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A Supervisor for Control of Mode-switch 
Processes* 

R. A. HILHORST,t  J. VAN AMERONGEN,t  P. LOHNBERGt 
and H. J. A. F. TULLEKEN~t 

Controllers for processes which frequently return to a number of modes of 
operation should be adapted through mode recognition. 
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A l ~ t m d - - M a n y  processes operate only around a limited 
number of operation points. In order to have adequate 
control around each operation point, an adaptive controller 
could be used. When the operation point changes often, a 
large number of parameters would have to be adapted over 
and over again. This makes application of conventional 
adaptive control unattractive, which is more suited for 
processes with slowly changing parameters. Furthermore, 
continuous adaptation is not always needed or desired. An 
extension of adaptive control is presented, in which for each 
operation point the process behaviour can be stored in a 
memory, retrieved from it and evaluated. These functions 
are co-ordinated by a "supervisor". This concept is referred 
to as a supervisor for control of mode-switch processes. It 
leads to an adaptive control structure which quickly adjusts 
the controller parameters based on retrieval of old 
information, without the need to fully relearn each time. 
This approach has been tested on experimental set-ups of a 
flexible beam and of a flexible two-link robot arm, but it is 
directly applicable to other processes, for instance, in the 
(petro) chemical industry. 

1. INTRODUCTION 

MANY PROCESSES CANNOT b e  c o n t r o l l e d  a d e -  

q u a t e l y  by a fixed controller. For appropriate 
control, an adaptive controller or even a variable 
controller structure is needed. When the process 
operates in a limited number of operating points, 
a limited number of controllers suffices. In 
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practical situations a controller will not only 
yield satisfactory control performance in the 
operation point, but also in the neighbourhood 
of this operating point. The set of operating 
conditions where one controller performs well is 
called a mode. In practice there are several 
processes which exhibit this behaviour and 
operate in a limited number of modes only. 
Processes which frequently return to an earlier 
seen mode will be referred to as mode-switch 
processes (Hilhorst et al., 1991). Such processes 
are common, for instance, in the process 
industry and in robotics. Mode-switch behaviour 
is encountered in a chemical reactor in which the 
yield and quality of the product has to be 
optimized to meet market demands, or in a 
robot which has to transport a limited number of 
payloads with different masses. 

In order to meet the control demands in each 
operating point, the use of a conventional 
adaptive controller (Astr6m and Wittenmark, 
1989) could be considered. However, for 
mode-switch processes, the time needed for 
(conventional) adaptation may be too long, that 
is, larger than the residence time in a process 
mode. For instance, the closed-loop process 
signals may not be sufficiently exciting. Although 
the addition of test signals can increase the 
adaptation speed, it disturbs the process and 
hence results in performance loss. On the other 
hand, it does not seem to be necessary to repeat 
the whole adaptation cycle each time the process 
returns to a certain process mode. The problem 
is that conventional adaptive controllers forget 
the useful information which was available 
before. 

The problem of forgetting useful information 
can be solved by construction of a composite 
model (Skeppstedt et al., 1992) of the process. 
This implies that each time the process enters a 
new mode of operation, its operation point and 
related model and controller are stored. Using 
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this composite model, a gain scheduling 
controller (.~str6m and Wittenmark, 1989) can 
be constructed. Gain scheduling results in fast 
adaptation of control parameters,  as controllers 
related to each operating point are stored. 
However ,  the construction of a composite model 
as described by Skeppstedt et al. (1992) and 
hence the application of a gain scheduling 
controller is restricted to processes where the 
process variables related to the changes in 
dynamics are measurable. If this is not the case, 
use can be made of a so-called Multi-Model 
Adaptive Controller (MMAC) approach as 
studied by Athans et al. (1977) and a similar 
approach described by Moose et al. (1978). 
Unfortunately,  in its pure form this approach has 
severe drawbacks like adaptation stopping as 
described by Athans et al. (1977) and its 
non-transparency with respect to tuning the 
adaptation speed (Moose et al . ,  1978), that is, no 
clear rules are present to balance mode-tracking 
with noise-insensitivity. Also, recent work by 
Lurid et al. (1991) shows that the successfulness 
of application of such schemes can be hampered 
by the lack of distinction capability between the 
different models. 

In this paper a supervisor for control of 
mode-switch processes is proposed which is also 
applicable when the process variables related to 
changes in dynamics are not measurable. 
Fur thermore,  a method for mode detection is 
presented which solves the problems described 
above. This approach has the advantage that 
only recognition of the new mode, and no 
identification of the process, is needed when the 
process returns to an earlier visited recognized 
mode of operation or when the control criterion 
has changed. A performance monitor can take 
care of restarting the adaptation whenever 
necessary. 

The supervisor for control of mode-switch 
processes will be described with the main 
emphasis on the retrieval of stored information. 
In Section 2 the modeling of mode-switch 
processes is presented. Definitions of a " m o d e "  
and "mode  switch" are given. In Section 3 the 
structure of the supervisor is discussed. Further- 
more,  an overview of the functions to be 
executed by the supervisor is given. Section 4 
contains a detailed discussion about mode 
recognition. These ideas have become realisable, 
also for systems with relatively fast dynamics, 
due to the availability of high-speed parallel 
computers.  Experiments are described in Section 
5 where the supervisor for control has been 
tested on experimental  set-ups of a flexible beam 
as well as of a two-link flexible robot arm. 
Finally, conclusions are drawn in Section 6. 

2. MODELLING OF MODE-SWITCH PROCESSES 

Many processes vary with time and/or  are 
nonlinear. Such a process, referred to as P, can 
be described by a nonlinear time-variant model: 

=f(x ,  u, O, w), 

y = g ( x ,  u, 0, v), (1) 

where x is a vector of plant states, y is a vector 
of process ouputs, u is a vector of control inputs, 
0 is a vector of time-variant process parameters,  
w is a vector of system disturbances, v is a vector 
of measurement disturbances, and f and g are 
nonlinear, time-invariant functions. Such a 
complete description of the process in the form 
of equation (1) is generally not available. Often 
that is also not needed, as in many cases 
processes are operated only for small deviations 
around a limited number of nominal operating 
points. These processes will be referred to as 
mode-switch processes. Moreover,  around such 
an operating point the dynamics may be 
approximated by a linear model such that a fixed 
linear controller based on this model performs 
well in the neighbourhood of this operating 
point. An operation point is identified by an 
operation vector to, and a nominal operation 
point vector by tb. This nominal operation vector 

consists of elements which influence the 
linearized dynamics. Typically, the nominal 
operation vector ~ will contain information 
about the nominal state vector ~, nominal input 
vector fi, nominal process parameter  vector 0, 
nominal system disturbance vector if, and 
nominal measurement disturbance vector ~: 

6 = {i,  fi, 6, if, i'}. (2) 

Joining the possible values of the operation 
vector 4 ,  a space of operation Q can be defined. 
Normally, only a limited number of elements of 
the operation vector is measurable. For instance, 
process parameters and system disturbances are 
usually not measurable or known in advance. 
This problem is addressed later in this section. 

Around an operation point, pointed to by an 
operation vector to, a linear model Mo, for local 
perturbational dynamics can be derived. Such a 
linear description can be obtained analytically if 
(1) is available and sufficiently smooth, or 
otherwise by identification of the parameters of a 
linear process model. By means of system 
identification, a number of linear models of the 
process can be obtained, each for a different 
nominal operation point (mode centres). In 
order  to distinguish between the mode centres, 
they will be denoted by to;, 1 --< i --- n, where n is 
the number of mode centres. The process model 
obtained for the ith mode centre will be denoted 
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by My Based on the model Mi, a linear 
controller C .̀ can be designed which satisfies the 
control criterion. 

A special case is that in which the operation 
vector to consists only of a process parameter 
vector 0, which jumps between a limited number 
of values. Such a process will be referred to as a 
finite mode-switch process, as the dynamics can 
be exactly covered by a finite number of linear 
models. If the process parameter vector moves 
over a range of values, the process will be 
considered as a generalized mode-switch 
process. 

Based on the selected mode centres to~, 
1 -  i-< n, the operation space f~ can be divided 
into a number of modes. Such a mode can be 
determined by comparing the properties of a 
mode centre toi with the properties related to an 
arbitrary operation point to. These differences in 
properties can be related to a measure of 
"distance". In the following, three possible 
mode definitions (i.e. divisions of the operation 
space) will be given, and their applicability in 
practice will be discussed. 

If a set of mode centres is known, and if for 
each mode centre to,- a controller Ci is designed, 
then for each controller C~ a subset g2~ in the 
operation space can be determined in which this 
ith controller operates well: 

ff~7 = {to • f~ I closed-loop plant behaviour using 

controller C .̀ satisfactory in some sense}. (3) 

Such a set is called a control mode. A division of 
the operation space g2 in control modes is 
difficult to make in practice, because it requires 
that the operation vector is fully measurable and 
that it is known for each operation point that the 
controller C .̀ results in satisfactory behaviour. 
Also acquiring the knowledge of satisfactory 
behaviour for each controller can be cumber- 
some as shown in the design of an adaptive auto 
pilot for ships by Reid and Williams (1978). 
Because the aim is to increase the speed of 
adaptation by using valuable knowledge col- 
lected in the past, this solution should be 
rejected. 

When the division of the operation space in 
control modes is impossible because the exact 
size of the control modes is not known, 
approximations have to be made. In a 
sutficiently small neighbourhood of a mode 
centre to~, any locally well-designed controller Ci 
performs well. This neighbourhood will be 
referred to as an operation mode, which can be 
defined as 

if2 ° = {to e f2 I d l ( t o ,  toi) <- e l } ,  (4) 

where d~ is a metric, and e i is a positive 
real-valued parameter specified by the user. 
Such a technique is well known in gain 
scheduling theory. If the operation vector could 
be measured noise-free, an obvious choice is to 
take d~ equal to the Euclidean norm, that is 

da(to, to,) = Ilto - toill, (5) 

which is a popular gain scheduling function. Also 
the construction of a composite model as 
proposed by Skeppstedt et  al. (1992) can be 
recognized as being similar to making a division 
of the operation space in operation modes. 
However, the full operation vector will seldom 
be measurable. Therefore application of this 
method will be limited to special cases. 

Another definition concerns the notion of 
model mode. In a sufficiently small neighbour- 
hood of a mode centre to, the process dynamics 
encountered will resemble the dynamics de- 
scribed by the model My Furthermore, it is 
likely that in this neighbourhood the controller 
C~ performs well. This neighbourhood will be 
referred to as a model mode g2 m which can be 
defined as 

g2~' = {to e t) I d2(P, M,) -< e,}, (6) 

where d2 is a distance function, P is the true 
process, Mi the model related to mode centre to, 
and e,- is a positive real-valued parameter 
specified by the user. The distance function d2 is 
a measure of the model resemblance. One way 
to determine the distance function d2 is to run all 
models in parallel with the process, like for 
instance performed in the field of process 
fault-recognition (Willsky, 1976; Isermann, 1984; 
Tzafestas and Watanabe, 1990). Based on the 
process measurements, each model M~ at each 
time instant k produces a prediction of the 
output ~k. From each predicted model output ~, 
and from the measured process output y,, an 
error el can be computed. From the computed 
errors, a distance between the process P and 
each model M,. can be defined as 

d2(P, Mi) = ~ (e~)VQel, (7) 
k 

where Q is a symmetric non-negative matrix 
which weights the different output elements. 

Comparing the definitions of operation mode 
and model mode shows that the latter poses less 
restrictions on the process. The requirement of 
running models in parallel with the process can 
be met by the use of fast parallel hardware, for 
example, transputers (INMOS, 1988). There- 
fore, the definition of model mode will be 
considered in the following and this will be 
referred to as a mode when no ambiguity occurs. 
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The tolerances e~ and the number n of operation 
points t0~, 1-< i-< n, should be chosen such that 
the union of all modes of operation will cover 
the whole space of operation f2 and such that a 
good control of the process is obtained over the 
whole space of operation ~2, that is 

U if21 = •, l< - i<-n .  (8) 
i 

Equation (8) is a condition for having adequate 
control when the process changes from one 
mode centre to another one. On the other hand, 
the modes should preferably not overlap each 
other too much. If overlap occurs, the operation 
vector ~ corresponding to mode Q~ will be 
classified to mode fl~ if the following holds: 

d(P, Mi)-< d(P, Mj) for all j e [1 . . . . .  n]. (9) 

If the equality holds, additional criteria have to 
be used to distinguish between the two modes Qi 
and ff2j. 

If the current process mode is given by ff~i, 
then a mode switch occurs at an instant later in 
time when (9) becomes false for some mode 
index j ( i  =k j) ,  that is, the switching rule is 

d(P, M,) < d(P, Mj). (10) 

The procedure described above makes a division 
of the operation space ff~ into a number of 
modes such that each operation point is 
contained in a mode and that ambiguity is 
reduced to the edges only. 

3. S U P E R V I S O R  

The mode-switch property of a process can be 
used for (quick) adjustment of the controller 
parameters. This can be done by storing the 
obtained information for each mode centre to,- in 
a memory. This information will usually consist 
of a linear model Mi and an associated linear 
controller Ci. When the process returns to a 
previously seen operation point, the controller 
can be retrieved and installed in the closed loop. 
In order to recognize whether the process 
returns to a previously seen mode of operation, 
a mode detector should be designed. To meet 
the requirements for industrial usage, such a 
system should be transparent enough for 
operators to be willing to work with it. This can 
be ensured by adopting a supervisory structure 
approach taken by /Ykrz6n (1987, 1989) and by 
Isermann and Lachmann (1985) and by adapting 
it for mode-switch processes. Such a supervisory 
structure has been proposed by Jansma and 
Tulleken (1986) and by Tulleken (1992). These 
ideas have been further elaborated by Hilhorst 
(1992) yielding a supervisory structure consisting 

U s e r  = 

SUPERVISOR I 

l Identifica 
Module 

pW=m== / 

Performance 
Monitor 

/ 
to J 

L uod, 

Process and Controller I 

FIG. I. Supervisor for control of mode-switch processes. 

of a supervisor, memory, mode detector and 
performance monitor as shown in Fig. 1. 

It can be seen from the scheme that the 
supervisor communicates with the user. This 
supervisor has two strategies: an automatic and a 
manual one. In the automatic strategy, the 
proposals made by the supervisor are imple- 
mented directly without interference of an 
operator. In the manual strategy, process 
operators have the opportunity to over-rule the 
proposals made by the supervisor or to choose 
other control criteria. The resulting control 
behaviour at the various modes of operation can 
be inconsistent, since different operators do not 
react in the same way when a particular control 
situation occurs. Moreover, the changes in 
process dynamics can occur so fast (for instance, 
in the case of a robot) that constant interaction 
between operator and supervisor results in 
performance loss. Therefore, in these cases the 
automatic strategy may be preferred. 

It can also be seen from the scheme that the 
supervisor co-ordinates the monitoring, mode 
detection, retrieval, storage and maintenance of 
information in the memory, the start of 
identification and the controller design. Based 
on measurements and on a performance 
criterion provided by the user, the performance 
monitor calculates a performance index over a 
fixed interval of time. This performance index is 
used by the supervisor to evaluate the control 
performance of the current controller. Using the 
process measurements and the process mode 
information stored in the memory, the detector 
determines which mode resembles the current 
process conditions best. From the information 
provided by the performance monitor and by the 
mode detector, the supervisor decides whether 
or not to start a new identification cycle, or to 
retrieve a controller from memory. In the 
manual strategy, the installation of the controller 
has to be carried out, or at least approved by, 
the operator. In the automatic strategy, changing 
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from one controller to another occurs 
automatically. 

If a new identification cycle is started--on the 
basis of requirements and restrictions stated by 
the user--the supervisor proposes an identifica- 
tion experiment, that is, a test signal and identifi- 
cation period. If the experiment is approved by 
the user, the identification module (e.g. Tulle- 
ken, 1992) estimates the model parameters. The 
resulting model is used by the control design 
module. Based on the model and on the control 
criterion stated by the user, the controller design 
module designs a controller. Subsequently, the 
controller and model are stored together in the 
memory, and the new controller is installed in 
the closed loop. In order to keep the memory 
manageable, data related to less successful or 
superfluous controllers should be forgotten. 
These requirements should lead to a system in 
which adaptation of controller parameters can 
occur fast, and in which conventional adaptation 
is used only at the instants when it is really 
needed. In the following the mode detector will 
be discussed in more detail. 

4. MODE DETECTOR 

4.1. Definitions and goals 
As a result of changes in process parameters, 

disturbances or setpoints, the process mode may 
change. This requires a method which detects 
whether the process mode has changed and 
decides whether it is attractive to adapt the 
controller parameters. Mode recognition is the 
task of identifying the current mode of 
operation. Mode-switch detection is a sub- 
sequent task, which establishes whether or not 
the current process mode differs from the 
previous process mode. These two tasks are 
performed by the mode detector shown in the 
supervisory structure of Fig. 1. On the basis of 
the information provided by the mode detector, 
the supervisor decides whether the controller 
parameters should be adapted. If the method is 
quick in detecting mode switches, then the 
presence of noise may often give rise to wrong 
detections. On the other hand, if the method is 
made insensitive to noise, mode switches may 
not be detected fast enough. As both situations 
are undesirable, a good balance between noise 
sensitivity and mode tracking is essential. 

Finally, when the mode detector establishes a 
mode switch, the controller parameters should 
be adjusted. In order to prevent bumps in the 
control signal, bumpless transfer was applied. 

4.2. Mode recognition 
In order to make a good balance between 

noise-insensitivity and mode-tracking, effective 

use can be made of the ideas developed by 
Fortescue et al. (1981) in the field of least- 
squares estimation. In order to apply these ideas 
to the mode recognition problem, they will first 
be applied to finite mode-switch processes in 
Section 4.2.1 and second to generalized mode- 
switch processes in Section 4.2.2. 
4.2.1. Finite mode recognition. If a finite 
mode-switch process P is in mode Q~, and if a 
Gaussian measurement disturbance ~p is present, 
then the process output y at time instant k can 
be written as 

Yk = Y~, + ~*, (11) 

where ~, is the output of model Mi. For each 
model M~, the error e~, between model output ~, 
and process output yk can be determined, that is 

e~, = Yk -- Y~,. (12) 

When the process is in mode Qi, the error e~, is 
equal to the measurement disturbance, that is 

e~ = ~pk. (13) 

The expected norm of the error e~, is given by 

E Ile~,ll 2 = E{(e~)Te~} 

= ~ cry,, if process is in mode g2i 
2 2 [ a v + oi, otherwise, 

(14) 

2 is the variance due to the Gaussian where o v 
disturbance ~, and tr/2 is the additional variance 
due to the error between the process and model 
M,.. Equation (14) shows that the expected norm 
of the error is minimal for the model M~ related 
to the current process mode f2~. Hence, one 
straightforward method for mode recognition is 
by weighting the sum of errors and to select that 
model M~ for which the sum is minimal. This can 
be done by taking the distance d(P, Mi) equal to: 

d(P, Mi) = Y-~, (15) 

where the weighted sum of squared errors 

i __ f i 
~ k  -- ~ k ( Z k - - 1  "~ (e~)Te~) ( 1 6 )  

with g f the forgetting factor introduced to track 
mode-switches, and Y~ = 0. The effective number 
of samples taken into account at an instant k is 
referred to as the memory length X,, which is 
given by 

Xk = ,~fk(X,-~ + 1) (17) 

with Xo = O. The expectation of the distance 
between process P and model M~ at time instant 
k is given by 

E{d(P ,  Mi)} = E{X~,} 

= 

2 2 tXk(O v + oi),  

if process is in mode fli 

otherwise. 
(18) 
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Equation (18) shows that the smallest distance 
d(P,M~) will converge to y,t,o~. Hence, the 
heuristic idea of Fortescue (1981) can be applied 
to the mode-recognition problem by keeping the 
sum Z~, constant for the model with minimal sum 
Z~,. In the case of weighting both old and new 
information, the sum ~ ,  can be kept constant at 
target Z= by selecting the forgetting factor 

Z= 
~'~' = Z~,_~ + (e~,)'re~" (19) 

/~str6m and Wittenmark (1989) motivate that it 
is required that 

0 < ~.~ ___ 1. (20) 

Because (e~,)Xe~, -> 0, it follows from (19) that this 
condition is fulfilled by 

Z~ ~ Y~(1 -< i -< n). (21) 

(21) is fulfilled by taking X~ = 0 ( 1 -  i-< n) and 
by taking ~.~, = 1 until X~, > Z= (1 - i -< n). 

By the use of the forgetting factor (19), the 
sum X~, is kept constant. In contrast, the sum X~, 
of all other models is variable and may become 
smaller or larger than the sum X~,. If a switch 
from mode ff2i to mode ff~j occurs, then the error 
e~, will increase, and simultaneously the error e~k 
will decrease. Equation (19) shows that an 
increase in error e~, results in a smaller forgetting 
factor and hence in a smaller memory length. 
Due to the drop in memory length and the fact 
that eJk is smaller than e~,, the sum X~, will rapidly 
decrease and become lower than the sum Z~,. A 
mode switch is detected at the time instant k at 
which i i Zk < Zk. At that time instant k, model Mj 
should be selected as the best model, and 
accordingly the sum Z~ of squared errors should 
be kept constant. This is performed by taking 
the new forgetting factor ~.f equal to 

~'~' = X~,_~ + (~k)Teak " (22) 

This mechanism guarantees an effective 
balance between mode-tracking and noise- 
insensitivity. 
4.2.2. General ized m o d e  recognition. In prac- 
tice, most processes are generalized mode-switch 
processes. This implies that when the process is 
not in the mode centre, the error between model 
output and process output is larger than the 
error given in (12). This would lead to a small 
effective memory length and hence to an 
enlarged disturbance sensitivity. One ad-hoc 
solution would be to enlarge the target sum of 
the a posteriori prediction error by increasing the 
asymptotic memory length, but this goes 

mode, M 

mode, M2 
+ 

At l  

model M n ~ ~  

+ A 

FIG. 2. Linear combination of weighted model outputs. 

at the expense of reduced mode-tracking 
capability. 

Another  solution is as follows. As the process 
moves from one mode centre to another 
one, it can be assumed that the dynamics will 
change gradually and may be approximated by a 
linear combination of models. This implies that 
the process output is approximated by a 
weighted sum of the model outputs. Therefore, 
the error between process output and the 
weighted sum of model outputs will be close to 
the error caused by the measurement disturb- 
ance. Based on these weights, a model criterion 
can be designed such that the model which 
describes the encountered process dynamics best 
can be determined. In the following this 
approach will be discussed in more detail. 

The predicted model output ~, being the sum 
of weighted model outputs ~", is given by 

= + + - - -  + ( 2 3 )  

where ),~, • ~ are called the mode weights. In 
Fig. 2, a block diagram is shown of the sum of 
weighted model outputs. 

If the process is in mode centre toi at time 
instant k, the mode weights 3.~, j • [1 . . . . .  n], 
are such that 

1, for j = i  

Z~= 0, for j : / : i .  
(24) 

A mode weight vector Yk which satisfies (24) 
for y), = 1 is referred to as the ith unity vector ~;. 
The set of unity vectors is referred to as the 
unity vector set E. For instance, if n = 2, then 
the mode-vector set E is given by • = {~1,~2} 
with ~1=(1 ,0)  and ~2=(0 ,1) .  The repre- 
sentation (23) can also be described in vector 
form: 

~k = a,~,~, (25) 

where )'k = [)'1,, y2 . . . . .  yT,] + is an n-dimensional 
mode weight vector, and ~ "  = [~,, ~2 . . . . .  ~,] 
the transpose of an n * m  observation matrix 
with m the number of elements in Yk" The error 
ek between process output Yk and the weighted 
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sum of model outputs Yk is given by 

ek = Yk -- ~k. (26) 

Equations (25) and (26) show that the vector Yk 
is linear in the parameter vector ~,. Conse- 
quently, the mode vector ~, can be easily found 
with least-squares estimation. Furthermore, as 
the error ek will be close to the error caused by 
the measurement disturbance, an adaptive 
forgetting scheme such as in Fortescue et al. 
(1981) can be applied in order to track the 
time-varying mode vector ?. 

From the different forgetting schemes de- 
scribed in the literature (Kulhavy, 1987; 
Tulleken, 1987), uniform forgetting of both old 
and new measurements as described by 
L~hnberg et al. (1990) has been adopted. This 
scheme is superior in tracking time-varying 
parameters and is most simple. In order to 
prevent the occurrence of covariane blow-up, a 
well-known phenomenon of uniform forgetting, 
a measure is taken which will be described later 
on in more detail. 

For weighted recursive least-squares estima- 
tion with uniform forgetting of both old and new 
data, the sum of weighted summed least-squared 
errors is given by 

~"~k = g~(~'~'k-1 "~ ekr[l + Dk]-lek) (27) 

with A~ ~ < 0, 1] the forgetting factor, ~o = 0, 
and where the condition matrix V k and recursion 
matrix Pk are 

D k ---- ¢~Tpk_ lCYP k (28) 

Pk = [~.~Pk2~ + ~ . [ ~ k ~  -~. (29) 

The recursive least-squares mode vector 
estimate "~k minimizing (27) is given by 

"~k = arg min Zk 

= arg min ).~(Zk-1 + eT[i + Dk]-lek). (30) 

Applying the same original ideas of Fortescue 
(1981) as in Section 4.2.1, the sum of squares IEk 
can be kept at a constant target sum Y.~ by use of 
the forgetting factor 

)'[ - 2~ + ekr[l + Dk]-~ek ' (31) 

which is an obvious generalization of the results 
obtained by L6hnberg et al. (1990). Comparison 
of the forgetting factor (31) obtained for 
generalized mode-switch processes to the forget- 
ting factor (19) shows that the structure is 
similar, but that the denominator terms are 
different. Yet the first term in the denominator 
of (19) Y-~-i equals that in (20) as long as no 
mode-switch occurs. The forgetting factor (31) 

shows that at each time instant k a correction is 
made for estimation errors. For instance, when 
the condition matrix Dk = 0 (i.e. the prediction 
is zero), then the denominator terms for both 
forgetting factors are equal. 

The probability of the occurrence of covari- 
ance blowup can be decreased by requiring that 
the actual memory length should not drop below 
a certain minimum memory length gmin. This can 
be accomplished by constraining the forgetting 
factor ),[ to the range <~'min, 1], where 
~min = X m i n / ( ~ k - I  + 1). 

The parameter vector estimate ¢/k and the 
covariance matrix estimate Pk determined at 
time instant k can be used for determining the 
model which describes the current process 
dynamics best. This can be performed by 
determining the likelihood of all unity vectors, 
and by selecting as the best model that model Mi 
for which the likelihood of unity vector gi is 
maximal. If the measurement disturbance is 

2 and if the mode Gaussian and has variance o~0 
vector ~, has mean C/k, then the likelihood Pk of a 
unity vector gl at time instant k is given by 
Goodwin and Payne (1977) 

e - 1/2(~k -lg/)r(Pka 2, )+ I('~k --I~i) 

P k ( g i )  - -  , ( 3 2 )  
Ck 

2 where Ck is a constant depending on Pk, on a~, 
and on the number of modes n. As only the 
likelihood of the n unity vectors is considered, it 
is convenient to write Pk(gi) as p~, and to 
normalize the likelihoods by taking Ck such that 
~7=~p~,=1. Most importantly, the model Mi 
with maximal likelihood p~, is selected by the 
model detector. 

4.3. M o d e l  output  
The mode-recognition methods discussed 

above require the computation of ~ for each 
model M~ at each time instant k. One method to 
compute these predictions is with a Kalman filter 
(Willsky, 1976). This approach requires that for 
each model M~ the disturbance characteristics of 
both measurement and system disturbances are 
Gaussian, and that the variances are known. 
Then the stationary Kalman gain is determined 
such that the state predictions are a compromise 
between the effects of the state and measure- 
ment errors. Lund et al. (1991) argue that the 
Kalman gain has a large influence on the 
distinction between the predictions ~k(1 --< i --< n). 
If the Kalman gain would be zero, the model 
states may drift away from the process state. 
This will result in bad predictions ~k and in large 
differences between the various predictions ~k- 
On the other hand, when the Kalman gain is 
large for all models, the model predictions ~k 
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FIG. 3. Parallel structure with regular resetting. 

will be influenced by the feedback. This will 
result in predictions which will be close to each 
other.  Hence,  the distinction between the 
predictions would be difficult to make. Further- 
more,  in practice the variances of the system 
disturbance are generally not known. 

Another  choice for computation of ~ is to 
make use of a parallel structure with regular 
resetting. In Fig. 3, a parallel structure with 
regular resetting is shown for a discrete-time 
state-space process and model. The matrices A, 
B and C characterize a discrete-time state-space 
description of the process, and the matrices 
Ai, B~ and C, characterize a discrete-time 
state-space description of the model Mi. 
Fur thermore ,  To denotes the observation time, 
which is given by noT, with number of samples 
no e IN, no -> 1, and Ts the sampling time. At the 
beginning of each observation period, that is, 
after every no samples, the model states of all 
models are made equal to the process state x. 

The advantage of this structure is that drift in 
the model states can be avoided by regular 
resetting of the model states to the process state. 
This is performed by selecting an appropriate 
observation period To. If To is selected equal to 
one sampling period, the structure is just the 
well-known one-step ahead predictor. Van 
Amerongen (1982) shows that it may be 
advantageous to select To larger than one 
sampling period, as the predictions become less 
sensitive to noise. Practical experiments show 
that taking the observation period To faster than 
the dominant time constant of the closed loop 
(e.g. half) results in a good distinction between 
models. 

If not all process states are measurable, then a 
discrete-time input -output  model of the process 
can be used. Then the states can be re- 
constructed from the discrete-time output 
measurements.  

current one. At the instant the parameters in the 
controller are adapted, an unwanted "bump"  in 
the control signal may be introduced. Bumps in 
the control signal should be avoided. One way of 
avoiding bumps in the control signal is to make 
use of interpolation between controllers as 
studied by Athans et al. (1977). However,  this 
results in a continuous adjustment of the control 
signal, and hence in an increased noise- 
sensitivity. Furthermore,  continuous adjustment 
of the controller is not needed and wanted for 
mode-switch processes. Another  way of avoiding 
bumps is to make a fast and smooth transition, 
such that after transition no continuous adjust- 
ment is made. This can be performed by 
applying a bumpless transfer algorithm. The 
applied method of bumpless transfer depends on 
the type of the controller. Here only static 
state-feedback controllers will be considered. A 
static state-feedback controller C, can be 
described as 

u = / i  i - K i e ,  ( 3 3 )  

where ii~ is the nominal control input, Ki is the 
static gain, and e is the error  vector between 
desired state and actual state. In order to create 
bumpless transfer (/~str6m and Wittenmark, 
1990) for a static state-feedback controller, a 
number of internal states Xb can be added to the 
controller,  that is 

1 
ib = -- - -  Xh (34) 

I- b 

u = iii - K~e + Xb, ( 3 5 )  

where ! is a unity matrix of appropriate 
dimensions, and rb is the bumpless transfer time 
constant. The value of rb determines how fast 
the transient between the old control signal and 
the new control signal will be. Practical 
experiments (Hillhorst, 1992) show that taking 
the value of ~b approximately equal to the 
dominant time constant of the closed loop 
results in a fast and smooth transition. The 
number of internal states should be made equal 
to the dimension of the control signal u. In order 
to obtain bumpless transfer at time instant lm 
when the controller switches from C~ to Cj, the 
internal state xb is reset to 

Xb(tm) = Ui(/m) - -  ui(t,,), (36) 

where ui(tm) is the current control signal based 
on controller Ci, and u~(tm) is the control signal 
based on the parameters of the new controller C i 
if no bumpless transfer was applied. 

4.4. Mode-switch and bumpless transfer 
Once the mode detector has detected a mode 

switch, a new controller has to replace the 

5. EXPERIMENTAL RESULTS 

In order  to study the supervisor for control of 
mode-switch processes in practice, it has been 
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applied to both a finite mode-switch process and 
a generalized mode-switch process. A practical 
set-up of a one-link flexible beam represents a 
finite mode-switch process. An experimental 
pending two-link flexible robot arm represents a 
generalized mode-switch process. Both are 
present in the Control Laboratory in Twente 
(Kruise, 1990). The experimental results will be 
discussed in Sections 5.1 and 5.2. 

5.1. One-link flexible beam 
The experimental set-up of the one-link 

flexible beam is given in Fig. 4. It consists of a 
dc-motor which drives a 1.9m long flexible 
aluminium beam which can move in the 
horizontal plane. Therefore, there is no in- 
fluence of gravity. The dimensions of the beam 
are such that only transversal vibrations in the 
horizontal plane have to be taken into account. 
The control algorithm is based on feedback of a 
state-estimate obtained from the angle measure- 
ment of the motor axis, as well as on feedback of 
the state variables of two of the vibrational 
modes, which are estimated by an observer from 
bending measurements by strain gauges (Kruise, 
1990). 

Kruise (1990) demonstrated that in order to 
have a proper control for various payloads mp, a 

robust controller can be designed. In the 
experiments three values of the payload were 
considered: 0, 0.25 and 0.5 kg. A disadvantage 
of such a robust controller is that in most cases 
its performance is not optimal. It gives almost no 
overshoot in all three cases, but for smaller 
payloads the responses are unnecessarily slugg- 
ish. Therefore, this set-up was a good candidate 
for testing the mode-switch concept. Because the 
(linear) dynamics of the beam only change with 
the payload mass, and as the number of payloads 
is limited, this process is a finite mode-switch 
process. In addition, it is a typical example of a 

1.9 m 

a) m 
~ ~ strain gauges 

/ 
/ 

:~ ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . .  b) 

J 

FIa. 4. Experimental set-up of a one-link tlexible beam: (a) 
side view; (b) top view. 

process where a very fast adaptation is required 
because otherwise the task is completed before 
the parameters are properly adjusted. 

The experimental conditions were as follows. 
The finite mode recognition of Section 4.2.1 was 
used. Earlier identified models for the three 
different payloads were present in the memory, 
as were the corresponding state-feedback con- 
trollers designed for negligibly small overshoot 
and a fast response. Step changes of the 
reference signal for the tip angle were made 
from -90 to +90 ° . The purpose of the experi- 
ments was to test whether the appropriate 
models were selected by the mode detection 
algorithm, and whether improved control per- 
formance was obtained compared to the robust 
controller. The controller for a payload of 0.5 kg 
was used as the robust controller. Figure 5 gives 
the results. 

In Fig. 5 u is the control signal, q9 o is the tip 
angle and Mi is the selected model. The solid 
lines give the response for the mode-switch 
controller, while the dotted lines give the 
responses for the robust controller. The 
experimental results with payload mass mp = O, 
0.25 and 0.5kg are shown in Fig. 5(a)-(c), 
respectively. It can be seen that for the 
mode-switch controller, all responses show 
almost no overshoot. For the smaller payloads 
the response time is smaller with the mode- 
switch controllers than with the robust control- 
ler. The appropriate model was not always 
selected. Further analysis revealed that at the 
start of the response the models in the memory 
did not properly describe the non-minimum 
phase behaviour of the processes. However, this 
had no influence on the performance because the 
control signal is saturated in any case. The 
wrong model selection when the tip has reached 
its final position can be explained by the 
presence of Coulomb friction, which was not 
modelled. It results in a smaller acceleration 
than predicted by the models. The best 
resemblance is found for model M 3, which 
corresponds to the largest payload mass and thus 
to the smallest acceleration. 

5.2. Two -link flexible robot arm 
A second series of experiments was carried 

out with a generalized mode-switch process, 
represented by a pending flexible robot arm 
consisting of two links (see Fig. 6). 

Because the robot arm is pending from the 
ceiling and moves in the vertical plane, gravity 
has a large influence. Due to the flexibility, the 
model of this robot arm is rather complex 
(eighth-order), and due to the influence of 
gravity it is not possible to achieve a good 
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FIG. 5. Experimental results with a one-link flexible beam for payload mass (a) g2~: rnp =0kg, (b) f~2: 
mv = 0.25 kg and (c) g23: mp = 0.5 kg. u = control signal of the supervisor for adaptive control (solid line) 
and robust controller (dotted line), ¢Po = tip angle using the supervisor for adaptive control (solid line) and 

using robust controller (dotted line), and Mi = model selected. 
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FIG. 6. Experimental set-up of a two-link flexible robot arm. 
ti01 = angle of the upper link, q92 = angle of the lower link 

relative to the upper link and mp= mass of the payload. 

control  pe r fo rmance  with a single (linear) 
controller .  There fo re ,  for different opera t ing  
points ,  models  were identified and linear 

s ta te - feedback control lers  were developed.  Also,  
for  this set-up use was made  of  pole-placement  
for  negligible s teady-state  e r ror  in each opera-  
t ion point ,  and negligible overshoot  and fast 
settling when the robot  moves  f rom one 
opera t ion  point  to another .  The  general ized 
m o d e  recogni t ion a lgor i thm of  Section 4.2.2 was 
used. 

The  following exper iments  were carried out.  
The  reference angle for  the upper  arm was kept  
at q0~ = 0 ° while the reference angle tp~ of  the 
lower arm was changed  f rom 0 to 90 ° and then 
back to 60, 30 and 0 °. A payload  of  0.5 kg was 
t ranspor ted .  In the first exper iment  only a 
control ler  based on a model  identified for 
qg~ = 0 ° was used. The  results of  this exper iment  
are given in Fig. 7. 

It can be seen that  except  for q0~ = 0 °, there 
are large s teady-state  errors  and that the 
responses  have quite some overshoot .  In the 
next exper iment  there were four  controllers  and 
models  in the memory .  The  results of  this 
exper iment  are given in Fig. 8. 

It can be seen that  the steady-state errors  
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FIG. 8. Four models in memory. Symbols as in Fig. 7 with M i the model selected and recorded memory 
length Z- 

are much smaller, although not equal to zero. 
The reason is that the models do not properly 
describe the static gains. It would be a task for 
the performance monitor to detect this. In most 
situations the overshoot is smaller than when 
only one single controller is used. When the 
lower arm moves from ~ = 0 ° to ~ = 90 °, the 
different models M, are appropriately selected. 
The only wrong model selection is made at 
t =4.2s .  

Figure 8 also shows that immediately after the 
time instants of a mode switch, that is, at t = 4, 
8, and 12, the memory length Z drops 
dramatically. This implies that at the time 
instants of a mode switch the old information is 
forgotten rapidly in favour of new incoming 
information. After the process reaches the new 
mode centre (i.e. t =  1, 5, 9 and 13), the 
memory length increases almost linearly with 

time. This demonstrates that the algorithm does 
what one would intuitively expect. 

The figure also shows that both the minimal 
memory length Z reached after the time instants 
of a mode switch and the maximal memory 
length Z reached after the drops increase with 
time. Because simulations for several movement 
patterns for exact models showed that the 
memory length was independent of the angle 
(Hillhorst, 1992), the increase in minimal and 
maximum memory length must be due to model 
mismatch. This is also reflected by larger steady- 
state control errors. When this model mismatch 
is large (~0[ = 90°), a small memory length Z is 
needed for having Zk constant at 5:=. Alterna- 
tively, when the model mismatch is small 
(q0[ = 0), a large memory length Z is needed. 

It can be seen from the recorded model Mi 
and the memory length Zk in Fig. 8 that the 
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wrong selection of model M2 at time instant 4.2 s 
occurs at the instant of a minimal memory length 
Xk. Hence,  at that instant the method is most 
sensitive to noise. 

6. CONCLUSIONS AND SUGGESTIONS 

The concept of a supervisor for control of 
mode-switch processes was worked out into a 
new method which can be seen as an attractive 
alternative for both robust control and conven- 
tional adaptive control for mode-switch proc- 
esses. With the introduction of the mode 
concept,  a controller is obtained which behaves 
in a less conservative manner  than a robust 
controller,  having the ability to adjust the 
control parameters quickly by making more 
effective use of process knowledge than a 
conventional adaptive controller does. The main 
problem in this approach is how to detect a 
mode switch. The attractive properties of a 
newly developed method of exponential forget- 
ting, dedicated for the use on mode-switch 
processes, have been demonstrated by real 
experiments. It has been demonstrated that a 
supervisor for control of mode-switch processes 
results in a better  overall performance than what 
is achieved with a fixed linear controller. For 
example, for the two-link robot arm, the 
steady-state error  and the amount of overshoot 
were reduced. This improvement could be 
obtained in the presence of nonlinearities, of a 
large number  of lastly changing parameters,  and 
of model inaccuracies and disturbances. The 
results show that fast adaptation of control 
parameters can be obtained without disturbing 
the process. Therefore ,  the supervisory structure 
should be used as standard for the control of 
mode-switch processes. 

Because of the complexity of the controlled 
system consisting of a mode-switch process 
together with a supervisor and several control- 
lers, no analysis of stability, convergence and 
robustness [like that performed by Shamma and 
Athans (1990, 1991) for gain-scheduling control 
of nonlinear plants and linear parameter-varying 
plants] has been carried out yet. Nevertheless, 
the adequate behaviour of not only simulations, 
but also of several real-world controlled systems 
indicates that this approach works satisfactorily. 

It is rather obvious that the mode switch 
concept will not introduce stability problems as 
long as the switching occurs relatively slowly 
with respect to the process dynamics. However,  
the real world examples demonstrate that also 
when there are rapid switches the system still 
behaves well and better  than with a fixed 
controller. On the other  hand, the need for a 

bumpless transfer algorithm is also due to the 
fact that very rapid switches lead to an 
"unstable" system. Determination of the exact 
stability condition is rather complex and is z~ 
subject for further research. 

In this article only linear controllers were 
used, because for most processes only a linear 
model in a mode centre is known. For nonlinear 
time-variant processes such as robots, often a 
nonlinear model is available for each payload 
mass. A fruitful extension would be the 
switching between nonlinear controllers for such 
processes. Then mode-recognition methods de- 
scribed in this article are expected to be usable 
for this case also. Then instead of linear models 
running in parallel with the process, nonlinear 
models should be used. 
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