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Abstract

In the present study, mass transport accompanied by chemical reactions in porous media is studied according to the Fick
model and the dusty-gas model. For mass transport accompanied by a chemical reaction in catalyst structures showing a plane,
line, or point of symmetry, the approximate analytical concept of an effectiveness factor, accounting for intraparticle diffusion,
was also evaluated. For a variety of reaction schemes and kinetic rate equations, a comparison was made between the results
of the numerical models (Fick and dusty-gas) and the effectiveness-factor concept.

From the results it was concluded that pressure in porous catalyst with a plane, line, or point of symmetry did not affect
the fluxes seriously, and, therefore, the pressure-driven flow can be omitted from the flux expression without significant loss
of accuracy. Furthermore, both for single and multiple reactions, the Fick model is satisfactorily accurate to estimate the
transport rate in all cases, and the results deviate only slightly from the dusty-gas model. It should be noted that this latter
model requires substantially more computational time.

For catalytic membranes, however, transport of inert components as well as large trans-membrane pressure differences may
be present, which affect the transport of the reactants and products. The calculations showed that, in contrast to the above-
mentioned structures, in this case the dusty-gas model has to be used to describe the transport.

Keywords: Dusty-gas model; Mass transport; Porous media; Fick model

1. Introduction

Simultaneous transport and reaction in porous catalyst
has been widely studied over the years and is described
in many textbooks [1,2]. The transport of components
into the porous matrix can be described according to
the Fick model or the dusty-gas model. Since the Fick
model is simpler than the dusty-gas model, it is, there-
fore, more frequently used. Close inspection of the
model equations reveals that the Fick model is basically
an asymptotic case of the dusty-gas model.

Numerous studies on transport through porous media
in the absence of a chemical reaction reveal that the
dusty-gas model is superior to the Fick model in its
ability to predict the fluxes (see Refs. [3,4]). Especially
in porous catalysts, the Fick model, however, is still
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frequently used, because its simplicity allows explicit,
analytical expressions to be derived for the fluxes. These
can be obtained from the dusty-gas model only for a
binary mixture or after a strong reduction of the original
equations [5].

If pressure gradients occur in a porous matrix, ad-
ditional, convective transport should be taken into
account, which is a natural extension of the dusty-gas
model. Non-uniform pressure profiles in porous catalyst
can be induced by reactions involving a change in the
number of molecules. Kehoe and Aris [6] and Hite
and Jackson [7] showed that the dusty-gas model could
be successfully applied to predict the fluxes for these
reactions. Davies et al. [8] demonstrated that the pre-
diction of the effectiveness factor was in good agreement
with experimental values for the SO, oxidation reaction.
Owing to the presence of large pressure gradients and
a net molar outflux of reactants, Bliek et al. [9] used
the dusty-gas model in the coal gasification reaction,
and, for similar reasons, Gonzalez et al. [10] used this
model for the methane-reforming reaction. Graaf et
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al. [11] evaluated kinetic data of the methanol process
on the basis of the dusty-gas model. Recently, Sloot
et al. [12] developed a macroporous, catalytic membrane
reactor and demonstrated that convective motion at-
tributed several attractive features to this type of reactor.
As a consequence of the convective transport, the fluxes
through their membrane reactor should be calculated
according to the dusty-gas model.

The present study compares the results of the Fick
model with the dusty-gas model for the description of
transport and reaction in porous catalyst. First, catalyst
geometries with a plane, line, or point of symmetry
are studied, and secondly a slab geometry with different
interface compositions, thus resembling a membrane
reactor. The present studies include irreversible, re-
versible, single and multiple reactions. Therefore it can
be seen as an extension to other studies, such as Refs.
[6,7,12]. Since the transport in porous media generally
occurs in the transition region between Knudsen and
continuum diffusion, the calculations were restricted
to this regime.

2. Basic model equations for mass transport with
chemical reaction

In a porous medium the transport of components,
accompanied by chemical reactions, is determined by
the local conservation of mass for each participating
component. For a single component i the result is

)

= —V-N.+R.
RT ot V-N+ R,

(mol mz? s™%) @

In Eq. (1), R; represents the local consumption or
production rate according to an arbitrary kinetic rate
equation. This kinetic rate expression is usually de-
termined experimentally and is an explicitly known
function of the partial pressures of the components
and temperature:

R;=f(T,p;...) and Ripen =0 (mol mg} s™? )

For reasons of simplicity, the equations are repre-
sented for a slab geometry (Cartesian coordinates)
hereafter. Whenever different catalyst geometries
(sphere, cylinder, slab) are discussed, the appropriate
form of the differential operator was used in Eq. (1).
In all cases the transport was considered as one-
dimensional.

Transport of the components, N, is due to mole-
fraction gradients, a total pressure gradient, and there
may be additional transport along the surface as well.
However, since surface diffusion is observed only for
a few special systems or conditions [4,13], it is neglected
in the present study. Furthermore the tramsport is
assumed to proceed isothermally.

2.1. Flux models

The simplest model to describe transport of com-
ponents through the gas phase is the Fick model (FM),
which describes the transport as a product of a diffusion
coefficient and the partial-pressure gradient of the
particular component,

—Df 3(x.P)

N= R

(i=1..n) (FM) 3

The diffusion process is bound to two asymptotic
regimes. In small pores the molecule-wall interactions
determine the process (Knudsen diffusion) and, in free
space, molecule-molecule interactions are important
(continuum/bulk/molecular diffusion). In each of these
regimes a distinct diffusion coeflicient prevails, and to
evaluate the diffusion coefficient in the transition region,
the Bosanquet formula can be used:

-]

(A3

If the mixture continuum diffusivity is unknown, it
can be estimated using the diffusivity of component ;
in all other components present in the mixture (Blanc’s
law):

1 n
2 Diy (4b)

D, = ——
b (1 —xi) 1, i

The diffusion coefficients are cffective diffusivities
prevailing in the particular medium and calculated
according to

12
4 8RT

= §Ko (W) (m*s™h) (5a)
€ -

= ;Dg (m?*s™) (5b)

When a pressure gradient contributes to the total
transport, it is possible to add the d’Arcy equation to
the diffusional transport, resulting in an extended Fick
model:

1 [ . 8xP)  BwPOoP
N"_RT(D" x az>

(i—1..n)(extended FM) (6)

In the dusty-gas model (DGM) the diffusive transport
is described by the Stefan-Maxwell diffusion equations,
and the convective motion is implemented in the flux
equations directly from the beginning. Concise mono-
graphs which describe the historical background and
the derivation of the model equations are presented
by Refs. [5,14]. The flux expression for a single species
i according to the DGM results in




J.W. Veldsink et al. | The Chemical Engineering Journal 57 (1995) 115-125 117

w  XN;—xN; N;
7
]=121=#z PD; PD?,R ( )
_1& x (BP )P
RT & ' PRT \uD:, P

(i=1..n) (DGM)

with diffusion coefficients according to Egs. (5a) and
(5b).

Generally, it is not possible to derive an explicit
equation for N;, such as Eq. (3). Hence, the incorporation
of the DGM complicates the solution of Eq. (1) severely.
Therefore, early work on the DGM was restricted to
binary systems, or approximations had to be made in
order to solve the mass balances [5]. For binary systems
and in the absence of a pressure gradient, the DGM
can be rewritten as

_L (Ao 1)
A RT\ D DSy dz

with y=1+NgN. (8)

where y=1+Ng/N,. However, powerful computers are -

available and generally accessible nowadays, so the
numerical solution of the complete set of partial dif-
ferential equations (1) with the fluxes expressed ac-
cording to the DGM is feasible.

The structure of the porous medium is characterized
by three effective parameters, K, B, and ¢/7 (see Egs.
(4)-(7)), which usually have to be determined exper-
imentally. This minimum number of structure param-
eters is based on the assumption that the structure of
the porous medium is homogeneous. Several more
sophisticated models dealing with all kinds of heter-
oporosity have been proposed, but unless more specific
information about the pore geometry is available, the
assumption of homoporosity is usually sufficiently ac-
curate [4,15,16].

The model described by the set of equations (1) and
(2) together with either Eq. (3), Eq. (6) or Eq. (7)
consists of n independent mass conservation equations,
but contains n+1 variables (n mole fractions and the
total pressure). Therefore, the summation of mole
fractions was used to complete the model

Zx,- =1 ©)

To solve Eq. (1) uniquely, proper initial and boundary
conditions are required, which are usually of the fixed
(Dirichlet) type:

t=0: P(0z)=P(z) Vz,i=1l.n (10a)
z=0: P(t,0)=P(0) V¢t i=1l.n (10b)
z=L: P(t,Ly=P(L) V¥t i=l.n (10c)

In a catalyst pellet, the centre has a plane (ring,
slab), line (cylinder) or point (sphere) of symmetry,
and the boundary condition Eq. (10b) is of the variable
type (von Neumann):

a
z=0; 5213 =0 Vi i=l.n (10d)

Another boundary condition frequently encountered
in chemical engineering problems relates the internal
transport flux at the gas-particle interface (z=L, Eq.
(8¢c)) to the external flux [17,18]. This kind of boundary
condition (i.e. the mixed type) is not applied in the
present study.

The model given by a set of equations (1), (2) and
(9) together with a flux model comprises a set of non-
linear, partial differential equations (PDE), which was
numerically solved by using a finite-difference technique
[19].

3. Comparison of the dusty-gas model, the Fick
model, and the Thiele modulus concept for mass
transfer accompanied by chemical reaction in porous
media with a plane, line or point of symmetry

Irreversible reactions with kinetic rate equations of
the type and the transport described according to Eq.
(3) is a classical problem and discussed in many standard
textbooks [1,2]. Explicit solutions for the interfacial
fluxes are available and are generally expressed as the
maximum reaction rate in terms of interfacial (bulk)
partial pressures multiplied by an effectiveness factor
7 and a characteristic length § of the catalyst geometry:

Na=—R(pa:)on (11)

The effectiveness factor is defined as the ratio of
the volume-averaged reaction rate over the maximum
reaction rate [1]

= x| RE (12)

Veat

For several catalyst geometries, the effectiveness fac-
tor can be approximated by a unique function of the
Thiele modulus,

_ 1 (3¢
17 347 \ tanh(34)

For nth-order kinetics (Ry= —k,p%) the Thiele
modulus is

12
n+Dk,RT _
=0 (—————( )eA j 1)

- 1) (sphere) (13)

with 6=r,/3 (sphere) (14)
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Appropriate expressions were developed for other
reaction systems and/or catalyst geometries. Using Egs.
(13) and (14), the flux is easily obtained from Eq. (11).
Although this concept is only exact for first-order re-
actions, it is known as a useful approximation in all
other cases. The value of the Thiele modulus reveals
information concerning the rate-governing process. If
¢ <0.2, the transport rate of A is sufficiently high to
avoid the occurrence of internal concentration gradients.
In this case the reaction has become the rate-governing
process and the catalyst area is completely used (n=1).
The other limit, ¢ >2, indicates that the internal trans-
port of components is the rate-governing process and
that internal gradients occur. In this region the effec-
tiveness factor is inversely proportional to the Thiele
modulus. For the numerical models the concentration
profiles are calculated, and the exact value of the
effectiveness factor can be directly calculated using Eq.
(12), and compared with the approximate solutions.

In the next sections, calculations using the different
models for the description of mass transport with chem-
ical reactions in a spherical particle will be presented
and discussed for different reaction schemes. The sim-
plest case is the irreversible, binary isomerization re-
action A— B, for which Eq. (13) is exact for first-order
kinetics. An extension to the general binary system
A—-mB (m=+1) is made, resulting in a net molar flow
through the particle interface. Next, A+ngB—
ncC+npD reactions and, finally, multiple reaction
schemes and equilibrium reactions are discussed. For
catalyst geometries with a symmetrical boundary con-
dition there is no flux of inert species at the interface
under steady-state conditions. Hence, it follows directly
from the flux expressions that the presence of an inert
species does not influence the motion of the other
components, and is therefore not taken into account.

3.1. Irreversible reactions of the type A—>mB, with
first-order kinetics

The reaction A—»mB (m=1) involves no change in
the total number of molecules and so pressure gradients
are indeed absent. In this case the DGM can be rewritten
as indicated by Eq. (8). Furthermore, the fluxes of A
and B are equimolar and in opposite directions. Sub-
stitution of this flux ratio in Eq. (8) results in the FM,
Eq. (3). As was mentioned above, Eq. (11) with the
effectiveness factor calculated according to Eq. (13)
now is the exact solution for the flux. Therefore, the
effectiveness factor calculated directly from the profiles
resulting from the numerical models should equal the
result calculated from Eq. (13). This is confirmed by
Table 1, which presents the results for slow (¢=0.18),
moderate (¢=1.3) and fast (¢=4.0) reactions.

For the general case of m# 1, the reaction involves
a net change in the number of molecules, and so a

Table 1

Thiele modulus ¢

4.0042 1.2662 0.1791
Texact 0.22911 0.58264 0.98127
TR 0.22895 0.58264 0.98127
7IDGM 0.22895 0.58264 0.98127

pressure gradient is induced. Substituting Eq. (14) in
Eq. (13) to calculate the cffectivencss factor is no longer
exact, because it neglects the pressure-driven convective
motion. Abed and Rinker [20] illustrated that the
influence of the pressure gradient on the effectiveness
factor depends on the diffusion regime. They showed
that, when Knudsen diffusion prcdominates, the ef-
fectiveness factor again depends on the Thicle modulus
alone, not on the volume change, and so in this specific
regime Eq. (14) remains valid. This was also recognized
by Kehoe and Aris [6], who modified the Thiele modulus
as

(15)

. (ML am'?) "
¢ =g T
o
with
a=D,,/D; (ratio of diffusion coefficients)

where a=D,,/D, (ratio of diffusion coefficients), which
considers the diffusion region via the value of a. Kehoe
and Aris [6], and later Hite and Jackson [7], studied
the general, irreversible reaction A—mB according to
the DGM. From approximate analytical solutions they
argued that the contribution of a pressure-driven flow
to the total transport could be neglected. Therefore,
using the generalized modulus, Eq. (15), to calculate
the effectiveness factor, Eq. (13), is a reasonable ap-
proximation which holds for moderate volume changes.
Kehoe and Aris illustrated this for general nth-order
kinetics with respect to component A, resiricted to a
maximum value of m=4.

For several reaction rates, the effectivencss factor
was calculated according to the present numerical
models (extended FM and DGM) and Eq. (13) for
model parameters as presented in Table 2. Fig. 1
presents the results for a moderately fast reaction in
the transition region. From Fig. 1 it can be concluded
that the results of the extended FM are close to the
results of the DGM (deviations less than 10%). Variation
of the permeability constant B, has only a small effect
on the fluxes and, consequently, the convective term
can be neglected in the transport equation. This is in
agreement with Refs. [6,7]. Furthermore, Eq. (12) with
the modified modulus, Eq. (15), is a good approximation
over a wide range in the case of a net outflow (m>1).
In the case where is a net inflow (m<1), Egs. (13)
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Table 2

Ry=1.0x10"3 =600 K

P;=1.0%10° Pa

r,=29x%10"" m u=10X10"%Pa s Xar=1.0
By=4.79%107' m? Di=15X10"*m?s™! MA=20%10"2 kg mol~!
¢/7=0.0456 o E, sz - Mp=Mu/m
WK g TP M,
0.8 1.50
1 | x(-)or P/By () PR EM
T 0.7 4 T 125 1 P/B, DGM
p—a——ao—lp—g—p—n
I 1.00 . . 1
0.6 - ¢ with eq. (14) g
0.75 A
0.5 4
0.50 4
0.4
0.25 4
XA
0.3 4
0.00 @———0————0——Q——0——=Q
1 o with eq. (I5) 0.0 0.2 0.4 06 08 10
0.2 v T v I T T r T T T T - L ()
0 2 4 6 8 10 12 Ro
— » m Fig. 2. Dimensionless profiles over the radius of a spherical catalyst

Fig. 1. Effectiveness factor as a function of the number of molecules
in the reaction A—mB. The results are shown according to the
numerical models, FM and DGM, using Eq. (12), and the approximate
solutions, Eq. (13). The results are presented for a moderate reaction
rate, spherical particle, and transport in the transition region, 4 =1.0.

and (15) seem to overestimate the increase of the
effectiveness factor seriously.

In the Knudsen regime, more extreme intra-particle
pressure gradients were calculated, but in this regime
the transport depends only on the molecular velocities
of the components. Hence, the transport is not affected
by these gradients. The maximum pressure in the centre
of the pellet was found to be p...=po/m, which was
derived by Hite and Jackson [7]. Also in the case of
a poor reaction the discrepancies between the models
were small. This is readily explained, since reaction
rather than transport determines the interfacial fluxes.

Although the fluxes (and hence effectiveness factor)
resulting from the FM and the DGM are approximately
the same,. the partial-pressure profiles resulting from
these models are generally not. Fig. 2 shows the cal-
culated pressure and mole-fraction profiles over the
catalyst particle, resulting from both models, in the
case of a fast reaction, A—3B. The mole-fraction
profiles practically cannot be distinguished, but the FM
calculates a higher total pressure. This can be attributed
to a higher contribution of the diffusional transport in
the DGM than in the FM, owing to the component
interactions. Omitting the pressure gradient term, the
explicit result of the DGM for a binary mixture is
already presented by Eq. (8). For a reaction A—mB

particle of components A and B, together with the relative pressure.
The results are calculated according to the FM and the DGM for
a reaction scheme A— 3B and fast kinetics (i.e. $=4.0, Eq. (14)).
The model parameters are presented in Table 2.

and m>1, the term (1—9x,)>1, and therefore the
apparent diffusion coefficient of the DGM appears to
be greater than the Fick diffusion coefficient according
to Eq. (4a). Hence, the diffusive transport in the DGM
contributes to a greater extent to the total transport,
and the resulting total pressure gradient is lower.

3.2. Irreversible reactions of the type
A+ngB-nC+npD

Irreversible reactions of multicomponent systems are
generally represented by the scheme A+ngB—
ncC+npD with arbitrary kinetics. Because the gas
mixture is no longer binary, the diffusive transport
mechanism clearly differs between the FM and DGM.
However, if one component is in excess (diluted systems)
only the interaction with this component will be im-
portant. In this case the behaviour of the multi-com-
ponent mixture approximates a binary system, and the
results have already been discussed in the previous
section. The irreversible reaction A+ngB—nC+npD
was studied for reactions with a substantial difference
in molecular mass, e.g. oxidation and (de)hydrogenation
reactions of hydrocarbons.

A dehydrogenation reaction A~ 3H,+ B with first-
order kinetics, Ry = —k,pa, was studied as a first ex-
ample. The model parameters are given in Table 2 and
the physicochemical parameters are presented in Table
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Table 3

MAo=84%10"3 kg mol™* D8s=1.5X10"% m? s~
My=78x10"3 kg mol~! Dl =7.5%10"* m? s~! (i=A,B)
My, =2Xx10"% kg mol~!

Table 4

Npoem - Nem ¢ Moem  Nem T
(mol m~2 5" (mol m~2s~!) Eq. (14)

0.00328 0.00328 0.142 0981 0983 0.955
0.0844 0.0877 0.900 0.632 0.657 0.453
0.629 0.888 6.367 0.124 0.133 0.076

3. Table 4 shows the results for fast, moderate and
slow reactions, and the models are in good agreement.
The effectiveness factor in the last column of Table 4
was calculated using the modified modulus, Eq. (15),
and the A-hydrogen effective, binary diffusion coeffi-
cient. As soon as transport limitations occur, the sim-
plified approach, which is based on the Thiele modulus,
differs substantially from the numerical calculations.
Again the results according to the FM and the DGM
are in reasonable agreement for slow, intermediate and
fast reactions. For a hydrogenation reaction with overall
second-order kinetics, the results of the FM and the
DGM agreed within 5% for the corresponding con-
ditions. For this situation the effectiveness-factor con-
cept was not considered because severe linearizations
are necessary to obtain expressions for the Thiele
modulus [1,2].

Finally, the total oxidation reaction of butane,
6.50,+B—4C0O,+5H,0 is studied with the model
parameters given in Table 2 and the kinetic rate equation
according to

k.babspaps
R,= - 16
A (L+bapatbsps) (16)

in which b ,, by are adsorption constants of the reactants
(ba, bg>0). Bischoff [21] proposed a generalized mod-
ulus to be used in Eq. (13) when dealing with more
complex kinetics, defined as

—-172

R [ ]
¢) = (ZDcfg\lp_ R(pA) dpA (17)
A 0
Substituting Eq. (16) results in

bgpso [ PaoB
18
=N, (p+§) 19

where ¢=(1+bgpgo)/ba and

_ §+Pao 3 _ o
B‘[II‘( ¢ )+§+pm 1]

Table S presents calculations at different values of
the reaction rate constant and shows a case with equal
adsorption parameters as well as different ones. The
effectiveness factor was calculated with respect to ox-
ygen. From these and other calculations, varying the
partial pressures of the various components, it could
be concluded that the results of the FM are close to
the DGM. The effectiveness factor calculated with Eq.
(18) is in reasonable agreement with the results of the
FM and DGM in both the reaction-controlled regime
and the transport-controlled regime. In the transition
regime the largest discrepancics are observed, de-
pending also on the magnitudes of the adsorption
constants [21]. It also appeared from the numerical
models that, although the reaction involves an increase
in the number of molecules, the catalyst effectiveness
was sometimes observed to be greater than unity. This
was caused by a small pressure decrease at low values
of reaction rate constant, owing to adsorption of com-
ponents.

3.3. Multiple reactions in a catalyst particle

The FM always predicted a different pressure profile
over the catalyst particle than the DGM (see Fig. 2),
whereas the mole-fraction profiles were almost identical.
Hence, the local partial pressures resulting from both
models are different. Therefore, when the desired re-
action is followed by an undesired consecutive reaction
the results according to the two models may differ
substantially. This was studied for a consecutive reaction
scheme, A+H,— B+H,— C. Hydrogen is involved as
a component, so that the components have different
mobilities. The kinetic rate equation of the first reaction
is overall second-order, first-order with respect to both
A and H,, but the order with respect to the desired
product (B) in the consccutive reaction kinetics is taken
to be high (third order) in order to make the dis-
crepancies more pronounced. The model parameters

Table 5

Comparison of (oxygen) fluxes and effectiveness factor in case of
an oxidation reaction B+ 6.50,-4C0,+5H,0, with Langmuir-
Hinshelwood kinetics. The Thicle modulus is calculated with respect
to oxygen according to the modified equation (18). Model parameters
are shown in Table 2 with the addition of: Dip"=03%10"* m? s™};
M02=32X10—3; Mc02544x 10-‘3; Mngo"‘ 18 10—'3; Mp=358x% 1072

K ¢ NpoM NeM MooM MM !
Case I by= bg= 107 (Px})

0.5 100873 | 0.0001428 | 0.0001426 | 0,997 | 0.996 | 0.995

100 | 1235 | 001726 | 001731 | 0.602 | 0.604 | 0592

5000 | 8734 | 0.1557 0.1596 0.109 | 0.114 | 0.114
Case 1I: ba= 103 bp= 5107 (Pa))

0.5 0.0577 0.0001391 | 0.0001391 | 1,003 | 1,004 | 0.998

100 {0816 002574 | 002730 | 0928|0984 | 0,743

1000 2.582 0.972 0,1042 0.351 | 0.376 | 0.337
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together with the results of the calculations are pre-
sented in Table 6. In line with the results presented
earlier, the fluxes obtained from the two models do
not deviate by more than 10% from each other. Hence
it can be concluded that, when dealing with multiple
reactions, the FM is a good approximation of the DGM
as long as only fluxes and/or selectivity are of interest.

A special case of a consecutive reaction occurs when
the products recombine again with the reactants, i.e.
equilibrium reactions. For equilibrium reactions the
transport of the reactants and products inside the porous
catalysts, especially the transport differences between
the different species, may have a pronounced effect on
the composition and hence on the equilibrium con-
version. Therefore, also a large number of calculations
for this type of reaction have been carried out. From
these results, it was observed that, in line with the
results of the above-mentioned multiple reactions, the
discrepancies between the FM and the DGM remained
small (less than 15%).

3.4. Discussion

Modelling mass transport accompanied by chemical
reactions in porous catalyst always implies the presence
of a pressure gradient. For isobaric diffusion or Knudsen
diffusion through a porous medium, Graham’s law states

2 NM"=0 (19)
i—=1

whereas, when a reaction is involved, the conservation
of mass must be obeyed:

EIN,-M,- =0 (20)

The difference between the two relations is caused
by a pressure gradient, albeit small, present in the case
where Eq. (20) should hold, i.e. -when transport is
accompanied by a chemical reaction. Nevertheless, vari-
ation of the permeability constant showed that the
pressure-gradient term could be neglected in the trans-

Table 6
Comparison of the models in case of a consecutive reaction inside
the catalyst

Reaction mechanism and kinetics
A+H; » B withRa=kpapy
B+Hz;— C with Rg= k;pgpn2

Strucrure parameters
Tea= 1.0%103  (m)

fpore= 5.0%107 (m)
Bo=1.54%10"5 (m2)
&/t=4.92%10"2

Conditions at interface
x4=02, xg=0.8 ,P= 105 (Pa)

ka(RTP=10; kp(RT)*=3 ka(RT)?=300; kg(RT)*= 100

model Na I_\IIHZ Nc¢ Na Np Nm2 Ne

Np
(mol.m2,s°1) (mol.m2.s°1)

IDGM | 0.124 0.0755 0.173 0.0489
FM | 0.133 0.0805 0.186 0.0528

0.547 0.277 0.817 0.270
0.596 0.303 0.888 0.293

port equation (i.e. infinite permeability), in line with
the conclusions of Ref. [7]. Only for mechanical reasons
is the exact value of the pressure gradient inside the
particle of interest.

The concept of the effectiveness factor can only be
used as a check whether the entire process of transport
accompanied by chemical reaction proceeds in the
reaction-controlled regime. When the rate of the total
process of transport and chemical reaction inside the
catalyst is in either the transition regime or the diffusion-
controlled regime, the concept of the effectiveness factor
deviates from the numerical calculations according to
both the Fick model and the dusty-gas model. In this
case, and for multiple reactions as well, it has become
necessary to solve the complete set of mass balances
for the specific problem. However, a simple Fick model,
Eq. (3), with either a constant or a local diffusion
coeflicient according to Eq. (4b), turned out to be
sufficiently accurate to describe the fluxes at the interface
and, therefore, the conversion rates.

4. Comparison of the dusty-gas model and Fick
model for a porous slab facing two different gas-
phase compositions

Porous membranes are generally used in separation
processes of gaseous components. In contrast to the
previous catalyst geometries, the symmetrical boundary
condition usually does not occur for porous membranes.
For the symmetrical structures the effect of a pressure
gradient was concluded to be negligible, but in mem-
brane applications a large pressure gradient over the
membrane may give rise to a large convective fow
through the membrane. In this case, drift fluxes through
the membrane may be present, caused either by a
pressure gradient (convective motion) or transport of
inert species through the membrane. In symmetrical
geometries these effects were absent. Furthermore,
owing to the fact that the motion of reactants and
products should comply with the stoichiometry, the
results of the FM were always close to the DGM.
However, the presence of drift fluxes through the
membrane can possibly account for larger discrepancies
between the models, because this effect is not incor-
porated in the FM.

Sloot et al. [12] compared the FM with the DGM
when dealing with a porous membrane which catalysed
an instantaneous equilibrium reaction. They concluded
that the deviations between the models became more
pronounced at higher mole fractions. For specific process
conditions it was observed that a maximum in the
deviations occurred, especially when a pressure dif-
ference across the membrane was present.

In comparison with Sloot and co-workers [12,18], the
present model is more generally applicable because it
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is able to incorporate any kinetic rate expression as
well as pure diffusion. Similar to Ref. [18], a comparison
was made between the FM and the DGM for a porous
catalyst having a slab geometry, such as the catalytic
membrane reactor configuration. In the calculations at
both sides of the membrane a ternary gas was present,
and first the transport of the components through the
membrane was studied in the absence of a reaction.
In this case the effect of the mixture composition on
the transport rates was studied. A gas mixture consisting
of components with nearly identical physico-chemical
properties was discussed as well as with clearly distinct
properties. Secondly, a second-order overall irreversible
reaction was allowed to proceed between two reactants,
separately present at opposite sides of the slab. This
situation was studied only for a mixture of components
with nearly identical properties. The calculations were
restricted to the transition region of diffusion because
this is the region of most practical importance for the
processes in the membrane reactor. Owing to the fact
that transport in the Knudsen regime is similarly in-
corporated in both models, no differences are observed
in this regime.

4.1. Diffusion and convective flow without reaction

Transport of a multicomponent gas through a mem-
brane in the absence of a chemical reaction is studied,
with composition as given in Tables 7 and 8. Fluxes
through the membrane were calculated according to
both the extended FM and the DGM. The boundary
conditions were such that there is a net molar flow of
the inert through the membrane to make the situation
distinct from the transport in the spherical catalyst
structure, Two cases were considered, either with a gas
mixture consisting of species with nearly identical prop-
erties or with hydrogen present, showing a five times
higher diffusivity. Depending on the component prop-
erties it can be concluded that the differences in the
two models are now remarkable.

Table 7

Lew=2%10"3 m

Foore=29% 1077 m
Bo/n=154X10"10 m? Pa~! s~!
e/r=4.92X10"2

T=600 K

P=1x10° Pa

Boundary conditions

z=0 z=L
Xp 0.02 0.0
XB 0.0 0.8
Xinen 0.8 0.2

Nem - N
[NEM +[Npow
Downwind transport
0.5 1.0
- Sv- » AP (10° Pa)
(a) -0.5 -
Npwm - Npo
[NF +[NpaM
0.8
Upwind transport ] Downwind transport
\ 0.6
' AP (10° Pa)
‘H"\‘O
-1.0 0.5 10
(b)
Ngm - Npou
[NeM +[NpoM
Downwind transpost 041 Upwind teansport
el O~00
, . e AP (10°P2)
1.0 -0.5 0.0 0.5 1.0
04
(c) -08 -

Fig. 3. Relative difference of transport of component A through a
membrane in the absence of a reaction, plotted against the trans-
membrane pressure difference. The results are for a ternary gas
mixture with components of identical physicochemical properties (@,
inert/A/B) and with hydrogen (O, inert/A/FH,): (a) inert transport;
(b) transport of A; (c) transport of B.

Fig. 3 shows the differences between the FM and
the DGM as a function of the pressure difference for
the transport of ‘inert’ (Fig. 3(a)), A (Fig. 3(b)), and
B or hydrogen (Fig. 3(c)). The pressure difference is
defined as positive when component A moves down
the pressure gradient and its transport is assisted by

B
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Table 8

Identical species Hydrogen mixture

Reaction parameters

Ma=Mp=20%X10"2 kg mol~!
Mc=40%10"3 kg mol ™!

D}=15%10"* m* s™!

M;=40x1072 kg mol™!
My, =2%10"% kg mol™!
Mipen=30X10"2 kg mol~! Dy, =7.5X10"* m? 5™
D)=15%X10"% m* s~*

Ra=kpaps mol mz? s~
k,RT?*=1000

Neum - NpoMm
{NEM +[NpoM

Downwind transport

Upwind transport

1.0 4

0.25 0.50

~ T o0 AP (10°Pa)

-0.5 4

Fig. 4. Relative difference of the models plotted against the pressure
difference over the membrane in case a reaction A+ B— C proceeds.
This figure shows the results for the reactant A (O) and the inert
(m) for identical components. Model parameters are shown in Tables
7 and 8.

NrM - Npam
INEM +INpoM

0.50 4

. AP (10° Pa)
0

-0.25

-0.50 -

Fig. 5. Relative difference of the product flux directed to the high-
pressure side (A) and to the low-pressure side (A) in a membrane
reactor, plotted against the pressure difference. The pressure dif-
ference is defined as positive when reactant A moves down the
pressure gradient. The reaction scheme reads A+B— C, with model
parameters in Tables 7 and 8.

the convective flow. Consequently, components A and
‘inert’” move upwind at negative pressure differences,
and B (or hydrogen) moves upwind at positive values
because its partial pressure gradient is opposite to that
of both the other components.

From Fig. 3 it can be concluded that the transport
of any component moving down the pressure gradient

is described by both models equally well. In all cases
the deviation curve is close to the Ap axis. As indicated
in Figs. 3(b) and 3(c), an increase of the pressure
difference across the membrane results in larger de-
viations. In these diagrams the results of the A, B and
hydrogen fluxes are shown. These species cannot be
transported against their concentration gradients be-
cause they are not present at the opposite side of the
membrane. Therefore, these components can only be
transported from the membrane interface, by means
of a convective flow at sufficiently high pressure dif-
ferences. The increasing deviation between the models
with the pressure difference can be attributed to the
Knudsen slip. In the DGM this slip is influenced by
the motion of the other components, which is not
incorporated in the FM. This effect is more clearly
illustrated in Fig. 3(c), where the deviation of the
hydrogen flux between the two models is less pro-
nounced. Because hydrogen is a light molecule, its
diffusivity has been taken as five times higher than that
of the other components. As a result, hydrogen transport
is less affected by the transport of other components
through the membrane, and hence the deviations be-
tween the FM and DGM are less pronounced.

Since the ‘inert’ is present at both sides of the slab,
transport in both directions is possible. As a conse-
quence, Knudsen slip is negligible and the flux pre-
dictions at high pressure differences from both models
should be in good agreement. This is shown in Fig.
3(a). Large deviations, however, are observed in the
case where the pressure gradient balances the con-
centration gradient and the flux is about to alter its
direction. Owing to the fact that the transport is affected
by the motion of other species, which is neglected in
the FM, the deviations between the models are large.

4.2. Mass transport accompanied by chemical reactions

If the pores of the slab support a catalyst, a reaction
can proceed inside the membrane. This resulted in a
membrane reactor with separated feed of reactants as
described by Refs. [12,13,18,22,23]. The models were
studied again for an irreversible reaction A+B—C,
with finite reaction rate, proceeding inside the pores,
because differences between the models are likely to
occur. The boundary conditions were identical to those
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used in the previous section and presented in Tables
7 and 8. Also an inert species is present which moves
through the membrane, causing a net molar flow. The
value of the reaction rate constant is sufficiently high
to prevent slip of reactants over the whole range of
pressure differences.

The deviation plot of the transport of the inert species
and reactant A is shown by Fig. 4. In line with the
results presented for the diffusional transport, both
models are in good agreement describing the downwind
transport. Surprisingly, the upwind transport of com-
ponent A is also described equally well by both models.
This agreement is caused by the reaction because the
transport of component A is coupled to the transport
of B via the reaction stoichiometry. Reactant A and
B cannot move independently of each other through
the membrane. This implies a better agreement between
the models even in the description of the upwind
transport, because one of the reactants is always moving
down the pressure gradient. The inert species is not
bound to the stoichiometry, and a similar behaviour is
observed as in Fig. 3(a).

The product C is able to leave the membrane at
either the high-pressure or the low-pressure side. The
calculated fluxes to these sides are shown in Fig. 5.
In this plot the pressure difference is defined as positive
when reactant A moves down the pressure gradient.
Consequently, the closed symbols mark the product
flux leaving the membrane at the A side at a positive
pressure difference, and leaving the membrane at the
B side at a negative pressure difference. Fig. 5 again
demonstrates that the transport down the pressure
gradient is described equally well in both models,
whereas the upwind transport is not.

Contrary to transport through porous structures with
a plane, line or point of symmetry (catalyst particles),
the differences between the FM and the DGM are
more pronounced in membranes, caused by drift fluxes.
These conclusions are qualitatively in line with those
of Ref. [12]. As a result of drift fluxes, the transport
of non-reacting species through the membrane as well
as the transport direction of reaction products is for
some cases severely miscalculated by the FM. From a
large number of calculations it can be concluded that
the FM overestimates the upwind transport and under-
estimates the downwind transport. Hence, when mo-
delling gas transport with or without accompanying
chemical reactions in two-sided open porous structures,
such as (for example) a membrane reactor with sep-
arated feed of reactants, the FM cannot be used,
although the fluxes of the reactants are in fairly good
agreement with the DGM. Only when dealing with
very dilute reactant systems do the discrepancies become
negligible in all cases, as follows directly from the
asymptotic cases of the DGM.

5. Conclusions

From an extensive comparison of the dusty-gas model
and the (extended) Fick model for the prediction of
interfacial fluxes, or respective effectiveness factors, it
could be concluded that pressure effects could be
neglected for porous catalyst with a plane, line or point
of symmetry. Furthermore, the deviations between the
two models were small for these catalyst geometries,
so that the simple FM (Eq. (3)) can be used to calculate
the fluxes. Expressions for the Thiele modulus were
also used to calculate the effectiveness factor, but,
although they provide useful approximations, they were
accurate only over a limited range.

However, mass transport with and without chemical
reactions inside a porous slab facing two different gas
phases, resembling catalytic membrane reactors, should
be described according to the dusty-gas model. Although
the fluxes of the reactants predicted from the Fick
model are in reasonable agreement with the dusty-gas
model results, the direction of product flows and inert
motion through the membrane is not predicted correctly.
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Appendix A: Nomenclature

ba adsorption constant of component A (Pa~")

B, permeability coefficient (m?)

Dy binary diffusion coefficient of a mixture i and
j (m*s77)

D;,  Knudsen diffusion cocfficient of component i
(m® 57

E..  activation energy (J mol™')

K, Knudsen coefficient (m)

k4 reaction rate constant of reaction with (1,1)-
order kinetics (mol m~2 Pa~? s~%)
membrane thickness (m)

stoichiometric coefficient ()

molecular mass of component i (kg mol~?)
number of molecules (mol)

flux, relative to a fixed coordinate system (mol
m™2 s7%)

viscous flow (mol m~? s~?%)

total pressure (Pa)

partial pressure of component i (Pa)
universal gas constant (=8.314 J mol~! K™%)
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reaction rate with respect to component i (mol
m~3(cat) s71)

temperature (K)

time (s)

mole fraction (—)

space coordinate of integration (m)

Greek letters

B E I MR

ratio of diffusivities D,/D; (see Eq. (15))
1+Ng/N4 (see Eq. (9))

porosity (m*(gas) m~>(cat))

conversion (—)

effectiveness factor (—)

dynamic viscosity (Pa s)

tortuosity (—)

Thiele modulus (—)

Subscripts and superscripts

e effective

I, j, A component
k Knudsen
m mixture

0 gas phase
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