; n2)

x(n1 � i1; n2 � k2(i1)� 1)

: (10)

Wi is a suitable permutation matrix. Efficient order recursive al-
gorithms for 1-D, as well as for 2-D, MSE filtering are based on
suitable partitions of the data parameters that utilize time, or spatial,
shift-invariance properties [2]–[7].

The increased order linear system corresponding to the augmented
support regionMi

R
M

C
M

= �D
s

M

is partitioned using (10) as

R
M

=W
t
i

rfo r̂
i t
M

rbo

r̂
i
M

R
M

r
i
M

rbo r
i t
M

rfo
Wi (11)

whererfo = �(0; 0); rbo = �(2i1; 2k2(i1) + 2), and

r
i
M

= E [X
M
(n1; n2)x(n1 � i1; n2 � k2(i1)� 1)] (12)

r̂
i
M

= E [X
M
(n1; n2)x(n1 + i1; n2 + k2(i1) + 1)]: (13)

Clearly, r̂i
M

= J r
i
M

. Moreover,

D
s

M

=W
t
i

ds(i1; k2(i1) + 1)

Ds
M

ds(i1; k2(i1) + 1)

(14)

whereds(i1; k2(i1)+1) = 1=2(d(i1; k2(i1)+1)+d(�i1;�k2(i1)�

1)).
Application of the matrix inversion lemma for partitioned matrices

[5] leads to a recursive estimation of the increased order filter, (1)–(5)
of Table I. Auxiliary vectorqi

M

is defined as

R
M
q
i
M

= � r
i
M

+ J r
i
M

(15)

or

q
i
M

= b
i
M

+ J b
i
M

; R
M
b
i
M

= �r
i
M

: (16)

The development of an order-recursive algorithm for the determi-
nation of the optimum filterC

M

, for all possible neighboring
directionsf(i1; k2(i1)+1)g[f(�i1;�k2(i1)�1)g; i1 2 [�k1; k1],
requires recursions for updatingq`

M
, or equivalently,b`

M
; ` =

�k1 � � � k1.

X
M
(n1; n2) = x

t
m(�k )(n1; n2) x

t
m(�k +1)(n1; n2) � � � x

t
m(k �1)(n1; n2) x

t
m(k )(n1; n2)

t
(4)

C
M

= c
t
m(�k ) c

t
m(�k +1) � � � c

t
m(k �1) c

t
m(k )

t
(5)

xm(i )(n1; n2) = [x(n1 � i1; n2 + k2(�i1)) � � � x(n1 � i1; n2 � k2(i1) + 1) x(n1 � i1; n2 � k2(i1))]
t

cm(i ) = ci ;�k (�i ) � � � ci ;k (i )
t
: (5a)
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A. Auxiliary Variables Order Updating Recursions

Let us consider the increased order linear system corresponding to
the augmented maskMi :

R
M

b
`

M
= �r

`

M
; ` = �k1 � � � k1 (17)

wherer`
M

= E [X
M

(n1; n2)x(n1�`; n2�k2(`)�1��(`�i1))].
�(n) is the discrete-time Dirac function, i.e.,�(n) = 1 for n = 0

and �(n) = 0 for n 6= 0. Clearly,b`
M

is the backward predictor
that minimizes the cost function

E x(n1 � `; n2 � k2(`)� 1� �(`� i1)) + X
t
M(n1; n2)b

i

M

2

:

In contrast to the order updating recursion derived for the optimum
filter (9), the update of the backward predictors defined above requires
a more complicated procedure. The main difference between (9)
and (16) is that, while in the first case the right-hand side vector
is symmetric, in the second, it is not. This time, a two-step order-
updating method will be followed, as

b
`
M ! b

`
M+L(i ); 8` 2 [�k1; k1] step I

b
`
M+L(i ) ! b

`

M
; 8` 2 [�k1; k1] step II

Steps I and II described above correspond to a two-step incremental
update of the initial maskM as

M! (M[ (i1; k2(i1) + 1)) �M+ L(i1)

M+ L(i1)! (M+ L(i1)[ f(�i1;�k2(i1)� 1)) �M
i1
:

Let us first consider step II. The increased order data vector is
partitioned as

X
M

(n1; n2) = T
t
R(�i )

x(n1 + i1; n2 + k2(i1) + 1)

XM+L(i )(n1; n2)
: (18)

T t
R(�i )

is a suitable permutation matrix. Thus, parameters appearing
in (16) are partitioned as

RM = T
t
R(�i )

�(0; 0) r̂
i t

M+L(i )

r̂
i

M+L(i )
RM+L(i )

TR(�i )

r
`

M = T
t
R(�i )

�(i1 + `; k2(i1) + k2(`) + 2 + �(`� i1))

r
`
M+L(i )

where

r̂
i

M+L(i )
= E [XM+L(i )(n1; n2)x(n1 + i1; n2 + k2(i1) + 1]

r
`
M+L(i ) = E [XM+L(i )(n1; n2)x(n1 � `; n2 � k2(`)� 1

� �(`� i1))]:

Application of the matrix inversion lemma results in (19)–(21) of
Table I. The new parameter introduced,ai

M+L(i )
, is the forward

predictor, defined as

RM+L(i )a
i

M+L(i )
= �r̂

i

M+L(i )
:

It can be interpreted as a forward predictor that minimizes the cost
function

E x(n1 + i1; n2 + k2(i1) + 1)

+ X
t
M+L(i )(n1; n2)a

i

M+L(i )

2

:

It is updated according to the recursion described by (15)–(17) of
Table I. Due to the perisymmetric property of matrixRM and
the symmetry of (12), (13), the lower order forward predictors that
correspond to the support regionM are symmetric to the backward
predictors, i.e.,

a
`
M = Jb

`
M; ` 2 [�k1; k1]:

The implementation of step I needs more care. Suppose that` 6= i1;
the case wherè = i1 is treated separately. Indeed, following (18),
we obtain

XM+L(i )(n1; n2) = S
t
L(i )

XM(n1; n2)

x(n1 � i1; n2 � k2(i1)� 1)
: (19)

SL(i ) is a permutation matrix. Moreover,

RM+L(i ) = S
t
L(i )

RM r
i

M+L(i )

r
i t

M+L(i )
�(0; 0)

SL(i )

and

r̂
i

M+L(i )
= S

t
L(i )

J r
i
M

�(2i1; 2k2(i1) + 2)

and for ` 6= i1;

r
`
M+L(i ) = S

t
L(i )

r
`
M

�(i1 � `; k2(i1)� k2(`))
:

Thus, (7)–(8) of Table I are easily derived using the matrix inversion
lemma.

When` = i1, partition (19) does not hold. To overcome this prob-
lem, the data vectorXM+L(i )(n1; n2) must, somehow, be related to
the delayed version of the lower order data vectorXM(n1; n2 � 1).
To accomplish this task, the following augmented mask is considered:

M+ L =M

k

i =�k

f(i1; k2(i1) + 1)g: (20)

The corresponding data vector is partitioned in two ways as

XM+L(n1; n2) = T
t
L

x
f
(n1; n2 � 1)

XM(n1; n2 � 1)

= S
t
L

XM+L(i )(n1; n2)

x
b
i (n1; n2)

: (21)

Vectorsxf (n1; n2) andxbi (n1; n2) are defined by

x
f
(n1; n2) = [x(n1 + `; n2 + k2(�`))]`=�k ���k ;

x
b
i (n1; n2) = [x(n1 � `; n2 � k2(`)� 1)] `=�k ���k

6̀=i

:

TL andSL are suitable permutation matrices.
Thus,

RM+L = T
t
L

Rfo
R̂

t
M

R̂M RM
TL = S

t
L

RM+L(i ) R
i
M

R
i t
M Rbo

i

SL

r
i
M+L = T

t
L

�f

r
i
M

= S
t
L

r
i

M+L(i )

�b(i )

where

R
fo

= [�(`1 � `1; k2(�`1)� k2(�`2)] ` =�k ���k
` =�k ���k

R̂M = J r
`
M `=�k ���k

;

RM+L(i ) = r
`
M+L(i ) `=�k ���k

6̀=i

�
b(i )

= [�(`� i1; k2(`)� k2(i1)� 2)] `=�k ���k
6̀=i

;

�
f
= [�(`� i1;�k2(�`)� k2(i1)� 1)] `=�k ���k

6̀=i

:

The above partitions yield (10)–(17) of Table I.
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TABLE I
THE ALGORITHM

B. Overall Organization

The order-recursive equations developed so far are tied together to
form a powerful true order-recursive2-D algorithm for symmetric
filtering and linear prediction. Indeed, letM�n be the support
region within which the search for the optimum mask will be
conducted. Letk�n1 = maxfi1 : (i1; i2) 2 M�ng. Then, for all
i1 2 [�k1; k1]; k1 � k�n1 , any one of the increased order filters
corresponding to a symmetric increment along thei1 and the�i1

rows of M can be estimated asCM ! C
M

. The update of
parameters to a mask that contains extra rows, i.e., going from
[�k1; k1] ! [�k1 � 1; k1 + 1], can be accomplished only for the
points laying across the vertical axis. Once the increased order filter
that corresponds toM[f(0;�k1�1)g[ f(0; k1+1)g is determined,
further recursions along that row can be performed.

The computational complexity of the algorithm isO(2k1P ) opera-
tions per recursion, whereP = dim(CM) =

k

i =0
2k2(i1)+1. For

a 2-D filter of a final mask shapeM�n, O(k�n1 (P�n)2) operations
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Fig. 2. Extended support region corresponding to an increased order sym-
metric filter.

Fig. 3. Example 1.

Fig. 4. Example 2.

are required. For the special case of rectangular-shaped masks, this
amount is comparable to the complexity of the algorithms proposed
in [2]–[4]. The nonrectangular mask case cannot be handled by the
algorithms of [2]–[4] unless overparametrization is utilized.

A great advantage the proposed algorithm offers against conven-
tional LWR based counterparts is the accommodation of masks of
general boundaries and the estimation of lower order parameters.
Moreover, all lower order filters that correspond to reduced shape
masks can be recovered. Consider, for example, a filter mask of

a rectangular shape,M = (�k�n;�k�n) � (k�n; k�n). When all
filters of intermediate order(�k;�k) � (k; k) are required, for all
1 � k � k�n, algorithms of [2]–[4] require a repetitive application
of LWR-based recursions, thus resulting inO(k6) cost, which is
outperformed by theO(k5) cost of the proposed method. Thus, it
is established that in all cases, the proposed highly efficient order-
recursive 2-D algorithm performs better than any existing scheme.

The order-updating procedure is illustrated using a simple but
important support region depicted in Fig. 3. Suppose that the MSE
filter corresponding toM1 is known. The estimation of the increased
order MSE filter corresponding toM2 is accomplished following the
updating scheme

M1[f(2; 0); (�2; 0)g

[ f(2;1); (�2;�1)g

[ f(2;2); (�2;�2)g

[ f(1;2); (�1;�2)g

[ f(0;2); (0;�2)g

[ f(�1;2); (1;�2)g

[ f(�2;2); (2;�2)g

[ f(�2;1); (2;�1)g:

A case of a circularly shaped filter mask is depicted in Fig. 4. The
optimum filter corresponding to the maskM2 is estimated from the
lower order counterpart as

M1[f(3; 0); (�3; 0)g

[ f(2;1); (�2;�1)g

[ f(1;2); (�1;�2)g

[ f(2;2); (�2;�2)g

[ f(1;2); (�1;�2)g

[ f(0;3); (0;�3)g

[ f(�1;2); (1;�2)g

[ f(�2;1); (2;�2)g

[ f(�2;2); (2;�2)g:

IV. CONCLUSION

A highly efficient, order-recursive algorithm for symmetric 2-
D FIR filtering and 2-D system identification has been developed.
Symmetric support regions with arbitrary horizontally convex shape
can be handled. The proposed algorithm offers the greatest possible
maneuverability in the 2-D index space. It allows for recursive
estimation of the 2-D filter mask shape. The implicit flexibility of
the algorithm enables a dynamical reconfiguration of the mask shape
in a computationally efficient way.
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Efficient Moving-Window DFT Algorithms

J. A. Rosendo Maćıas and A. Ǵomez Exṕosito

Abstract—This brief deals with the real-valued, moving-window discrete
Fourier transform. After reviewing the basic recursive versions appearing
in the literature, additional recursive equations are presented. Then,
these equations are combined so that nonrecursive expressions involving
only consecutive discrete Fourier transform (DFT) sine components are
obtained for both the DFT cosine component and squared harmonic
amplitude.

The computational complexity of this new scheme is finally studied
and compared to that of existing methods, showing that, in most practical
situations, a reduction in the operation count is achieved.

Index Terms—Discrete Fourier transform, harmonic analysis, recursive
digital filters, spectral analysis.

I. INTRODUCTION

Discrete Fourier-related transforms are of paramount importance in
many and diverse scientific and technological applications, constitut-
ing one of the major branches embraced in digital signal processing
techniques. A recent and thorough discussion of major continuous-
time and discrete-time Fourier-related transforms and series, both for
real and complex signals, is presented in [1].

Since the paper by Cooley and Tukey introducing the fast Fourier
transform (FFT) concept was published in 1965 [2], a formidable
research effort has been devoted to the development of increasingly
efficient fast transform algorithms [3]. Techniques such as radix-p

(p = 2; 4; 8), split-radix, DFT via other transforms, mixed decima-
tion, etc., have been proposed within this framework.

Although earlier FFT algorithms were designed to deal with
complex sequences, it turns out that, in many important applications,
the sequence to be transformed is real valued. Consequently, several
fast transform techniques specifically devised for real signals have
been proposed [1], [4]. Among these, the real split-radix FFT [4],
the so-called fast Fourier-cosine transform, based on a recursive
application of the DCT [5], and the fast Fourier-sine transform, based
on the same idea but using the DST [6], have been shown to require
the lowest operation count.

An interesting particular case appears when the spectrum of
a time-varying or nonstationary signal is required. This leads to
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the so-called short-time, time-dependent or moving-window Fourier
transform [1], [7]. As its name implies, the DFT is computed on a
window of the signal which is moved successively one data point
each time. This way, there is a simple relationship between the
window contents before and after the shift since, as the oldest sample
leaves the window, a single new point is added to it. Although a
straightforward rectangular window is implicit in this process, other
more sophisticated windows have been proposed in digital filtering
to avoid unacceptable edge effects [8].

In spite of the practical importance of this type of DFT, the effort
devoted to design algorithms especially tailored to the changing
window contents is rather modest. Virtually all proposals in this
regard refer to recursive algorithms, in which the spectrum at any
time instant is simply related to previously computed spectra [9]–[11].
However, since practical recursive implementations are prone to
finite-length, long-term anomalous behavior [8, p. 308], [12], [13],
the need for efficient, nonrecursive, moving-window DFT algorithms
still remains.

In this paper, the real-valued, moving-window DFT is first re-
viewed. Then, first- and second-order recursive versions are obtained
in a simple manner [10], [13]. These recursive versions are subse-
quently used to develop nonrecursive versions of the DFT in which
only a single component at consecutive instants is required to fully
compute the complex spectrum. Finally, the computational effort of
these improved, reliable versions is compared to that of the best,
general-purpose, real-valued FFT algorithms.

II. M OVING-WINDOW DFT

Assuming that, at instantn, the window comprises theN values
x(n�N +1); x(n�N +2); � � � ; x(n), thekth complex harmonic,
as given by the DFT, is

Fn(k) =

N�1

i=0

x(i+ n�N + 1)e
�j� i (1)

where

�k =
2�k

N
: (2)

Using rectangular coordinates, and lettingSn(k); Cn(k) be the DFT
sine and cosine, components, respectively, i.e.,

Cn(k) =

N�1

i=0

x(i+ n�N + 1) cos(i�k) (3)

Sn(k) = �

N�1

i=0

x(i+ n�N + 1) sin(i�k) (4)

the DFT harmonics can be expressed as

Fn(k) = Cn(k) + jSn(k) (5)

and their amplitudes or power spectrum

F
2

n(k) = C
2

n(k) + S
2

n(k): (6)

Taking advantage of the shifting window contents, a recursive ex-
pression for the DFT can be obtained withO(N) complexity [9],
[11]:

Fn(k) = [Fn�1(k) + �x(n)]e
j� (7)

where�x(n) = x(n) � x(n � N).
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