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Abstract

We survey results and open problems related to the toughness of graphs.

1 Introduction
The concept of toughness was introduced by Chvátal [34] more than forty years
ago. Toughness resembles vertex connectivity, but is different in the sense that
it takes into account what the effect of deleting a vertex cut is on the number of
resulting components. As we will see, this difference has major consequences in
terms of computational complexity and on the implications with respect to cycle
structure, in particular the existence of Hamilton cycles and k-factors.

1.1 Preliminaries
We start with a number of crucial definitions and observations. Throughout this
paper we only consider simple undirected graphs. Let G = (V, E) be such a graph.
Every subset S ⊆ V induces a subgraph of G, denoted by G[S ], consisting of S
and all edges of G between pairs of vertices of S . We use ω(G) to denote the
number of components of G, i.e., the set of maximal (with respect to vertex set
inclusion) connected induced subgraphs of G. A vertex cut of G is a set S ⊂ V
with ω(G − S ) > 1. Clearly, complete graphs (in which every pair of vertices
is joined by an edge) do not admit vertex cuts, but non-complete graphs have
at least one vertex cut (if u and v are nonadjacent vertices in G, then the set S =

V \{u, v} is a vertex cut such that ω(G−S ) = 2). As usual, the (vertex) connectivity
of G, denoted by κ(G), is the cardinality of a smallest vertex cut of G (if G is
non-complete; for the complete graph Kn on n vertices it is usually set at n − 1).
Adopting the terminology of Chvátal [34], we say that G is t-tough if |S | ≥ t ·
ω(G − S ) for every vertex cut S of G. The toughness of G, denoted τ(G), is the
maximum value of t for which G is t-tough (taking τ(Kn) = ∞ for the complete
graph Kn on n vertices). Hence if G is non-complete, τ(G) = min{|S |/ω(G − S )},
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where the minimum is taken over all vertex cuts of G. In [79], Plummer defined a
vertex cut S ⊂ V to be a tough set if τ(G) = |S |/ω(G − S ), i.e., a vertex cut S ⊂ V
for which this minimum is achieved. A graph G is hamiltonian if G contains a
Hamilton cycle, i.e., a cycle containing every vertex of G.

Other crucial terminology will be given later, while we refer to [22] for general
undefined terms in graph theory and to [53] for general terminology in complexity.
More background for the concepts and results in this paper can be found in [6, 7,
17, 18, 19].

A basic and crucial observation originating in [34] that has led to most of the
research on toughness, is the simple fact that a hamiltonian graph is necessarily
1-tough. In fact, a cycle itself is already 1-tough, because deleting any set of x
vertices (and the edges incident with these vertices), the remaining parts consist of
at most x cycle segments contained in at most x components. On the other hand,
it is easy to come up with examples of 1-tough graphs that are not hamiltonian,
but it is much harder to find nonhamiltonian graphs with a higher toughness, and
it seems unlikely that nonhamiltonian graphs with an arbitrarily high toughness
exist.

Historically, most of the research on toughness was based on a number of con-
jectures in [34]. The most challenging of these conjectures is still open: Is there
a finite constant t0 such that every t0-tough graph is hamiltonian? For a long time
it was believed that this conjecture should hold for t0 = 2. This ‘2-tough conjec-
ture’ would then imply a number of related results and conjectures. We showed
in [8] that the 2-tough conjecture is false. On the other hand, we know that the
more general t0-tough conjecture is true for a number of graph classes, including
planar graphs, claw-free graphs, and chordal graphs. We come back to this later.
The early research in this area concentrated on sufficient degree conditions which,
combined with a certain level of toughness, would yield the existence of long cy-
cles. The survey [7] contains a wealth of results in this direction. We will not
repeat too many of these results here because we thought the readership of this
bulletin is more interested in the algorithmic issues.

Research on toughness has also focused on computational complexity issues.
From an algorithmic point of view, it is somewhat unfortunate that the problem
of recognizing t-tough graphs is coNP-complete for every fixed positive rational
t ([9]). This implies that it is NP-hard to compute the toughness of a graph. On
the other hand, for some important graph classes the toughness can be computed
efficiently. We will come back to this later.

1.2 Some easy observations
We start with some easy facts, and with several natural questions, some of which
are easy to answer. The latter are sometimes stated as exercises to stimulate the



reader to think of the solutions first before we are going to present them, and to
get some feeling or intuition for the concepts involved. The following should be
an easy exercise, and the solution is a folklore result.

Exercise 1. Give an expression for the toughness of a (non-complete) tree.

Solution. Let T be a tree with maximum degree k. Then, obviously τ(T ) ≤ 1
k ,

since deleting a vertex with degree k from T yields a forest with exactly k compo-
nents. It is not difficult to convince oneself that deleting any other set S of vertices
from T will not yield more than k · |S | components: deleting the first vertex, say
v ∈ S from T , one obtains dT (v) ≤ k components in T − v; deleting a second ver-
tex, say w ∈ S \{v} (if any) from a component H of T −v, one obtains at most k−1
additional components, since H is replaced by at most k components of H − w in
T − {v,w}. Repeating the argument in case |S | ≥ 3, we conclude that, in fact the
only tough sets of T consist of a single vertex of maximum degree. �

The consequence of this solution is that for trees it is easy to determine the
toughness. Many natural questions might pop up now, like the following. How
easy is it to determine the toughness for general graphs? Or for graphs belong-
ing to other restricted graph classes? Is there a relation between tough sets and
minimum vertex cuts?

Let us start with the last question. It is clear that for a non-complete graph
G, the removal of the vertices of a minimum vertex cut yields at least two com-
ponents. Hence, we obtain the following upper bound on the toughness of G:
τ(G) ≤ κ(G)

2 . This bound is usually not sharp, as can be seen already from the above
result on trees. Perhaps surprisingly, the bound is sharp for claw-free graphs, as
we will show as a solution to the next exercise. We first recall some definitions.

If a graph H is isomorphic to a subgraph induced by a subset S ⊆ V of the
graph G = (V, E), then we say that H is an induced subgraph of G. The graph G
is called H-free if this is not the case, so if G does not contain a copy of H as an
induced subgraph. In case H is isomorphic to K1,3, we use the more common term
claw-free instead of H-free. Claw-free graphs are a very well-studied graph class,
including the class of line graphs.

Exercise 2. Show that τ(G) =
κ(G)

2 for a non-complete claw-free graph G.

Solution sketch. Let S be a tough set of G with |S | = k. By the connectivity, every
component of G − S has at least κ(G) different neighbors in S . On the other hand,
since G is claw-free, every vertex of S has neighbors in at most two components
of G−S . Hence, κ(G) ·ω(G−S ) ≤ 2k. Thus, τ(G) = k

ω(G−S ) ≥
κ(G)

2 . The statement
now follows from the observation we made earlier. �



As a consequence of the above solution and well-known complexity results on
connectivity, the toughness of a claw-free graph is easy to determine.

Let us return to the question whether tough sets and minimum vertex cuts are
somehow related, e.g., is it the case that for every non-complete graph G there
exists a tough set of G that contains a minimum vertex cut of G? We put it as
another exercise to show that this is not the case.

Question 3. Is there a tough set that contains a minimum vertex cut in every non-
complete graph?

Answer. It is easy to come up with counterexamples. Take, for instance, two
vertex-disjoint copies of a complete bipartite graph Km,n with m ≥ 2n ≥ 4, add
one new vertex v and join v by edges to the n vertices of the smallest bipartition
classes of each of the two copies. It is easy to check that {v} is the only minimum
vertex cut, whereas the two sets of n vertices of the smallest bipartition class of
each of the copies are the only two tough sets. �

Since each component of G−S attributes at least one vertex to an independent
set of G, i.e., a set of mutually nonadjacent vertices of G, another natural ques-
tion is whether there is a relation between α(G), i.e., the cardinality of a largest
independent set of G, and τ(G).

Exercise 4. Show that τ(G) ≤ n−α(G)
α(G) for a non-complete graph G on n vertices.

Solution. Let S = V \ I for a maximum independent set I of G = (V, E). Then
ω(G − S ) = |I| = α(G). Hence, τ(G) ≤ |S |

ω(G−S ) =
n−α(G)
α(G) . �

One might be tempted to think that some maximum independent set of a non-
complete graph G is always contained in G − S for some tough set S of G. The
examples in the answer to Question 3 show that this is not the case, though.

Although a tough set S of a graph G need not contain a minimum vertex
cut of G, and a maximum independent set of G is not always contained in the
components of G − S , there is a bound on τ(G) that involves both α(G) and κ(G),
as stated in the final exercise in this subsection.

Exercise 5. Show that τ(G) ≥ κ(G)
α(G) for a non-complete graph G.

Solution. Let S be a tough set of G. Then S is a vertex cut of G, hence |S | ≥ κ(G).
Clearly, α(G) ≥ ω(G − S ). Hence, τ(G) = |S |

ω(G−S ) ≥
κ(G)
α(G) . �

In the above, we have already seen that it is computationally easy to determine
the toughness of trees and claw-free graphs. In the next section we will show
that it is difficult to determine the toughness of general graphs, and we will list
some known results and open problems on the computational complexity of this
problem restricted to graphs from specific graph classes.



2 Complexity: known results and open problems
To start this section, we will first sketch a proof that implies that determining the
toughness of general graphs is an NP-hard problem. The proof is based on similar
observations as in Section 1, relating independent sets in a graph G to components
of G − S for a tough set S of G.

2.1 NP-hardness for general graphs
The problem of determining the complexity of recognizing t-tough graphs was
first raised by Chvátal [33] and later appeared in [83] and [[35], p. 429]. Consider
the following decision problem, where t is any positive rational number.

t-TOUGH
INSTANCE : Graph G.
QUESTION : Is τ(G) ≥ t ?

Theorem 6 ([9]). For any positive rational number t, t-TOUGH is NP-hard.

Sketch of proof. The proof we sketch here is based on [9] and the remarks in [17].
In [9], first the NP-hard variant of INDEPENDENT SET (IS) [[53], p. 194] called
INDEPENDENT MAJORITY was used to show that 1-TOUGH is NP-hard (or,
more precisely that NOT-1-TOUGH is NP-complete). Next the latter problem was
reduced to (NOT-)t-TOUGH, for any fixed positive rational number t. As noted
in [17], it is easy to use similar arguments to reduce IS itself to NOT-1-TOUGH.
We outline the reduction here.

Let G = (V, E) be an instance of IS, with V = {v1, v2, . . . , vn}. Construct a
graph G′ in the following way. First add n new vertices w1, w2, . . . , wn, and join vi

to wi by an edge for i = 1, 2, . . . , n. Add a complete graph H on k− 1 new vertices
and join each vertex of H to each of the vertices vi and wi for all i = 1, 2, . . . , n.
The claim is that α(G) ≥ k if and only if τ(G′) < 1. This is not difficult to prove.

The next step is to reduce NOT-1-TOUGH to NOT-t-TOUGH, by the approach
given in [9], that we sketch now.

Let G = (V, E) be an instance of NOT-1-TOUGH, with V = {v1, v2, . . . , vn},
and let t = a

b for integers a, b ≥ 2. Take a vertex-disjoint isomorphic copies of G,
and take n vertex-disjoint copies of a graph H consisting of b − 1 copies of Kr for
r ≥ a(a − 1)b(b − 1). Join the ith vertex of each of the copies of G (the vertices
corresponding to vi of G) to all vertices of the ith copy of H by edges. Let the new
graph be G′. The claim is that τ(G) < 1 if and only if τ(G′) < t. We omit the
proof.

�



It is natural to inquire whether the problem of recognizing t-tough graphs re-
mains NP-hard for various subclasses of graphs. We will first review some known
cases for which this problem is polynomially solvable.

2.2 Polynomial cases for special graph classes
As we have seen in Section1, for a claw-free graph G, τ(G) =

κ(G)
2 (as first shown in

[75]). Hence the toughness of claw-free graphs, and consequently of line graphs,
can be determined in polynomial time. Thus, while it is NP-complete to determine
whether a line graph is hamiltonian [21], it is polynomial to determine whether
a line graph is 1-tough. Another class of graphs for which this is the case is the
class of split graphs, i.e., graphs for which the vertex set can be partitioned into an
independent set and a clique, i.e., a set of mutually adjacent vertices. Determining
whether a split graph is hamiltonian was shown to be NP-complete in [78]. On
the other hand, the following was shown in [71].

Theorem 7. The class of 1-tough split graphs can be recognized in polynomial
time.

Using the fact from [37, 56] that submodular functions can be minimized in
polynomial time, in [86] the following was shown.

Theorem 8. For any rational number t ≥ 0, the class of t-tough split graphs can
be recognized in polynomial time.

In [25], we extended the above result on split graphs by showing that the
toughness of 2K2-free graphs can be computed in polynomial time. These are
graphs that do not contain an induced copy of 2K2, the graph on four vertices
consisting of two vertex-disjoint edges. It is easy to see that every split graph is
a 2K2-free graph. A graph is chordal if every cycle on at least four vertices con-
tains a chord, i.e., an edge joining two vertices that are not adjacent on the cycle.
One can also easily check that every co-chordal graph, i.e., every graph that is the
complement of a chordal graph, is 2K2-free.

Theorem 9. The toughness of a 2K2-free graph can be determined in polynomial
time.

Our algorithmic proof of this result is based on one easy observation, a result
of Farber [48], and the (implicit) algorithm in the proof of Woeginger [86] for split
graphs.

Sketch of proof. The observation we use is that a graph G = (V, E) is 2K2-free if
and only if for every A ⊂ V at most one component of the graph G − A contains



edges. The result of Farber [48] states that a 2K2-free graph on n vertices contains
at most n2 maximal independent sets, and that all of them can be listed in time
O(n2). Given a 2K2-free graph G = (V, E) on n vertices as input, we use the
following algorithm.

1. List all maximal independent sets of G using the (implicit) polynomial-time
algorithm from [48]. Denote them by I1, I2, . . . , Ik, where k ≤ n2.

2. For every i ∈ {1, 2, . . . , k} consider the split graph Gi obtained from G by
adding all necessary edges that turn V \ Ii into a clique in Gi. Determine
the toughness τi = τ(Gi) using the (implicit) polynomial-time algorithm
from [86].

3. Output t = min{τi | i ∈ {1, 2, . . . , k}}.

Clearly, the algorithm outputs t in polynomial time. It remains to show that
t = τ(G). For this, let S be a tough set of G. Then by our observation, at most one
component of G − S contains edges; the others induce a nonempty independent
set I in G. Clearly, NG(I) (the set of neighbors in G of the vertices of I) is also
a vertex cut, with NG(I) ⊆ S and ω(G − NG(I)) ≥ ω(G − S ). If NG(I) , S , then
|NG(I)| < |S |, and hence

|NG(I)|
ω(G − NG(I))

<
|S |

ω(G − S )
,

contradicting that S is a tough set of G. Thus NG(I) = S . Let I j be a maximal
independent set of G containing I. Then S ∩ I j = ∅, since otherwise I j is not
independent. Let G j be obtained from G by turning V \ I j into a clique, and let
τ j = τ(G j). Then ω(G j − S ) = ω(G − S ), and so

t = min
i
τi ≤ τ j ≤

|S |
ω(G j − S )

=
|S |

ω(G − S )
= τ(G).

For inequality in the other direction, suppose t = τr = mini τi, and suppose S r

is a tough set of Gr. Then ω(G−S r) ≥ ω(Gr−S r), since adding edges to G cannot
increase the number of components of G − S r. Hence

τ(G) ≤
|S r|

ω(G − S r)
≤

|S r|

ω(Gr − S r)
= τr = t.

We conclude that t = τ(G), proving Theorem 9. �

While many other problems that are NP-hard in general can be solved in poly-
nomial time on 2K2-free graphs, the problem of deciding whether a 2K2-free graph
is hamiltonian is NP-complete; indeed, as we noted before, the latter problem is
even NP-complete on split graphs ([78]). We refer the interested reader to [74] for
more details and references to other work on 2K2-free graphs.



2.3 NP-hardness for special graph classes
For many subclasses of graphs, it is NP-hard to recognize t-tough graphs. For
example, in [14], using similar constructions as used in the above NP-hardness
proof, it was shown that it is NP-hard to recognize t-tough graphs even within
the class of graphs having minimum degree almost high enough to ensure that the
graph is t-tough, in the following sense.

Theorem 10. Let t ≥ 1 be a rational number. If δ ≥ ( t
t+1 )n, then G is t-tough.

On the other hand, for any fixed ε > 0, it is NP-hard to determine whether G is
t-tough for graphs G with δ ≥ ( t

t+1 − ε)n.

Häggkvist [57] has shown that if δ ≥ n/2 − 2, there is a polynomial time
algorithm to determine whether G is hamiltonian. As a consequence of a result
of Jung [61], a graph G on n ≥ 11 vertices satisfying δ ≥ n/2 − 2 is hamiltonian
if and only if G is 1-tough. It follows that 1-tough graphs can be recognized in
polynomial time when δ ≥ n/2 − 2.

Another interesting class of graphs is the class of bipartite graphs. Obviously
τ(G) ≤ 1 for any bipartite graph G. The complexity of recognizing 1-tough bipar-
tite graphs had been raised a number of times; see, e.g., [[24], p. 119]. In [71],
Kratsch et al. were able to reduce 1-TOUGH for general graphs to 1-TOUGH for
bipartite graphs by using the classical Nash-Williams construction [76].

Theorem 11. 1-TOUGH remains NP-hard for bipartite graphs.

Consequently, 1-TOUGH is also NP-hard for the larger class of triangle-free
graphs, i.e., K3-free graphs.

2.4 Toughness for regular graphs: results and open problems
An important class of graphs that has received considerable attention is the class
of regular graphs. Note that the maximum possible toughness of an r-regular
graph G is r

2 , since τ(G) ≤ κ(G)
2 ≤

r
2 .

Chvátal [34] asked for which values of r and n > r+1 there exists an r-regular,
r
2 -tough graph on n vertices, and observed that this is always the case for r even.
He also conjectured that for r odd and n sufficiently large, it would be necessary
that n ≡ 0 mod r, and verified this for r = 3. But for all odd r ≥ 5, Doty [41]
and Jackson and Katerinis [59] independently constructed an infinite family of
r-regular, r

2 -tough graphs on n vertices with n . 0 mod r.
Jackson and Katerinis [59] gave a characterization of cubic, i.e., 3-regular,

3
2 -tough graphs which allowed such graphs to be recognized in polynomial time.
Their characterization of these graphs uses the concept of inflation, introduced by
Chvátal in his original toughness paper [34].



Theorem 12. Let G be a cubic graph. Then G is 3
2 -tough if and only if G = K4,

G = K2 × K3, or G is the inflation of a 3-connected cubic graph.

In [55], an analogous characterization of r-regular, r
2 -tough graphs for all r ≥ 1

is conjectured, which would allow such graphs to be recognized in polynomial
time.

In the opposite direction, it was established in [10] that it is NP-hard to recog-
nize 1-tough cubic graphs. This was generalized in [11] as follows.

Theorem 13. For any integer t ≥ 1 and any fixed r ≥ 3t, it is NP-hard to recognize
r-regular, t-tough graphs.

The complexity of recognizing r-regular, t-tough graphs remains completely
open when 2t < r < 3t, and the complexity when r = 2t + 1 seems especially
intriguing. The following is conjectured in [11], where the authors also sketch a
possible approach to proving the conjecture.

Conjecture 14. For any integer t ≥ 1, t-TOUGH remains NP-hard for (2t + 1)-
regular graphs.

2.5 More open problems on complexity
There are still many interesting subclasses of graphs for which the complexity of
recognizing t-tough graphs is unknown.

A number of these classes, all related to the complexity results obtained for
regular graphs are given in [11]. These are repeated here, and they are based on
a well-known long-standing conjecture in hamiltonian graph theory called Bar-
nette’s Conjecture, stating that every 3-connected, cubic, planar, bipartite graph
is hamiltonian.

If any of the hypotheses in this conjecture is dropped, the conclusion that the
graph is hamiltonian need not follow. Thus it seems interesting to consider the
complexity of recognizing 1-tough graphs when one or more of the hypotheses in
Barnette’s Conjecture are dropped.

It is an easy exercise to prove that every 3-connected cubic graph is 1-tough.
On the other hand, there are 2-connected, cubic, planar, bipartite graphs which
are not 1-tough (see, e.g., [2]). The complexity of recognizing 1-tough graphs
remains open for the following classes of graphs.

• 2-connected, cubic, planar, bipartite graphs;

• 2-connected, cubic, planar graphs;

• 2-connected, cubic, bipartite graphs;



• 2-connected, planar, bipartite graphs;

• 2-connected, planar graphs.

Tutte [85] has shown that every 4-connected planar graph is hamiltonian. On
the other hand, there exist 3-connected, planar, bipartite graphs which are not 1-
tough (e.g., the Herschel graph [[22], p. 472]). The complexity of recognizing
1-tough graphs remains open for the following classes.

• 3-connected, planar, bipartite graphs;

• 3-connected, planar graphs;

• 3-connected, bipartite graphs.

It is interesting to note that the complexity of recognizing hamiltonian graphs
is known to be NP-hard for all of the above classes except possibly 3-connected,
planar, bipartite graphs [1, 54].

As indicated above, we do not know the complexity of recognizing 1-tough,
planar graphs. However, the next result might yield a clue. It follows from theo-
rems in [40, 81].

Theorem 15. Let G be a planar graph on at least 5 vertices. Then G is 4-
connected if and only if ω(G − S ) ≤ |S | − 2 for all vertex cuts S ⊂ V(G) with
|S | ≥ 3.

Since 4-connected graphs can be recognized in polynomial time, it follows that
for planar graphs G, it can be determined in polynomial time whether ω(G − S ) ≤
|S | − 2 for all vertex cuts S ⊂ V(G) with |S | ≥ 3. To determine if G is 1-tough,
one needs to decide the similar inequality ω(G − S ) ≤ |S | for all vertex cuts
S ⊂ V(G). Perhaps this suggests that recognizing 1-tough, planar graphs can be
done in polynomial time.

Dillencourt [39] has also inquired about the complexity of recognizing 1-
tough, maximal planar graphs, noting that recognizing hamiltonian, maximal pla-
nar graphs is NP-hard. All we know is that there exist maximal planar graphs
which are not 1-tough.

Another well-studied class of graphs for which the complexity of determining
the toughness is open, is the class of chordal graphs. It is not difficult to observe
that within this class of chordal graphs, studying tough sets can be restricted to sets
that induce a connected graph. It is also an easy exercise to show that simplicial
vertices do not belong to tough sets. Perhaps these observations can be used as a
starting point for proving that the toughness of chordal graphs can be computed in
polynomial time. If one would be able to prove polynomiality for the toughness



and related vulnerability measures restricted to chordal graphs, these results would
generalize results in [70]. The algorithms in [70] are the first to efficiently compute
such measures for several nontrivial graph classes. In fact their approach is more
widely applicable. Their algorithms compute two types of vectors which they call
component number vectors and maximum component order vectors. These could
be of interest for solving other vulnerability problems for the considered graph
classes as well.

A related direction which could lead to NP-hardness proofs for new graph
classes, is to find alternative proofs for NP-hardness of the original toughness
problem. Related questions on (in)approximability seem to be totally unexplored
and a good topic for future research.

3 Chvátal’s conjectures
As noted earlier, being 1-tough is a necessary condition for a graph to be hamil-
tonian. In [34], Chvátal conjectured that there exists a finite constant t0 such that
every t0-tough graph is hamiltonian. He showed in [34] that there exist 3

2 -tough
nonhamiltonian graphs, and subsequently Thomassen [[20], p. 132] found t-tough
nonhamiltonian graphs with t > 3

2 . Later results of Enomoto et al. [47] imply that
there exist (2 − ε)-tough nonhamiltonian graphs for arbitrary ε > 0.

3.1 Toughness and hamiltonicity
For many years, the focus was on determining whether all 2-tough graphs are
hamiltonian. One reason for this is that if all 2-tough graphs were hamiltonian, a
number of important consequences [3] would follow. In addition, the results of
Enomoto et al. [47] seemed to indicate that two might be the threshold for tough-
ness that would imply hamiltonicity. The truth of the 2-tough conjecture would
also imply the well-known result of Fleischner [52] that the square of any 2-
connected graph is hamiltoninan. Moreover, it would imply the truth of two other
conjectures that have been open for about thirty years: Every 4-connected line
graph is hamiltonian [84], and every 4-connected claw-free graph is hamiltonian
[75]. These conjectures are in fact equivalent, as later shown in [80]. However,
it turns out that not all 2-tough graphs are hamiltonian. Indeed, we have the fol-
lowing result [8]. Here a graph is called (non)traceable if it does (not) admit a
Hamilton path, i.e., a path containing all of its vertices.

Theorem 16. For every ε > 0, there exists a ( 9
4 − ε)-tough nontraceable graph.

We believe that this result can be improved, and that we need a clever combi-
nation of new structural results and computer-aided search methods to find better



examples, i.e., with a higher toughness. One reason for being hopeful is that the
construction and building blocks we used to prove the above theorem are sur-
prisingly simple at hindsight. We therefore continue this section by presenting a
brief outline of the construction of these counterexamples, which were inspired
by constructions in [3] and [16].

For a given graph H and x, y ∈ V(H) we define the graph G(H, x, y, `,m) as
follows. Take m disjoint copies H1, . . . ,Hm of H, with xi, yi the vertices in Hi

corresponding to the vertices x and y in H (i = 1, . . . ,m). Let Fm be the graph
obtained from H1∪ . . .∪Hm by adding all possible edges between pairs of vertices
in {x1, . . . , xm, y1, . . . , ym}. Let T = K` and let G(H, x, y, `,m) be the join T ∨Fm of
T and Fm.

The proof of the following theorem appeared in [8] and almost literally also in
[3].

Theorem 17. Let H be a graph and x, y two vertices of H which are not connected
by a Hamilton path of H. If m ≥ 2` + 3, then G(H, x, y, `,m) is nontraceable.

Figure 1: The graph L.

Consider the graph L of Figure 1. There is obviously no Hamilton path in L
between u and v. Hence G(L, u, v, `,m) is nontraceable for every m ≥ 2` + 3. The
toughness of these graphs was established in [8].

Theorem 18. For ` ≥ 2 and m ≥ 1,

τ(G(L, u, v, `,m)) =
` + 4m
2m + 1

.

Combining Theorems 17 and 18 for sufficiently large values of m and `, one
obtains the next result [8].

Corollary 19. For every ε > 0, there exists a
(

9
4 − ε
)
-tough nontraceable graph.



It is easily seen from the proof in [8] that Theorem 17 remains valid if m ≥ 2`+
3 and nontraceable are replaced by m ≥ 2` + 1 and nonhamiltonian, respectively.
Thus the graph G(L, u, v, 2, 5) is a nonhamiltonian graph, which by Theorem 18
has toughness 2. This graph is sketched in Figure 2. It follows that a smallest
counterexample to the 2-tough conjecture has at most 42 vertices. Similarly, a
smallest nontraceable 2-tough graph has at most |V(G(L, u, v, 2, 7))| = 58 vertices.

Figure 2: The graph G(L, u, v, 2, 5).

A graph G is neighborhood-connected if the neighborhood of each vertex
of G induces a connected subgraph of G. In [34], Chvátal also stated the fol-
lowing weaker version of the 2-tough conjecture: every 2-tough neighborhood-
connected graph is hamiltonian. Since all counterexamples described above are
neighborhood-connected, this weaker conjecture is also false.

Most of the ingredients used for constructing the above counterexamples were
already present in [3]. It only remained to observe that using the specific graph L
as a building block produced a graph with toughness at least 2. Note that the graph
L itself does not have a particularly high toughness. One of the crucial properties
of L is that the vertex cuts that contribute to the tough set of G(L, u, v, `,m) are
small and yield relatively few components. We hope that other building blocks
and/or smarter constructions will lead to counterexamples with a higher tough-
ness. This will probably require new structural results on clever combinations
of suitable smaller graphs into larger nonhamiltonian ones with large toughness,
together with directed computer search for suitable small graphs. Perhaps the
concept of weakly hamiltonian graphs introduced by Chvátal (See, e.g. [35] for
a nice exposition of structural results for nonhamiltonian graphs) will be a key
ingredient to finding better constructions.



3.2 Toughness and other cycle structures
Constructions similar to those used to prove Theorem 16 have been used to estab-
lish other important results.

A k-factor of a graph G is a spanning k-regular subgraph of G, i.e., a k-regular
subgraph that contains all the vertices of G. Hence, a Hamilton cycle is a special
case of a 2-factor, namely a connected 2-factor.

Chvátal [34] obtained
(

3
2 − ε
)
-tough graphs without a 2-factor for arbitrary

ε > 0. These examples are all chordal. It was shown in [13] that every 3
2 -tough

chordal graph has a 2-factor. Based on this, Kratsch [69] raised the question
whether every 3

2 -tough chordal graph is hamiltonian. Using Theorem 17 in [8] it
has been shown that this conjecture, too, is false.

Consider the graph M of Figure 3.

Figure 3: The graph M.

The graph M is chordal and has no Hamilton path with endvertices p and
q. The graphs G(M, p, q, `,m) are also chordal and, by Theorem 17, they are
nontraceable whenever m ≥ 2` + 3. By arguments similar to those used in the

proof of Theorem 18, the toughness of G(M, p, q, `,m) is
` + 3m
2m + 1

if ` ≥ 2. Hence
for ` ≥ 2 the graph G(M, p, q, `, 2` + 3) is a chordal nontraceable graph with

toughness
7` + 9
4` + 7

. This gives the following result from [8].

Theorem 20. For every ε > 0, there exists a
(

7
4 − ε
)
-tough chordal nontraceable

graph.

A k-walk in a graph G is a closed spanning walk of G that visits every vertex
of G at most k times. Hence, a Hamilton cycle is a 1-walk. In [43], Ellingham
and Zha used the same construction as above to give an infinite class of graphs of
relatively high toughness without a k-walk. They obtained the following results.

Theorem 21. Every 4-tough graph has a 2-walk.



Theorem 22. For every ε > 0 and every k ≥ 1 there exists a
(

8k+1
4k(2k−1) − ε

)
-tough

graph with no k-walk.

To prove the latter theorem they first modified the graph L from Figure 1 and
then relied on the same basic construction that was used in [8].

3.3 Chvátal’s conjecture for special graph classes
Since Chvátal [34] introduced toughness in 1973, much research has been done
that relates toughness conditions to the existence of cycle structures. But the most
challenging of the conjectures he posed in [34] is still open: Is there a finite con-
stant t0 such that every t0-tough graph is hamiltonian? If so, what is the small-
est such t0? We know from the above results that if the conjecture is true, then
t0 ≥ 9/4.

Although the conjecture is still open for general graphs, we know that it is true
for a number of well-studied graph classes, e.g., planar graphs, claw-free graphs
and chordal graphs.

Since all 4-connected planar graphs are hamiltonian by a well-known theorem
of Tutte [85], we have t0 > 3/2 for planar graphs, and this result is best possible.

For a claw-free graph G we know that τ(G) = κ(G)/2; consequently t0 ≤ 7/2
by a result of Ryjacek [80], combined with a result of Zhan [87] and Jackson [58]
stating that all 7-connected line graphs are hamiltonian. This has recently been
improved in [63] to 5-connected line graphs with minimum degree at least 6, so in
particular to 6-connected line graphs. However Matthews and Sumner [75] have
conjectured that 4-connected (2-tough) claw-free graphs are hamiltonian. For a
survey on this and many related conjectures we refer to [26].

Let us turn again to chordal graphs, i.e., graphs that have no induced cycles
of length greater than 3. Alternatively, one can view a chordal graph as the in-
tersection graph of a family of subtrees of a tree. It was shown in [31] that every
18-tough graph on at least three vertices is hamiltonian, but this result is probably
far from best possible. As we have just seen the best known negative result is from
[8] where an infinite class of chordal graphs with toughness close to 7/4 having
no Hamilton path is constructed.

There are several subclasses of chordal graphs, however, for which the small-
est toughness guaranteeing hamiltonicity is known. Recall that a graph is called
a split graph if its vertex set can be partitioned into a clique and an independent
set. Alternatively a split graph can be viewed as the intersection graph of a family
of connected subgraphs of a star (and so split graphs are chordal graphs). It was
shown in [71] that every 3/2-tough split graph on at least three vertices is hamil-
tonian, and that this is best possible in the sense that there is a sequence {Gn}

∞
n=1

of split graphs with no 2-factor and τ(Gn) → 3/2. This result was generalized



by Kaiser, Král, and Stacho [62], who showed that 3/2-tough spiders are hamil-
tonian; a spider is the intersection graph of a family of connected subgraphs of a
subdivision of a star (and so spiders are chordal graphs). Keil [68] showed that
every 1-tough interval graph is hamiltonian (an interval graph is the intersection
graph of subpaths of a path), which is clearly best possible. Deogun, Kratsch and
Steiner [38] generalized this by showing that 1-tough co-comparability graphs
(not a subclass of chordal graphs) are hamiltonian.

In [27], toughness conditions are studied that guarantee the existence of a
Hamilton cycle in k-trees. In this context, a k-tree is a graph that can be obtained
from a Kk by repeatedly adding new vertices and joining them to a set of k mu-
tually adjacent vertices. It is clear that a k-tree is a chordal graph. In [27], it is
shown that every 1-tough 2-tree on at least three vertices is hamiltonian. This is
generalized to a result on k-trees for k ≥ 2 as follows: Let G be a k-tree. If G has
toughness at least (k + 1)/3, then G is hamiltonian. Moreover, infinite classes of
nonhamiltonian 1-tough k-trees for each k ≥ 3 are presented.

In a recent paper [25], inspired by a failed attempt to improve the result on
chordal graphs due to Chen et al. [31], we were able to establish the truth of Chvá-
tal’s Conjecture for a superclass of split graphs we encountered before, namely for
the class of 2K2-free graphs.

Theorem 23. Every 25-tough 2K2-free graph on at least three vertices is hamil-
tonian.

While this establishes Chvátal’s Conjecture for a new graph class, like the
result for chordal graphs [31], our bound is very likely to be far from extremal. It
is conjectured in [77] that t-tough 2K2-free graphs with t > 1 are hamiltonian, but
this seems extremely difficult to prove. The proof of Theorem 23 in [25] relies on
the very restrictive structure of triangle-free 2K2-free graphs, and we were able to
prove a sharp result for such graphs, namely that triangle-free 2K2-free graphs are
hamiltonian if and only if they are 1-tough.

A natural question, in light of the disproof of the 2-tough conjecture for gen-
eral graphs, is what minimum level of toughness will ensure that a graph from
a restricted graph class is hamiltonian. More specifically, are 2-tough chordal
graphs hamiltonian? Are 2-tough 2K2-free graphs hamiltonian?

What about triangle-free graphs? Are 2-tough triangle-free graphs hamilto-
nian? It is conjectured in [12] that for all ε > 0, there exists a (2 − ε)-tough
triangle-free graph that does not even contain a 2-factor. An infinite collection
of triangle-free graphs are given there that clearly have no 2-factor. It appears
that the toughness of these graphs approaches 2 as the order n → ∞. However,
establishing the toughness appears difficult. On the other hand, Ferland [51] has
found an infinite class of nonhamiltonian triangle-free graphs whose toughness is



at least 5/4. Note that the toughness of the Petersen graph is 4/3. However, the
Petersen graph is not an infinite class.

The following result appeared in [4] and shows that Chvátal’s Conjecture that
there exists a finite constant t0 such that all t0-tough graphs are hamiltonian is true
within the class of graphs having δ(G) ≥ εn, for any fixed ε > 0.

Theorem 24. Let G be a t-tough graph on n ≥ 3 vertices with δ > n/(t + 1) − 1.
Then G is hamiltonian.

In [72], we have tried to characterize all graphs H such that every 1-tough H-
free graph on at least three vertices is hamiltonian, following up on earlier work by
Jung [60] and Nikoghosyan [77]. We almost established a full characterization,
leaving just one open case. We proved the following two results in [72]. Here
H ∪ F denotes the disjoint union of two vertex-disjoint graphs H and F, and we
use the shorthand notation H ∪ F-free instead of (H ∪ F)-free.

Theorem 25. Let R be an induced subgraph of P4, K1 ∪ P3 or 2K1 ∪ K2. Then
every R-free 1-tough graph on at least three vertices is hamiltonian.

The case with K1 ∪ P3 was independently proved in [77], where the case with
P4 was conjectured, and the nonhamiltonian K1 ∪ K2-free graphs were charac-
terized. The case with P4 has been proved back in the 1970s [60], where P4-
free graphs were studied as D∗-graphs, but they are more commonly known as
cographs (since the complement of a P4-free graph is also P4-free).

Theorem 26. Let R be a graph on at least three vertices. If every R-free 1-tough
graph on at least three vertices is hamiltonian, then R is an induced subgraph of
K1 ∪ P4.

Note that every induced subgraph of K1 ∪ P4 is either K1 ∪ P4 itself, or an
induced subgraph of P4, K1 ∪ P3 or 2K1 ∪ K2. By the above two theorems, the
only graph for which we do not know whether forbidding it can ensure a 1-tough
graph to be hamiltonian is K1 ∪ P4. We repeat this here as an open problem, but it
appeared as a conjecture in [77].

Question 27. Is every K1∪P4-free 1-tough graph on at least three vertices hamil-
tonian?

This question seems to be very hard to answer, even if we impose a higher
toughness. In the light of the discussion, it is interesting to consider the following
weaker version of Question 27.

Question 28. Is the general conjecture of Chvátal true for K1 ∪ P4-free graphs?

Some of the partial results in [25] can be proved for K1 ∪ P4-free graphs as
well, but a similar approach fails for solving the general problem.



3.4 Toughness and factors
In [34], Chvátal also conjectured that every k-tough graph on n ≥ k + 1 vertices
and kn even contains a k-factor. Enomoto et al. [47] gave a decisive answer to
Chvátal’s conjecture in the following two theorems.

Theorem 29. Let G be a k-tough graph on n vertices with n ≥ k + 1 and kn even.
Then G has a k-factor.

Theorem 30. Let k ≥ 1. For every ε > 0, there exists a (k − ε)-tough graph G on
n vertices with n ≥ k + 1 and kn even which has no k-factor.

In particular, every 2-tough graph contains a 2-factor, and for every ε > 0,
there exist infinitely many (2 − ε)-tough graphs with no 2-factor.

In [44], Enomoto strengthened Theorem 29.

Theorem 31. Let k be a positive integer and G be a graph on n vertices with
n ≥ k + 1 and kn even. Suppose |S | ≥ k · ω(G − S ) − 7k

8 for all S ⊆ V with
ω(G − S ) ≥ 2. Then G has a k-factor.

We think these structural results and their improvements go beyond the com-
mon interest of the readership of this bulletin, so we decided to complete this
section with some general remarks and references to related work. We apologize
to the interested reader for the inconvenience.

Further improvements on Theorem 31 and related results were obtained in
[45], [46], [29], [64], and [30]. Other related results involving sufficient minimum
degree conditions for a t-tough graph to contain a 2-factor and 3-factor appeared in
[16] and [15], respectively. In [42] some of the above results have been extended
to connected factors. In [65] it was shown that a 1-tough bipartite graph on n ≥ 3
vertices has a 2-factor. In [49], the authors present a minimum degree condition
for a 1-tough graph to have a 2-factor with a specific number of cycles.

A number of results on factors have appeared relating toughness to (r, k)-
factor-critical graphs. A graph G is (r, k)-factor-critical if G − X contains an
r-factor for all X ⊆ V with |X| = k. For r ≥ 2, these graphs were studied in [73]
under the name (r, k)-extendable graphs. Later results appeared in [28, 45, 50, 82].

Other related results, including an interesting edge variant on toughness, ap-
peared in [66, 67].

4 Final remarks
Since Chvátal [34] introduced toughness in 1973, much research has been done
that relates toughness conditions to the existence of cycle structures. In this paper,



we have mainly focussed on results and open problems with an algorithmic flavor.
Much more material on structural results can be found in [7]. We will list some of
the most challenging open problems that we encountered before and also briefly
mention some of the others that we have not discussed.

From the current exposition we have seen that research on toughness has also
focused on computational complexity issues. In particular, we know that recog-
nizing t-tough graphs is NP-hard in general, whereas it is polynomial within the
class of claw-free graphs and within the class of 2K2-free graphs, including split
graphs. For many other interesting classes, this complexity question is still open,
e.g., for (maximal) planar graphs and for chordal graphs. Within the class of
r-regular graphs with r ≥ 3t, recognizing t-tough graphs has been shown to be
NP-hard. The problem is trivial if r < 2t, but its complexity is open for values of
r with 2t ≤ r < 3t. It was conjectured in [55] to be polynomial for r = 2t, and
seems especially interesting when r = 2t + 1.

Historically, the motivation for most of the presented research was based on a
number of conjectures in [34]. The most challenging of these conjectures is still
open: Is there a finite constant t0 such that every t0-tough graph is hamiltonian?

Although the conjecture is still open for general graphs, we know that it is true
for a number of well-studied graph classes, e.g., planar graphs, claw-free graphs
and chordal graphs, and also for 2K2-free graphs. The gaps in our knowledge
about the smallest value of t0 for claw-free, chordal and 2K2-free graphs imply a
number of challenging open problems. The same is true for the class of triangle-
free graphs. It is known that there exists an infinite class of 5/4-tough triangle-free
nonhamiltonian graphs [51], and it even appears that a class of triangle-free graphs
with no 2-factor constructed in [12] has toughness approaching 2 from below.
These examples suggest the intriguing possibility that every 2-tough triangle-free
graph is hamiltonian, though it remains completely open whether the t0-tough
conjecture holds for the class of triangle-free graphs.

Suppose we also impose a minimum degree condition. The examples that
disproved the 2-tough conjecture all have δ = 4. On the other hand we know
that if G is a 2-tough graphs on n vertices with δ ≥ n/3, then G is hamiltonian.
What if 5 ≤ δ < n/3? The early research on toughness and cycle structure con-
centrated on sufficient degree conditions which, combined with a certain level of
toughness, would yield the existence of long cycles. The survey [7] contains a
wealth of results in this direction. One of the major open problems in this area
is the conjecture that every 1-tough graph on n vertices with σ3 ≥ n ≥ 3 has a
cycle of length at least min{n, (3n + 1)/4 +σ3/6}. Here σ3 is the minimum degree
sum of three mutually nonadjacent vertices. Another interesting problem is to find
the best possible minimum degree condition to ensure that a 1-tough triangle-free
graph is hamiltonian. We know the answer lies somewhere between (n + 2)/4 and
(n + 1)/3.



If we do not impose a degree condition, toughness conditions can still guar-
antee cycles of length proportional to a function of the number of vertices of the
graph. Two of the most challenging open problems in this area are whether there
exist positive constants A and B, depending only on t, such that every 2-connected,
respectively 3-connected, t-tough graph on n vertices has a cycle of length at
least A log n, respectively nB. Both problems have affirmative solutions for pla-
nar graphs.

Another area of research has involved finding toughness conditions for the ex-
istence of certain factors in graphs. Whereas Chvátal’s original conjecture on the
existence of k-factors turned out to be true, one of the challenging remaining open
problems in this area is to determine whether every 3/2-tough maximal planar
graph has a 2-factor. If so, are they all hamiltonian? We also do not know whether
a 3/2-tough planar graph has a 2-factor.

To complete this paper, let us consider one more problem area with an algo-
rithmic flavor that is remotely related to the content and that might be of interest
to the readership of the bulletin.

There are several results in (hamiltonian) graph theory of the form P1 implies
P2, where P1 is an NP-hard property of graphs and P2 is an NP-hard (cycle)
structure property, and one might wonder about the practical value of such the-
orems. Two such theorems are the well-known theorems of Chvátal and Erdös
[36] and Jung [61]. In [35], Chvátal gave a proof of the Chvátal-Erdös Theorem
[36] which constructs in polynomial time either a Hamilton cycle in a graph G or
an independent set of more than κ(G) vertices in G. In [5], the authors provided
a similar type of polynomial time constructive proof for Jung’s Theorem [61] on
graphs with at least 16 vertices. It is possible that other theorems in graph the-
ory with an NP-hard hypothesis and an NP-hard conclusion also have polynomial
time constructive proofs.
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[80] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory - Ser. B
70 (1997) 217–224.

[81] E. F. Schmeichel and G. S. Bloom, Connectivity, genus, and the number of compo-
nents in vertex-deleted subgraphs, J. Combin. Theory - Ser. B 27 (1979) 198–201.

[82] M. Shi, X. Yuan, M. Cai, and O. Favaron, (3, k)-factor-critical graphs and toughness,
Graphs and Combin. 15 (1999) 463–471.

[83] C. Thomassen, Long cycles in digraphs, Proc. London Math. Soc. 42 (1981) 231–
251.

[84] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309–324.

[85] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99–116.

[86] G. J. Woeginger, The toughness of split graphs, Discrete Math. 190 (1998) 295–297.

[87] S. Zhan, On hamiltonian line graphs and connectivity, Discrete Math. 89 (1991)
89–95.


	310-1197-1-PB
	Introduction
	Preliminaries
	Consensus Strings
	Closest String
	Closest Substring

	Common Structure
	Longest Common Subsequence
	Multiple Sequence Alignment
	Shortest Common Supersequence
	Shortest Common Superstring

	Distances
	Reversal and Transposition Distances
	Minimum Common String Partition
	Other Distances

	Miscellaneous
	Outlook

	broersma
	Introduction
	Preliminaries
	Some easy observations

	Complexity: known results and open problems
	NP-hardness for general graphs
	Polynomial cases for special graph classes
	NP-hardness for special graph classes
	Toughness for regular graphs: results and open problems
	More open problems on complexity

	Chvátal's conjectures
	Toughness and hamiltonicity
	Toughness and other cycle structures
	Chvátal's conjecture for special graph classes
	Toughness and factors

	Final remarks




