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In this article, we develop a local discontinuous Galerkin (LDG) discretization of the 
(non)-isothermal Navier–Stokes–Korteweg (NSK) equations in conservative form. These 
equations are used to model the dynamics of a compressible fluid exhibiting liquid–
vapor phase transitions. The NSK-equations are closed with a Van der Waals equation 
of state and contain third order nonlinear derivative terms. These contributions frequently 
cause standard numerical methods to violate the energy dissipation relation and require 
additional stabilization terms to prevent numerical instabilities. In order to address 
these problems we first develop an LDG method for the isothermal NSK equations 
using discontinuous finite element spaces combined with a time-implicit Runge–Kutta 
integration method. Next, we extend the LDG discretization to the non-isothermal NSK 
equations. An important feature of the LDG discretizations presented in this article is 
that they are relatively simple, robust and do not require special regularization terms. 
Finally, computational experiments are provided to demonstrate the capabilities, accuracy 
and stability of the LDG discretizations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we will present a local discontinuous Galerkin (LDG) method for the numerical solution of the Navier–
Stokes–Korteweg (NSK) equations that model liquid–vapor phase transitions. This research is motivated by our previous 
work [35], where we solved a mixed hyperbolic–elliptic system that models phase transitions in solids and fluids using an 
LDG method. In that article, L2-stability of the LDG discretization of the phase transition model was proved, and an error 
estimate for the LDG discretization for the viscosity–capillarity (VC) system with linear strain-stress relation was provided. 
The numerical experiments discussed in [35] show that the LDG method for the VC system is stable and the LDG solutions 
converge to the analytical solution of the original problem.

Two-phase flows can be treated either by sharp interface models or by diffuse interface models. Sharp interface mod-
els assume that the interface thickness is equal to zero and have successfully been applied to many two-phase flows 
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Fig. 1. Van der Waals type of pressure–density relation at the dimensionless temperature θ = 0.85, gas constant R = 8
27 , and coefficients a = 1.0, b = 1.0.

[4,11,10,36]. Sharp interface models require, however, an extra evolution equation for the interface and face challenges 
in the reconstruction of the interface, leading to mathematical models that are solved by a Level Set or a Volume of Fluid 
method [23]. In contrast, diffuse interface models [3,6,40,33] regard the interface as thin layers of fluid where properties 
such as mass density, viscosity and pressure change smoothly. In the diffuse interface model, only a single set of governing 
equations needs to be solved on the entire flow domain, including the interface area. The Navier–Stokes–Korteweg (NSK) 
equations [17,31,32,5,29] contain an additional contribution to the stress tensor related to capillary forces and are an exam-
ple of a diffuse interface model. The NSK equations are used in this article to model the dynamics of a compressible fluid 
exhibiting phase transitions between liquid and vapor.

We consider a fluid in a domain � ∈ Rd with d ≤ 3, and let ρ be the density of the fluid and u the velocity. The 
isothermal NSK equations with zero external forces, in dimensionless and conservative form, read

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u + pI) − ∇ · τ − ∇ · ξ = 0, (1)

in � × (0, T ], with p the pressure, ⊗ the tensor product and I the identity matrix. The viscous stress tensor τ and Korteweg 
stress tensor ξ are given by

τ = 1

Re

(
∇u + ∇T u − 2

3
∇ · uI

)
,

ξ = 1

We

((
ρ�ρ + 1

2
|∇ρ|2

)
I − ∇ρ∇T ρ

)
, (2)

where Re, We are the Reynolds number and Weber number. The definition of the dimensionless variables is summarized 
in Appendix A. To simulate phase transitions between liquid and vapor, which are distinguished by different values of the 
density ρ , we need an expression for the thermodynamic pressure that is valid in both liquid and vapor state. The Van 
der Waals equation of state is an appropriate choice, especially close to the critical temperature. For the isothermal NSK 
equations, we use the following dimensionless form [29,16]

p(θ,ρ) = 8

27

θρ

(1 − ρ)
− ρ2, (3)

with θ the dimensionless temperature. Fig. 1 describes the shape of the Van der Waals type equation of state (3) for 
temperature θ = 0.85.

Other relevant thermodynamic quantities for (non)-isothermal fluids [29,14] are the free energy density

W (ρ, θ) = Rθρ log

(
ρ

b − ρ

)
− aρ2,

and the chemical potential

μ(ρ, θ) = Rθ log

(
ρ

b − ρ

)
+ Rθ

b

b − ρ
− 2aρ.

For isothermal flows, the total energy can be defined as
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E(ρ,ρu) =
∫
�

(
W (ρ) + 1

2We
|∇ρ|2 + 1

2

|ρu|2
ρ

)
dx, (4)

and satisfies for periodic boundary conditions the relation [29,16,5,33]

d

dt
E(ρ(·, t),ρu(·, t)) = −

∫
�

∇u : τdx ≤ 0, (5)

for positive Re. Here “:” is summation of the element-wise product of two matrices. Suppose A = (aij), B = (bij) ∈ Rd×d , 
then A : B = ∑

i

∑
j ai jbi j .

An important question is the solvability of the isothermal NSK equations, which has received considerable attention. 
For isothermal NSK equations, local and global smooth solutions for Cauchy problems of (1) with constant coefficients and 
small, smooth initial data were discussed in [21,22]; the extension to Lipschitz continuous viscous coefficients and more 
general initial conditions was presented in [26]. In [33] a mathematical model with physically relevant non-local energies 
was proposed instead of the Van der Waals free energy and a short-time existence theorem for the Cauchy problem of the 
non-local NSK equations was proved. The existence of strong solutions and global weak solutions of the isothermal NSK 
system (1) modeling compressible fluids of Korteweg type was discussed in [12,20].

As discussed in [1,35], it is not trivial to obtain a numerical solution of mixed hyperbolic–elliptic systems. When it 
comes to the more complex mixed system (1), the non-monotonic Van der Waals equation of state can induce instabilities 
in the numerical solution. And the third order spatial derivatives of the mass density, stemming from the divergence of the 
Korteweg tensor ξ , causes dispersive behavior of the numerical solution. Therefore numerical methods for the isothermal 
NSK equations face several challenges. One difficulty is that standard numerical methods including finite difference, finite 
volume, and discontinuous Galerkin (DG) methods with poor numerical fluxes, may violate the energy dissipation relation 
(5) and suffer from an increase in energy for multiphase flows [14]. Another problem is the occurrence of parasitic currents: 
unphysical velocities close to the interface. In particular, the velocity field does not tend to zero when equilibrium is ap-
proached [14,16]. In [24], a method is presented to eliminate parasitic currents for finite volume methods, but this is still a 
topic of ongoing research. Moreover, to capture the interface accurately requires locally a fine mesh.

Many articles addressed the numerical solution of the isothermal Navier–Stokes–Korteweg equations modeling liquid–
vapor flows with phase change. A detailed description of higher order schemes, including the local discontinuous Galerkin 
method, to solve the non-conservative form of the isothermal NSK equations was given in [14]. A finite element formulation 
based on an isogeometric analysis of the non-conservative form of the isothermal NSK equations was developed in [17]. This 
method can straightforwardly deal with the higher-order derivatives in the isothermal NSK equations. In [29] a semi-discrete 
Galerkin method based on entropy variables and a new time integration scheme was proposed for the non-conservative form 
of the isothermal NSK equations. A DG scheme for the non-conservative form of the isothermal NSK equations, obtained 
by choosing special numerical fluxes, was presented in [16]. Another way to obtain a stable numerical discretization of the 
isothermal NSK equations is by adding two vanishing regularization terms. This approach was successfully used in [5] in 
combination with globally continuous finite element spaces and a time-implicit discretization.

The non-isothermal NSK equations [3,32] model two-phase flows involving phase transition at nonuniform temperatures. 
Besides the isothermal equations (1), the non-isothermal NSK equations also contain an equation for the total energy

∂ρ

∂t
+ ∇ · (ρu) = 0, (6)

∂ρu

∂t
+ ∇ · (ρu ⊗ u + pI) − ∇ · τ − ∇ · ξ = 0,

∂(ρE)

∂t
+ ∇ · ((ρE + p)u) − ∇ · ((τ + ξ) · u) + ∇ · q + ∇ · jE = 0,

where the total energy density is given by

ρE = ρe + 1

2
ρ|u|2 + 1

2

1

We
|∇ρ|2. (7)

For the non-isothermal NSK equations (6), the dimensionless Van der Waals equation of state is given by [32,13]

p = 8θρ

3 − ρ
− 3ρ2. (8)

The specific internal energy e in (7) is given by

e = 8

3
C vθ − 3ρ,

with Cv the specific heat at constant volume. The total entropy is specified as S = ρs with s the entropy density
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s = −8

3
log

(
ρ

3 − ρ

)
+ 8

3
C v log(θ).

The heat flux q and energy flux jE through the interface in (6) are defined as

q = − 8C v

3WePr
∇θ, jE = 1

We
(ρ∇ · u)∇ρ, (9)

where Pr is the Prandtl number, see Appendix A. Recently global existence and uniqueness of strong solutions to the 
non-isothermal NSK equations were proved for bounded domains in [27,28].

Most articles so far only discuss the non-conservative form of the isothermal NSK equations (1). Frequently, the isother-
mal NSK equations (1) are rewritten into an extended system by adding an extra variable for the total energy equation 
[29,16,5,33]. It is, however, not trivial to do this for the non-isothermal NSK equations, where the Van der Waals equation 
of state depends on both the density and temperature, so the frequently used relation

∇p = ρ∇W ′(ρ)

is no longer satisfied. The numerical methods for the isothermal NSK equations discussed in [29,16,5,33] are therefore 
difficult to extend to the non-isothermal NSK equations. The great potential of the LDG method to solve phase tran-
sition problems, as shown in [18,35], motivated us to develop an LDG method for systems (1) and (6), while keeping 
the conservative form of the (non)-isothermal NSK equations and obtain a stable numerical discretization without addi-
tional regularization terms. To our knowledge, we are the first to discuss an LDG method for the conservative form of the 
(non)-isothermal NSK equations.

The LDG method is an extension of the discontinuous Galerkin (DG) method that aims to solve partial differential equa-
tions (PDEs) containing higher order spatial derivatives and was originally developed by Cockburn and Shu in [9] for solving 
nonlinear convection–diffusion equations containing second-order spatial derivatives. The idea behind LDG methods is to 
rewrite the original equations as a first order system, and then apply the DG method to this first order system. The design of 
the numerical fluxes is the key ingredient to ensure stability. LDG techniques have been developed for convection–diffusion 
equations [9], nonlinear KdV type equations [39], the Camassa–Holm equation [37] and many other types of partial dif-
ferential equations. For a review, see [38]. The LDG method results in an extremely local discretization, which offers great 
advantages in parallel computing and hp-adaptation.

The organization of this article is as follows. In Section 2 we present the LDG method for the (non)-isothermal NSK 
equations in detail. An important aspect of this discretization is that it preserves the conservative form of the NSK equa-
tions. Section 3 discusses an implicit Runge–Kutta time integration method, which is used to overcome the stiffness of 
the NSK equations. In Section 4, numerical experiments are presented to investigate the accuracy and stability of the LDG 
discretization of the (non)-isothermal NSK equations. For the isothermal NSK equations, discrete mass conservation and 
energy dissipation are verified for the LDG solutions, while the mass conservation and total entropy are verified for the 
non-isothermal NSK equations. Finally, we give conclusions in Section 5.

2. LDG discretization of the NSK system

In this section, we develop an LDG method to solve the (non)-isothermal NSK system in � ∈ Rd with d ≤ 3. We restrict 
the numerical experiments to one and two dimensions in this paper, but the LDG discretization described here can be easily 
extended to three dimensions. We first introduce notations used for the description of the LDG discretization.

2.1. Notations

We denote by Th a tessellation of � with regular shaped elements K , � represents all boundary faces of K ∈ Th and 
�0 = �\∂�. Suppose e is a face shared by the “left” and “right” elements K L and K R . The normal vectors nL and nR on e
point, respectively, exterior to K L and K R . Let ϕ be a function on K L and K R , which could be discontinuous across e, then 
the left and right trace are denoted as ϕL = (ϕ|KL )|e , ϕR = (ϕ|K R )|e , respectively. For more details about these definitions, 
we refer the reader to [38].

For the LDG discretization, we define the finite element spaces

Vh = {φ ∈ L2(�) : φ|K ∈ Pk(K ),∀K ∈ Th},

d

h = {� = (φ(1), φ(2), . . . , φ(d))T ∈ (L2(�))d : φ(i)|K ∈ Pk(K ), i = 1, . . . ,d,∀K ∈ Th},
with Pk(K ) the space of polynomials of degree up to k ≥ 0 on K ∈ Th .

The numerical solution is denoted by Uh , with each component of Uh belonging to the finite element space Vh , and can 
be written as

Uh(x, t)|K =
N p∑

ÛK
l (t)φl(x), for x ∈ K . (10)
l=0
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Here, ÛK
l (t) are unknowns and Legendre polynomials are used for the basis functions φl(x). In the next two sections we 

will discuss a local discontinuous Galerkin discretization for both the isothermal and non-isothermal NSK equations. We 
first consider the isothermal NSK equations since they provide a simpler model for phase transitions and are frequently 
used in applications. The non-isothermal NSK equations are computationally more demanding, but provide a more realistic 
model of the complex physics of phase transition.

2.2. LDG discretization for the isothermal NSK equations

In this section, we propose an LDG discretization for the isothermal NSK equations, which are rewritten as a first order 
system, given by the primary equations

ρt + ∇ · m = 0,

mt + ∇ · F(U) − ∇ · τ (z, l) − ∇ · ξ(ρ, r, g) = 0, (11)

and auxiliary equations

z = ∇u,

l = ∇ · u,

r = ∇ρ,

g = ∇ · r, (12)

where

u = m

ρ
,

τ = 1

Re

(
z + zT − 2

3
lI
)

,

ξ = 1

We

((
ρg + 1

2
|r|2

)
I − rrT

)
, (13)

and

F(U) = m ⊗ u + p(ρ)I, U =
(

ρ

m

)
.

The LDG discretization for the isothermal NSK equations (11)–(13) is now as follows: find ρh, lh, gh ∈ Vh , and mh, zh, rh ∈ 
d
h , 

such that for all test functions φ, ϕ, ζ ∈ Vh and ψ, η, ς ∈ 
d
h , the following relations are satisfied∫

K

(ρh)tφ dK −
∫
K

mh · ∇φ dK +
∫
∂ K

m̂h · nφ ds = 0,

∫
K

(mh)tψ dK −
∫
K

(Fh − τ h − ξh) · ∇ψ dK +
∫
∂ K

(F̂h − τ̂ h − ξ̂h) · nψ ds = 0, (14)

and ∫
K

zhη dK = −
∫
K

uh∇ · η dK +
∫
∂ K

ûhη · n ds,

∫
K

lhζ dK = −
∫
K

uh · ∇ζ dK +
∫
∂ K

ûh · nζ ds,

∫
rhς dK = −

∫
K

ρh∇ · ς dK +
∫
∂ K

ρ̂hς · n ds,

∫
K

ghϕ dK = −
∫
K

rh · ∇ϕ dK +
∫
∂ K

r̂h · nϕ ds, (15)

where
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ûh = m̂h

ρ̂h
,

τ̂ h = 1

Re

(
ẑh + ẑh

T − 2

3̂
lhI

)
,

ξ̂h = 1

We

((
ρ̂h ĝh + 1

2
|r̂h|2

)
I − r̂h r̂h

T
)

, (16)

and

Fh = F(Uh), Uh =
(

ρh

mh

)
.

For the numerical fluxes in (14), (15) and (16), denoted with a hat, we choose the Lax–Friedrich flux for the convective part 
and central numerical fluxes for the other terms,

F̂h|e = 1

2
(Fh|L +Fh|R − α(Uh|R − Uh|L)), with Fh =

(
mh

Fh

)
,

m̂h|e = 1

2
(mh|L + mh|R), ρ̂h|e = 1

2
(ρh|L + ρh|R),

r̂h|e = 1

2
(rh|L + rh|R), ẑh|e = 1

2
(zh|L + zh|R),

l̂h|e = 1

2
(lh|L + lh|R), ĝh|e = 1

2
(gh|L + gh|R), (17)

with α a positive constant that is chosen as the maximum absolute eigenvalue of ∂Fh
∂Uh

globally.

2.3. LDG discretization for the non-isothermal NSK equations

The LDG discretization for the isothermal NSK equations presented in Section 2.2 can be extended to the non-isothermal 
NSK equations (6). The equations can also be rewritten as a first order system that includes Eqs. (11)–(13) and additional 
equations given by

(ρE)t + ∇ · G(U) − ∇ · ((τ + ξ) · u) + ∇ · q + ∇ · jE = 0, (18)

q = − 8C v

3WePr
∇θ, (19)

jE = 1

We
ρlr, G(U) = (ρE + p)u.

The LDG discretization for the non-isothermal NSK equations contains (14)–(16), and the LDG discretization for the 
energy equation contributions, given by (18), can be written as∫

K

((ρE)h)tχdK −
∫
K

(Gh − (τ h + ξh) · uh + qh + (jE)h) · ∇χ dK

+
∫
∂ K

(Ĝh − (τ̂h + ξ̂h) · ûh + q̂h + (̂jE)h) · nχ ds = 0. (20a)

∫
K

qhσdK − 8C v

3WePr

∫
K

θh∇ · σ dK + 8C v

3WePr

∫
∂ K

θ̂hσ · n ds = 0, (20b)

with

(jE)h = 1

We
ρhlhrh, Gh = G(Uh) and Uh =

⎛⎜⎝ ρh

mh

(ρE)h

⎞⎟⎠ .

The same numerical fluxes (17) as used in the LDG discretization for the isothermal NSK equations are used in the non-

isothermal equations. If we denote Gh(Uh) =
(
Fh
Gh

)
, then the numerical flux for Gh is also the Lax–Friedrichs flux, but now 

with the constant α the maximum absolute eigenvalue of ∂Gh . For the one-dimensional case the eigenvalues of ∂Gh are 

∂Uh ∂Uh
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provided in [13]. For two-dimensional case, u, v are additional eigenvalues in, respectively x and y direction. The additional 
numerical fluxes in the energy equation contributions (20) are chosen as

q̂h = 1

2
(qh|L + qh|R), θ̂h = 1

2
(θh|L + θh|R), (̂jE)h = 1

We
ρ̂hl̂h r̂h. (21)

Remark 2.1. We emphasize that not only the (first-order) convective part of the isothermal NSK equations (11), but also the 
(first-order) convective part of the non-isothermal NSK equations is of mixed hyperbolic–elliptic type. The eigenvalues of 
the systems are given explicitly below. The convective part of the isothermal NSK equations is given by

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u + p) = 0. (22)

In 2D, assuming u = (u, v)T , the Jacobian matrices are

A1 =
⎛⎝ 0 1 0

−u2 + p′(ρ) 2u 0
−uv v u

⎞⎠ , A2 =
⎛⎝ 0 0 1

−uv v u
−v2 + p′(ρ) 0 2v

⎞⎠
for, respectively, the x- and y-direction. The eigenvalues of A1 are {u − √

p′(ρ), u, u + √
p′(ρ)} and those of A2 are 

{v − √
p′(ρ), v, v + √

p′(ρ)}. Consequently, (22) is a hyperbolic–elliptic system due to the non-monotonicity of the Van der 
Waals equation of state, and it is elliptic when p′(ρ) < 0.

The eigenvalues of the convective part of the one-dimensional non-isothermal NSK equations were studied in [13]. The 
eigenvalues of the 2D non-isothermal NSK equations are the extension of those of the 1D non-isothermal NSK equations, 
with one extra u, v , in the x, y direction respectively. In detail, the convective part of the non-isothermal NSK equations is 
rewritten, in primitive form, as

Vt + F̃ (V)x + G̃(V)y = 0, with V = (ρ, u, v, p) in 2D.

The Jacobian matrices are given by

A1 = ∂ F̃

∂V
=

⎛⎜⎜⎝
u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 f (p,ρ) 0 u

⎞⎟⎟⎠ , A2 = ∂ G̃

∂V
=

⎛⎜⎜⎝
v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 f (p,ρ) v

⎞⎟⎟⎠ ,

where the function f is equal to

f (p,ρ) = 3

C v(3 − ρ)

(
(1 + C v p + ρ2(3 − 3C v + 2C vρ))

)
.

The eigenvalues of A1 are {u, u, u − √
β, u + √

β}, and those of A2 are {v, v, v − √
β, v + √

β}, with β =
2 
(

p
ρ + 4θ(3+C v (−3+2ρ))

C v (−3+ρ)2

)
.

3. Implicit time discretization method

The equations for the DG expansion coefficients for each variable are obtained by introducing the polynomial representa-
tion (10) into the LDG discretizations (14)–(16) and (20). The coefficients of the polynomial expansions of ρh(x, t), mh(x, t)
and ρEh(x, t) in the LDG discretization are collected in the vector Û(t). The LDG discretization, given by (14)–(16) and (20)
with corresponding fluxes for ρh(x, t), mh(x, t) and ρEh(x, t), then results in a system of ordinary differential and algebraic 
equations (DAEs)

dÛ(t)

dt
+ L(Û(t), Ẑ(t), Ĝ(t)) = 0,

Ẑ(t) − P(Û(t)) = 0,

Ĝ(t) − Q(Û(t), Ẑ(t)) = 0, (23)

with Ẑ(t), Ĝ(t) the coefficients of the auxiliary variables, and L, P, Q nonlinear functions of Û(t), Ẑ(t), and Ĝ(t). The initial 
values are

Û(t0) = Û0.
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Note, in case of the isothermal NSK equations, the contributions from (20) are missing. Both explicit and implicit time 
integration methods [19] can be applied to the DAE system (23). Due to the Korteweg stress tensor ξ , the NSK system is a 
third order nonlinear system of partial differential equations, and explicit time integration methods then require the time 
step to satisfy

�t = O (h2), h = min{�x,�y}, (24)

for stability [13]. Moreover, when we would consider local mesh refinement near the interface, the time step restriction 
(24) becomes even more severe. Therefore, we consider an implicit time stepping method.

3.1. Diagonally Implicit Runge–Kutta methods

For the implicit time integration we use Diagonally Implicit Runge–Kutta (DIRK) methods, since they allow that the 
equations for each implicit stage are solved in a sequential manner. A class of Diagonally Implicit Runge–Kutta (DIRK) 
formulae, which are A-stable and computationally efficient, was discussed in [2,8,19]. A special feature of the DIRK method 
in [8] is that it provides embedded DIRK formulae that allow a straightforward calculation of the local truncation error at 
each time step without extra computation. This provides an efficient way to estimate the time step required for a certain 
accuracy level. In [34] DIRK methods based on the minimization of certain error functions were considered, and several 
Butcher tables for specific DIRK formulae were given.

For the third order accurate LDG discretization in space, which uses quadratic basis functions, we use the third order 
Singly DIRK scheme from [34], given by

Û n1 = Û n + �ta11K1, Ẑ n1 = P(Û n1), G n1 = Q(Û n1, Ẑ n1),

K1 = −L
(

tn + c1�t, Û n1, Ẑ n1, Ĝ n1
)

,

Û n2 = Û n + �ta21K1 + �ta22K2, Ẑ n2 = P(Û n2), Ĝ n2 = Q̂(Û n2, Ẑ n2),

K2 = −L
(

tn + c2�t, Û n2, Ẑ n2, Ĝ n2
)

,

Û n3 = Û n + �ta31K1 + �ta32K2 + �ta33K3, Ẑ n3 = P(Û n3), Ĝ n3 = Q(Û n3, Ẑ n3),

K3 = −L
(

tn + c3�t, Û n3, Ẑ n3, Ĝ n3
)

,

Û n+1 = Û n + �tb1K1 + �tb2K2 + �tb3K3.

The coefficients in the SDIRK scheme are defined in the Butcher table

c A
bT =

γ γ
1+γ

2
1−γ

2 γ
1 1 − b2 − γ b2 γ

1 − b2 − γ b2 γ

with b2 = 1
4 (5 − 20γ + 6γ 2) and γ = 0.43586652. For the second order accurate LDG discretization in space, which uses 

linear polynomial basis functions, we use the second order accurate implicit Runge–Kutta time integration scheme

Û n1 = Û n + �t
1

2
K1, Ẑ n1 = P(Û n1), Ĝ n1 = Q̂(Û n1, Ẑ n1),

K1 = −L
(

tn + 1

2
�t, Û n1, Ẑ n1, Ĝ n1

)
, (25)

Û n+1 = Û n + 1

2
�tK1.

Note that the intermediate stages K1, K2 and K3 must be solved implicitly, i.e. three (or one) large-scale nonlinear 
problems need to be dealt with. In recent years, great progress has been made in solving large nonlinear algebraic systems 
using globalized inexact Newton methods [15,30]. The main difficulty with classical Newton methods is that a large-scale 
linear system needs to be solved at each iteration, which can be costly with a direct solver. A popular alternative is a class 
of Newton–Krylov methods, which solve the large-scale nonlinear system iteratively. For more details, we refer to [25]. In 
the next section we describe the use of these methods to solve the nonlinear stage equations in the SDIRK method.

3.2. Newton–Krylov methods

Newton–Krylov methods solve the nonlinear equations

F (x) = 0, with F ∈ RN , (26)
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Fig. 2. Non-zeros in the Jacobian matrix for the LDG discretization of the two-dimensional non-isothermal NSK equations on a mesh with 20 × 20 elements.

in the following way: given an initial solution x0, iteratively compute

xk+1 = xk + s, with s a solution of DF(xk)s = −F (xk), (27)

where xk is the current approximate solution and DF(xk) the Jacobian matrix of F (x) at xk . These methods combine outer 
nonlinear Newton iterations with inner linear Krylov iterations. The inner iteration stops when

‖F (xk) + DF(xk)sk‖ ≤ ηk‖F (xk)‖, (28)

where the constant ηk ∈ (0, 1) can be either fixed or specified dynamically.
We take the second order implicit Runge–Kutta time integration method (25) to explain the computation of the Jacobian 

matrix. System (25) can be rewritten as

F1 � K1 + L
(

tn + 1

2
�t, Û n1, Ẑ n1, Ĝ n1

)
= 0,

F2 � Ẑ n1 − P(Û n1) = 0,

F3 � Ĝ n1 − Q(Û n1, Ẑ n1) = 0

with Ûn1 = Ûn + �t 1
2 K1. The Jacobian matrix J has the structure

J =

⎛⎜⎜⎜⎜⎜⎝
∂F1
∂K1

∂F1

∂Ẑn1

∂F1

∂Ĝn1

∂F2
∂K1

∂F2

∂Ẑn1
0

∂F3
∂K1

∂F3

∂Ẑn1

∂F3

∂Ĝn1

⎞⎟⎟⎟⎟⎟⎠
which is shown in Fig. 2. It is not practical to solve the linear system in (27), with DF(xk) as Jacobian matrix, using a direct 
method. The linear system is therefore solved using GMRES with an ILU(0) preconditioner in order to prevent a large fill-in 
of the matrix.

4. Numerical experiments

In this section, we perform several numerical experiments to investigate the stability and accuracy of the LDG schemes 
for the (non)-isothermal NSK equations proposed in Sections 2.2 and 2.3. The examples in Section 4.2 are test cases for the 
isothermal NSK equations, including an investigation of the order of accuracy, a few one-dimensional benchmark problems 
and a two-dimensional simulation of the coalescence of two bubbles. These model problems were recently also (partly) 
studied in [29,5] using a semi-discrete Galerkin method and a continuous finite element method, together with special time 
integration schemes. Compared to these methods the LDG schemes that we present in this article are relatively simple, 
robust and do not require additional regularization terms. The simulations of the non-isothermal NSK equations (6) are 
presented in Section 4.3, including accuracy verification, a static Riemann problem and a two-dimensional simulation of 
bubble coalescence. Note that we did not use any limiter in the computations. Periodic boundary conditions and a uniform 
mesh are applied for all test cases.
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We use implicit Runge–Kutta (RK) time integration methods to solve the ODE system resulting from the LDG discretiza-
tion for the accuracy tests and two-dimensional bubble coalescence simulations. In the accuracy tests, the time step is 
chosen as dt = 0.8h for the third order implicit RK time method, with h the length of an element. The time step dt = 1.5h
is chosen for the second order implicit RK time method for the two-dimensional bubble coalescence tests.

In several numerical examples, an equilibrium state with an interface between liquid and vapor is used to verify the 
capabilities of the proposed LDG scheme, described in Section 2.2. The velocity is denoted by u in 1D, while u = (u, v)T

in 2D. At a certain dimensionless temperature θ < 1 in the Van der Waals equation of state, the densities in the equilibrium 
state ρv , ρl that satisfy the following relations for the pressure and chemical potential

p(θ,ρv) = p(θ,ρl),

μ(θ,ρv) = μ(θ,ρl), (29)

are called Maxwell states.

4.1. Interface width

To resolve the diffuse interface accurately, a sufficiently fine mesh is required in a simulation of a phase-field problem, 
otherwise the numerical solution will contain non-physical oscillations [29]. Suppose that the Helmholtz free energy is 
denoted by f , and that � f is the difference in Helmholtz free energy between the phase mixture and the separate phases:

� f = f − f0.

Here f0(ρ) = f (ρv , θ0) + (ρ − ρv)
f (ρl,θ0)− f (ρv ,θ0)

ρl−ρv
for the given temperature θ0. The interface thickness [7] is then given by

d = 2
L√
We

ρl − ρv√
� fmax

, (30)

with � fmax the maximum value of � f , L the reference length scale and ρl , ρv the critical densities at a given temperature. 
From the numerical tests, we found that at least 10 mesh nodes are required inside the interface to capture the interface 
accurately and guarantee the stability of the energy or entropy. This gives the relation d = αh, α > 10 with h the mesh size 
in the interface region.

4.2. Numerical tests for the isothermal NSK equations

Similar to [5,29], choosing the temperature as θ = 0.85 and the Van der Waals equation of state (3), the critical vapor
and liquid densities are equal to ρv = 0.106576655, ρl = 0.602380109.

4.2.1. Accuracy test
In this section, we will study the accuracy of the LDG discretization for the isothermal NSK equations. To investigate the 

accuracy of the one-dimensional LDG discretization, we select an exact smooth solution as

ρ = 0.6 + 0.1 sin(5πt) cos(2πx),

u = sin(3πt) sin(2πx), (31)

which satisfies (1) with an additional source term S. The source terms are added artificially and obtained by inserting the 
chosen exact smooth solution (31) into (11). The computational domain is � = (0, 1), and the coefficients in (1) are

Re = 20, We = 100. (32)

The solutions are obtained using the LDG discretization with piecewise linear and quadratic polynomials, combined with the 
third order implicit Runge–Kutta time integration method with stopping parameter ηk in (28) chosen as ηk = 10−9. Table 1
shows the accuracy of the LDG scheme for the one-dimensional isothermal NSK equations. From this table, we can see that 
the LDG discretizations have optimal order of accuracy for the different polynomial orders.

To investigate the accuracy of the LDG discretization for the two-dimensional isothermal NSK equations, we choose an 
exact smooth solution

ρ = 0.6 + 0.1 sin(5πt) cos(2πx) cos(2π y),

u = sin(3πt) sin(2πx) sin(2π y),

v = sin(πt) sin(4πx) sin(4π y), (33)

which satisfies (11) with additional source terms. The computational domain is � = (0, 1) × (0, 1) and square quadrilateral 
elements are used. Table 2 shows the results of the LDG scheme for the two-dimensional isothermal NSK equations us-
ing piecewise linear and quadratic polynomials, indicating that the LDG discretization in Section 2.2 has optimal order of 
accuracy.
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Table 1
Accuracy test of the LDG discretization for the one-dimensional isothermal NSK equations (1) with exact solution (31). The Van der Waals EOS is chosen 
as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are set as (32). The LDG discretization uses linear and quadratic basis 
functions and periodic boundary conditions. Results are for uniform meshes with M cells at time t = 0.1.

M ‖ρ − ρh‖L2(�) Order ‖u − uh‖L2(�) Order

P 1 16 1.65E−03 – 8.91E−03 –
32 4.06E−04 2.03 2.27E−03 1.97
64 1.08E−05 1.90 6.02E−04 1.92

128 2.83E−05 1.94 1.56E−04 1.95
256 7.25E−06 1.96 4.00E−05 1.97

P 2 16 1.21E−04 – 7.20E−04 –
32 1.58E−05 2.95 9.64E−05 2.90
64 2.18E−06 2.86 1.30E−05 2.90

128 2.92E−07 2.90 1.70E−06 2.93
256 3.81E−08 2.94 2.18E−07 2.96

Table 2
Accuracy test of the LDG discretization for the two-dimensional isothermal NSK equations (11) with exact solution (33). The Van der Waals EOS is chosen 
as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are set as (32). The LDG discretization uses piecewise linear and quadratic 
polynomials and periodic boundary conditions. Results are for uniform meshes with square elements at time t = 0.1.

Mesh ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖v − vh‖L2 Order

P 1 16× 16 1.82E−03 – 3.95E−03 – 1.53E−02 –
32× 32 3.74E−04 1.85 9.42E−04 2.07 3.67E−03 2.06
64× 64 1.49E−04 1.95 2.36E−04 2.00 9.08E−04 2.01

128 × 128 3.77E−05 1.98 5.91E−05 2.00 2.26E−04 2.00

P 2 16× 16 3.38E−4 – 3.08E−4 – 1.81E−3 –
32× 32 3.35E−5 3.33 3.33E−5 3.21 2.22E−4 3.01
64× 64 3.85E−6 3.12 3.89E−6 3.10 2.81E−5 3.00

128 × 128 4.80E−7 3.00 4.80E−7 3.02 3.51E−6 3.00

4.2.2. One-dimensional interface problem
As a further verification of the accuracy and robustness of the LDG discretization, we solve two traveling wave problems 

for the one-dimensional isothermal NSK equations. It is known that some numerical discretizations produce solutions with 
overshoots, or incorrect wave speeds at discontinuities for this test case, see e.g. [29]. First, we consider a stationary wave 
problem with initial conditions

ρ0(x) = ρR + ρL

2
+ ρR − ρL

2
tanh

(
x − 0.5

2

√
We

)
,

u0(x) = uR + uL

2
+ uR − uL

2
tanh

(
x − 0.5

2

√
We

)
. (34)

The coefficients in the initial conditions (34) are taken as

(ρL, uL) = (0.107,0), (ρR , uR) = (0.602,0).

We extend the domain (0, 1) to [−1, 1] with reflection symmetry at x = 0 and use periodic boundary conditions. The 
physical parameters in (11) are set as Re = 200 and We = 10 000 and the mesh contains 400 elements. We plot the 
solutions of the LDG scheme for the isothermal NSK equations with piecewise linear and quadratic polynomials at time 
t = 0.1 in Fig. 3. Fig. 3 shows that all numerical solutions are smooth without large oscillations, and the solutions resulting 
from linear and quadratic basis functions are indistinguishable at this mesh resolution. Since the initial condition is close 
to, but not exactly an equilibrium solution of the governing equations, the solution slightly changes in time and the velocity 
is small, but not equal to zero at the time shown in Fig. 3.

Next, we study a wave propagation problem. The initial conditions are set as (34) with

(ρR , uR) = (0.107,1.0), (ρL, uL) = (0.602,1.0).

The LDG solution for the isothermal NSK equations with this initial condition results in a propagating traveling wave solution 
moving from the left to the right at speed 1.0. Again, stable numerical solutions are obtained as shown in Fig. 4.

4.2.3. Coalescence of two bubbles
An important test case is the simulation of the coalescence of two bubbles, which was also studied in [5,29]. The 

computational domain is [0, 1]2. The parameters are Re = 512, We = 65 500. We consider two vapor bubbles of different 
radii, which are initially close to each other and at rest. The initial conditions are
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Fig. 3. One-dimensional stationary wave problem. LDG solutions with piecewise linear and quadratic polynomials at t = 0.1 on a mesh containing 400 
elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are set as Re = 200 and 
We = 10 000.

ρ0(x) = ρ1 + 1

2
(ρ2 − ρ1)

2∑
i=1

tanh(
(di(x) − ri)

2

√
We), u ≡ 0, (35)

with ρ1, ρ2 close to an equilibrium given a fixed constant temperature. Here di(x) = ‖x − xi‖ is the Euclidean distance and 
the points xi are equal to x1 = (0.4, 0.5) and x2 = (0.78, 0.5), respectively. The radii of the two bubbles are r1 = 0.25 and 
r2 = 0.1. After some time, the bubbles will merge into one vapor bubble by capillarity and pressure forces.

Mass conservation and energy dissipation are critical parameters to investigate whether a numerical discretization for 
the NSK equations is suitable. To verify the mass conservation and energy dissipation properties of our LDG scheme, we 
denote the discrete mass and energy at time t , respectively, by

mh(t) =
∫
�

ρh(t)dx,

Eh(t) =
∫
�

(
W (ρh(t)) + 1

2We
|∇ρh(t)|2 + 1

2

|(ρu)h(t)|2
ρh(t)

)
dx.

The initial mass is mh(t0) =
∫
�

ρ0(x)dx.
Before using the LDG discretization, we will discuss the mesh required for this method to capture the interface and to 

represent the solution accurately. For the isothermal NSK equations with equation of state (3), (30), we obtain the following 
results:

• Given the temperature θ = 0.85, the critical densities are ρv = 0.107, ρl = 0.602. The interface width then is equal to

d = 2(ρl − ρv)√
� f

1√
We

= 14.04
1√
We

.

max
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Fig. 4. One-dimensional propagating wave problem. LDG solutions with piecewise linear and quadratic polynomials at t = 0.2 on a mesh containing 400 
elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are set as Re = 200 and 
We = 10 000.

Consequently h = 1√
We

is a reasonable choice.

• Given the temperature θ = 0.8, the critical densities are ρv = 0.0800, ρl = 0.6442. The interface width then is equal to

d = 2(ρl − ρv)√
� fmax

1√
We

= 12.00
1√
We

.

Consequently h = 1√
We

is a reasonable choice also for this case.

We use the LDG discretization with piecewise linear and quadratic polynomials for the isothermal NSK equations and 
the second order implicit Runge–Kutta time integration method (25) with stopping parameter ηk = 10−6 in the Newton 
method. Given θ = 0.85, the initial condition is set as (35) with ρ1 = 0.1, ρ2 = 0.6. We choose a mesh of 2562 square 
elements. Fig. 5 presents the evolution for the mass loss and energy, showing that the mass is conserved, and the energy 
decreases monotonically in time. The evolution of the bubble coalescence process is shown in Figs. 6 and 7. These figures 
show that the two bubbles, which are below the critical temperature and initially close to each other and at rest, merge 
into one bubble during the simulation because of surface tension. After coalescence the resulting bubble slowly reaches an 
equilibrium state, in which the interface has a constant radius of curvature due to surface tension and the velocity field 
approaches zero.

The method for the isothermal NSK equations with θ = 0.85 was also tested on a coarser mesh with 1282 elements. 
Fig. 8 shows the density profiles at various times, indicating that stable results are still obtained on this coarser mesh. The 
density and pressure along the line y = 0.5 are displayed in Fig. 9, which shows that the diffuse interface has only 8 nodes 
in this test. The evolution of the energy is displayed in Fig. 10, showing that the energy is slightly increasing on a mesh 
with 1282 elements for the isothermal NSK equations with We = 65 500. On meshes coarser with less than 8 nodes in the 
diffuse interface no stable results are obtained for this Weber number.

Choosing θ = 0.8, (29) results in critical densities ρl = 0.6442, ρv = 0.0800 with a larger density ratio. When the LDG 
discretization is applied to the isothermal NSK equations with θ = 0.8 and initial condition (35) with ρ1 = 0.08, ρ2 = 0.64, 
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Fig. 5. Evolution of mass loss and energy as a function of time during the coalescence of two bubbles computed with the LDG discretization of the 
isothermal NSK equations using piecewise linear polynomials on a mesh with 2562 square elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and 
the physical parameters in the isothermal NSK equations (1) are set as Re = 512, We = 65 500. The initial condition is (35) with ρ1 = 0.1, ρ2 = 0.6.

Fig. 6. Density ρ for two coalescing bubbles computed with the LDG discretization of the isothermal NSK equations using piecewise linear polynomials on 
a mesh with 2562 square elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are 
set as Re = 512, We = 65 500. The initial condition is (35) with ρ1 = 0.1, ρ2 = 0.6.

stable results are still obtained on a mesh of 2562 elements, as can be seen from Fig. 12. Fig. 11 shows that the mass is 
conserved, and the energy is only slightly increasing in time.

We also study the behavior of the numerical scheme for the isothermal NSK equations when the initial densities are 
further away from the equilibrium densities ρl , ρv . For example, given a fixed temperature θ = 0.85, ρ1 = 0.05, ρ2 = 0.65
were chosen in (35). We choose the parameters in (1) as Re = 500, We = 10 000, and the mesh of 1002 elements. Mass 
and energy properties are presented in Fig. 13, which shows that the mass is conserved and the energy is decreasing in 
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Fig. 7. Density ρ for two coalescing bubbles computed with the LDG discretization of the isothermal NSK equations using piecewise linear polynomials on 
a mesh with 2562 square elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are 
set as Re = 512, We = 65 500. The initial condition is (35) with ρ1 = 0.1, ρ2 = 0.6.

time. Fig. 14 shows the coalescence of bubbles for the isothermal NSK equations with Re = 200, We = 10 000 when the 
initial density is far away from an equilibrium on a mesh of 1002 elements. Fig. 15 shows the results for the isothermal 
NSK equations with Re = 512, We = 65 500 when the initial density is far away from equilibrium on a mesh of 2562

elements. Because of the non-equilibrium initial condition we get sound waves traveling to the boundaries of the domain 
and transported back into the domain on the opposite side due to the periodic boundary conditions. For the isothermal NSK 
equations with Re = 512, We = 65 500 on a mesh of 2562 elements, the amplitude of these sound waves is so large that 
this results in regions where the density is so low that a bubble occurs there. Since the simulations are isothermal, there is 
no latent heat that prevents this. The large Weber number also helps the formation of a bubble, since the surface tension is 
rather low.

4.3. Numerical experiments for the non-isothermal NSK equations

Choosing the temperature θ = 0.989 and the Van der Waals equation of state (8), the Maxwell states are

ρv = 0.79525689, ρl = 1.21357862. (36)

4.3.1. Accuracy test
For the accuracy test of the LDG discretization of the one-dimensional non-isothermal NSK equations (6), a smooth exact 

solution is chosen as⎧⎪⎨⎪⎩
ρ(x, t) = 0.6 + 0.1 sin(5πt) cos(2πx),

v(x, t) = sin(3πt) sin(2πx),

θ(x, t) = 0.8 + 0.1 sin(πt) sin(2πx),

(37)

which satisfies the non-isothermal NSK equations (6) with a properly chosen source term S. The Prandtl number Pr in (6)
is chosen as Pr = 0.843, and C v = 5.375.



700 L. Tian et al. / Journal of Computational Physics 295 (2015) 685–714
Fig. 8. Density ρ for two coalescing bubbles computed with the LDG discretization of the isothermal NSK equations using piecewise linear polynomials on 
a mesh with 1282 square elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and the physical parameters in the isothermal NSK equations (1) are 
set as Re = 512, We = 65 500. The initial condition is (35) with ρ1 = 0.1, ρ2 = 0.6.

Fig. 9. Density and pressure along y = 0.5 at time t = 5.0 for the coalescence of two bubbles for the isothermal NSK equations using piecewise linear 
polynomials on a mesh with 1282 square elements. The Van der Waals EOS is chosen as (3), θ = 0.85, and the physical parameters in the isothermal NSK 
equations (1) are set as Re = 512, We = 65 500. The initial condition is (35) with ρ1 = 0.1, ρ2 = 0.6.

In order to verify the accuracy of the LDG scheme for the two-dimensional non-isothermal NSK equations (6), we select 
the exact smooth solution⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(x, t) = 0.6 + 0.1 sin(5πt) cos(2πx) cos(2π y),

u(x, t) = sin(3πt) sin(2πx) sin(2π y),

v(x, t) = sin(3πt) sin(4πx) sin(4π y),

θ(x, t) = 0.8 + 0.1 sin(πt) sin(2πx) cos(2π y),

(38)
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Fig. 10. Evolution of mass loss and energy as a function of time during the coalescence of two bubbles computed with the LDG discretization of the 
isothermal NSK equations using piecewise linear polynomials on a mesh with 1282 square elements. The Van der Waals EOS is chosen as (3), θ = 0.85 and 
the physical parameters in the isothermal NSK equations (1) are set as Re = 512, We = 65 500. The initial condition is (35) with ρ1 = 0.1, ρ2 = 0.6.

Fig. 11. Evolution of mass loss and energy as a function of time during the simulation of two bubbles for the isothermal NSK equations with Re = 512, 
We = 65 500 on a mesh of 2562 elements using piecewise linear polynomials.The Van der Waals EOS is chosen as (3), θ = 0.8. The initial condition is (35)
with ρ1 = 0.08, ρ2 = 0.64.

Table 3
Accuracy test of the LDG discretization for the one-dimensional non-isothermal NSK equations (6) with exact solution (37). The physical parameters are 
chosen as Re = 50, We = 1000, Pr = 0.843, C v = 5.375, and the Van der Waals EOS is set as (8). LDG discretization with piecewise linear and quadratic 
polynomials, periodic boundary conditions, uniform meshes and time t = 0.1.

Mesh ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖θ − θh‖L2 Order

P 1 16 1.43E−03 – 3.65E−03 – 2.88E−04 –
32 3.551E−04 2.01 9.32E−04 1.97 7.44E−05 1.95
64 8.89E−05 2.00 2.36E−04 1.98 1.90E−05 1.97

128 2.22E−05 2.00 5.96E−05 1.99 4.80E−06 1.99
256 5.56E−06 2.00 1.50E−05 1.99 1.20E−06 2.00

P 2 16 2.71E−5 – 1.35E−4 – 1.21E−5 –
32 2.14E−6 3.66 1.71E−-5 2.68 1.33E−6 3.18
64 2.42E−7 3.14 2.18E−6 2.97 1.54E−7 3.11

128 2.96E−8 3.03 2.77E−7 2.98 1.86E−8 3.04
256 3.70E−9 3.00 3.50E−8 2.96 2.31E−9 3.01
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Fig. 12. Density ρ for two bubbles computed with the LDG discretization of the isothermal NSK equations with Re = 512, We = 65 500 on a mesh of 2562

elements using piecewise linear polynomials. The Van der Waals EOS is chosen as (3), θ = 0.8. The initial condition is (35) with ρ1 = 0.08, ρ2 = 0.64.

Fig. 13. Evolution of mass loss and energy as a function of time during the coalescence of two bubbles computed with the LDG discretization of the 
isothermal NSK equations with Re = 200, We = 10 000 on a mesh with 1002 square elements. Piecewise linear polynomials are used. The Van der Waals 
EOS is chosen as (3), θ = 0.85. The initial condition is (35) with ρ1 = 0.05, ρ2 = 0.65.

which satisfies the non-isothermal NSK equations (6) with a properly chosen source term. The results of the accuracy 
tests of the LDG discretization for the 1D and 2D non-isothermal NSK equations are given in Tables 3 and 4, respectively. 
From these results, we can see that the LDG discretization for the non-isothermal NSK equations has optimal order of 
accuracy.
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Fig. 14. Coalescence of two bubbles for the isothermal NSK equations with Re = 200, We = 10 000 on a mesh of 1002 elements. Piecewise linear polyno-
mials are used. The Van der Waals EOS is chosen as (3), θ = 0.85. The initial condition is (35) with ρ1 = 0.05, ρ2 = 0.65.

Table 4
Accuracy test of the LDG discretization for the two-dimensional non-isothermal NSK equations (6) with exact solution (38). The physical parameters are 
chosen as Re = 50, We = 1000, Pr = 0.843, C v = 5.375, and the Van der Waals EOS is set as (8). LDG discretization with piecewise linear and quadratic 
polynomials, periodic boundary conditions, and uniform meshes with square elements at time t = 0.1.

Mesh ‖ρ − ρh‖L2 Order ‖u − uh‖L2 Order ‖θ − θh‖L2 Order

P 1 16× 16 2.08E−03 – 3.72E−02 – 9.85E−4 –
32× 32 5.61E−04 1.88 9.36E−04 1.99 2.63E−4 1.90
64× 64 1.47E−04 1.94 2.34E−04 2.00 6.91E−5 1.94

128 × 128 3.76E−05 1.97 5.85E−05 2.00 1.76E−5 1.97

P 2 16× 16 5.11E−4 – 6.66E−4 – 7.36E−4 –
32× 32 5.57E−5 3.19 6.94E−5 3.21 1.28E−4 2.51
64× 64 6.93E−6 3.01 7.99E−6 3.11 1.56E−5 3.04

128× 128 8.74E−7 2.98 9.70E−7 3.04 1.78E−6 3.13

4.3.2. One-dimensional interface problem
In this section we consider a one-dimensional interface problem to investigate the accuracy and robustness of the LDG 

discretization of the non-isothermal NSK equations. The initial conditions are set as a similar form as (34) with

(ρL, uL, θL) = (0.795,0.0,0.989), (ρR , uR , θR) = (1.213,0.0,0.989). (39)

The domain is [−5, 5].
Fig. 16 shows that the LDG scheme for the non-isothermal NSK equations results in accurate and stable solutions. Fig. 17

compares the LDG solutions for the isothermal and non-isothermal NSK equations with the Van der Waals equation of 
state (8). The dimensionless numbers are equal to Re = 128.6, We = 968.6 and the initial conditions are defined in (39). 
Fig. 17 shows that, compared to the isothermal NSK equations, the LDG solutions for the non-isothermal NSK equations 
result in less oscillations in the density near the interface.
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Fig. 15. Coalescence of two bubbles for the isothermal NSK equations with Re = 512, We = 65 500 on a mesh of 2562 elements. Piecewise linear polyno-
mials are used. The Van der Waals EOS is chosen as (3), θ = 0.85. The initial condition is (35) with ρ1 = 0.05, ρ2 = 0.65.

4.3.3. Coalescence of two bubbles
Next, we simulate the coalescence of two bubbles. The parameters are Re = 950, We = 34 455. The computational do-

main is [0, 1]2. We consider two vapor bubbles of different radii, which are initially close to each other and at rest. The 
initial conditions are

ρ0(x) = ρ1 + 1

2
(ρ2 − ρ1)

2∑
i=1

tanh(
(di(x) − ri)

2

√
We), u ≡ 0, θ = θ0 (40)

where θ0 is a chosen constant, and ρ1, ρ2 are constants close to the critical densities for given θ0. These values will be 
specified in each test. The points xi are equal to x1 = (0.4, 0.5) and x2 = (0.78, 0.5). The radii of the two bubbles are 
r1 = 0.25 and r2 = 0.1.
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Fig. 16. One-dimensional static interface problem for the non-isothermal NSK equations. Numerical solutions obtained with the LDG scheme with piecewise 
quadratic polynomials at t = 2.0 on a mesh containing 400 elements. The physical parameters are chosen as Re = 128.6, We = 968.6, Pr = 0.843, Cv =
5.375, and the Van der Waals EOS is set as (8).

For the non-isothermal NSK equations with equation of state (8), the interface width (30) shows the following results:

• Given the initial temperature θ = 0.989, the critical densities are ρv = 0.7952, ρl = 1.2135, and the interface width 
follows as

d = 2(ρl − ρv)√
� fmax

1√
We

= 31.05
1√
We

.

Then the mesh size h = 2√
We

can be chosen.

• Given the initial temperature θ = 0.95, the critical densities are ρv = 0.5790, ρl = 1.4617, and the interface width 
follows as

d = 2(ρl − ρv)√
� fmax

1√
We

= 14.42
1√
We

.

Then the mesh size h = 1√
We

is a reasonable choice.

We use the LDG discretization for the non-isothermal NSK equations with bi-linear basis functions and the second order 
implicit Runge–Kutta time integration method (25) with stopping parameter ηk = 10−6 in (28). Similar to the isothermal 
case, the bubbles merge into one vapor bubble, which tends to be of circular shape later in time by capillarity and pressure 
forces. Choosing θ0 = 0.989, the initial condition is set as (40) with ρ1 = 0.795, ρ2 = 1.213. The LDG discretizations is 
used for the non-isothermal NSK equations with We = 34 455 on a mesh of 2002 square elements and a mesh of 1002

square elements. These two meshes lead to very similar results for mass conservation and entropy increase, see Fig. 18. 
The process of coalescence computed for the non-isothermal NSK equations with initial condition (40) and ρ1 = 0.795, 
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Fig. 17. One-dimensional static interface problem for the isothermal and non-isothermal NSK equations, numerical solutions obtained with the piecewise 
quadratic polynomials at t = 2.0 on a mesh containing 400 elements. The physical parameters are chosen as Re = 128.6, We = 968.6, Pr = 0.843, Cv =
5.375, and the Van der Waals EOS is set as (8).

ρ2 = 1.213, θ0 = 0.989 on a mesh of 2002 elements is shown in Figs. 19–21. Density and pressure along the line y = 0.5
for two coalescing bubbles are computed with the LDG discretization of the non-isothermal NSK equations on a mesh with 
1002 square elements, shown in Fig. 22.

Given θ0 = 0.95, critical densities ρv = 0.5790, ρl = 1.4617 with a larger density ratio are found by (29) with equations 
of state (8). The initial condition is set as (40) with ρ1 = 0.579, ρ2 = 1.462 and θ0 = 0.95. The time evolution of the bubbles, 
mass and entropy are shown in Figs. 23 and 25. The mass is conserved, and the entropy is a non-decreasing function of time 
apart from a small interval in which it is almost constant. For θ0 = 0.92, the critical densities are ρv = 0.479, ρl = 1.587. 
The initial condition is set as (40) with ρ1 = 0.479, ρ2 = 1.587. Fig. 24 shows that stable results are obtained although the 
entropy does not increase during part of the calculation. A finer mesh is required to guarantee an increasing entropy in this 
case.

The behavior of the numerical scheme for the Non-isothermal NSK equations is also studied when the initial densities 
are further away from the equilibrium densities ρl, ρv . Given θ0 = 0.989, ρ1 = 0.6, ρ2 = 1.4 is set in (40). Fig. 26 shows 
the mass is conserved and entropy is increasing in time. Fig. 27 shows the momentum in both directions and energy are 
conserved. Fig. 28 presents the coalescence, similar results with Fig. 19.

5. Conclusions

We developed local discontinuous Galerkin methods for the solution of the (non)-isothermal Navier–Stokes–Korteweg 
equations containing the Van der Waals equation of state and nonlinear third order density derivatives. The LDG methods 
are based on the conservative form of the NSK equations and are relatively simple compared to other available numerical 
discretizations for the NSK equations. A diagonally implicit Runge–Kutta integration time method is used to integrate in 
time in order to deal with the severe time step restriction encountered for explicit time integration methods. The Jacobian 
matrix for the implicit Runge–Kutta method includes the extra variables for the higher order derivatives. The numerical 
experiments demonstrate the capabilities, accuracy and stability of the proposed LDG discretizations of the NSK equations. 
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Fig. 18. Evolution of mass loss on a mesh of 1002 elements and entropy on meshes of 1002 and 2002 square elements as a function of time during the 
coalescence of two bubbles for the non-isothermal NSK equations with Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375. The initial condition is set as (40)
with ρ1 = 0.795, ρ2 = 1.213 and θ0 = 0.989.

Fig. 19. Density ρ for two coalescing bubbles computed with the LDG discretization of the non-isothermal NSK equations using piecewise linear polynomials 
on a mesh with 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and the Van der Waals EOS 
is set as (8). The initial condition is set as (40) with ρ1 = 0.795, ρ2 = 1.213 and θ0 = 0.989.

It is worthwhile to point out that the proposed LDG discretization is straightforward and works well for larger density 
ratios, but has limitations in the mesh required to obtain stable solutions and the correct energy or entropy behavior.

In future research we will also consider the (non-)isothermal NSK equations for initial conditions that result in a larger 
elliptic region in the phase transition area. This will be combined with local mesh refinement to capture the interface more 
efficiently.
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Fig. 20. Density ρ for two coalescing bubbles computed with the LDG discretization of the non-isothermal NSK equations using piecewise linear polynomials 
with 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and the Van der Waals EOS is set as (8). 
The initial condition is set as (40) with ρ1 = 0.795, ρ2 = 1.213 and θ0 = 0.989.

Fig. 21. Density ρ for two coalescing bubbles computed with an LDG discretization of the non-isothermal NSK equations using piecewise linear polynomials 
functions with 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and the Van der Waals EOS 
is set as (8). The initial condition is set as (40) with ρ1 = 0.795, ρ2 = 1.213 and θ0 = 0.989.
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Fig. 22. Density and pressure along y = 0.5 for two coalescing bubbles computed with the LDG discretization of the non-isothermal NSK equations using 
piecewise linear polynomials on a mesh with 1002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, 
and the Van der Waals EOS is set as (8). The initial condition is set as (40) with ρ1 = 0.795, ρ2 = 1.213 and θ0 = 0.989.

Fig. 23. Evolution of mass loss and entropy as a function of time during the coalescence of two bubbles for the non-isothermal NSK equations, the initial 
temperature set as θ = 0.95, a mesh of 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and 
the Van der Waals EOS is set as (8). The initial condition is set as (40) with ρ1 = 0.579, ρ2 = 1.462 and θ0 = 0.95.
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Fig. 24. Density profile at t = 5.0 and entropy as a function of time during the coalescence of two bubbles for the non-isothermal NSK equations, the initial 
temperature set as θ = 0.92, a mesh of 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and 
the Van der Waals EOS is set as (8). The initial condition is set as (40) with ρ1 = 0.479, ρ2 = 1.587, θ0 = 0.92.

Fig. 25. Density ρ for two coalescing bubbles computed with the LDG discretization of the non-isothermal NSK equations using piecewise linear polynomials 
on a mesh with 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and the Van der Waals EOS 
is set as (8). The initial condition is set as (40) with ρ1 = 0.579, ρ2 = 1.462 and θ0 = 0.95.

Appendix A

In this appendix we briefly discuss the derivation of the dimensionless form of the NSK equations and the definition of 
the dimensionless variables.

A.1. Dimensionless form of the isothermal NSK equations

The isothermal NSK equations are given by [29,5,14]
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Fig. 26. Evolution of mass loss and entropy on a mesh of 2002 square elements as a function of time during the coalescence of two bubbles for the 
non-isothermal NSK equations, Re = 950, We = 34 455, Pr = 0.843, C v = 5.375, and the Van der Waals EOS is set as (8). The initial condition is set as (40)
with θ0 = 0.989, ρ1 = 0.6, ρ2 = 1.4.

Fig. 27. Evolution of momentum in x and y direction on a mesh of 2002 square elements as a function of time during the coalescence of two bubbles for 
the non-isothermal NSK equations, Re = 950, We = 34 455, Pr = 0.843, C v = 5.375, and the Van der Waals EOS is set as (8). The initial condition is set as 
(40) with θ0 = 0.989, ρ1 = 0.6, ρ2 = 1.4.
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Fig. 28. Density ρ for two coalescing bubbles computed with the LDG discretization of the non-isothermal NSK equations using piecewise linear polynomials 
on a mesh with 2002 square elements. The physical parameters are chosen as Re = 950, We = 34 455, Pr = 0.843, Cv = 5.375, and the Van der Waals EOS 
is set as (8). The initial condition is set as (40) with θ0 = 0.989, ρ1 = 0.6, ρ2 = 1.4.

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu

∂t
+ ∇ · (ρu ⊗ u + pI) − ∇ · τ − ∇ · ξ = 0, (41)

where ρ is the mass density, u the velocity. The viscous stress tensor τ and the Korteweg stress tensor are defined as

τ = μ

(
∇u + ∇T u − 2

3
∇ · uI

)
,

ξ = λ

((
ρ�ρ + 1

2
|∇ρ|2

)
I − ∇ρ∇T ρ

)
, (42)

with μ the viscosity coefficient and λ the capillary coefficient. The thermodynamic pressure is defined as

p = Rb
ρθ

b − ρ
− aρ2, (43)

with θ the temperature, R the universal gas constant, a, b positive constants depending on the fluid.
The equations are made dimensionless using the following reference variables for the mass density, temperature and 

pressure

ρc = b, θc = 8ab

27R
, pc = ab2.

The reference variable for the velocity is the average sound speed in the system uc = √
pc/ρc and the reference variable for 

time is L
uc

, with L the reference length. The Reynolds and Weber numbers are then defined as

Re = ρcuc L/μ, We = u2
c L2/(ρcλ).
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Letting

ρ = ρcρ̃, u = ucũ, p = pc p̃, θ = θc θ̃ ,

the governing equations (41) and (43) then can be transformed into their dimensionless form, resulting in (1)–(3).

A.2. Dimensionless form of the non-isothermal NSK equations

The non-isothermal NSK equations are given by [13,32]

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂ρu

∂t
+ ∇ · (ρu ⊗ u + pI) − ∇ · τ − ∇ · ξ = 0,

∂(ρE)

∂t
+ ∇ · ((ρE + p)u) − ∇ · ((τ + ξ) · u) + ∇ · q + ∇ · jE = 0, (44)

with the definition of viscous stress tensor τ and the Korteweg stress tensor defined in (42). The total energy density is 
given by

ρE = ρe + 1

2
ρ|u|2 + 1

2
λ|∇ρ|2, (45)

with the specific internal energy e defined as

e = C vθ − a

M2
ρ.

The Van der Waals equation of state for the non-isothermal NSK equations (44) is given by

p = Rθρ

M − bρ
− a

M2
ρ2, (46)

where Cv is the specific heat at constant volume, R the perfect gas constant, M the molar mass of the fluid, b the molar 
volume and a a constant modeling the interactions between the fluid particles. The heat flux q and energy flux jE through 
the interface in (44) are defined as

q = −K∇θ, jE = λ(ρ∇ · u)∇ρ, (47)

with K the thermal conductivity.
Note that the form of the equation of state (46) for the non-isothermal NSK equations is different from (43) for the 

isothermal NSK equations, though they have a similar shape.
The reference variables for the mass density, temperature and pressure are, respectively,

ρc = M/(3b), θc = 8a

27Rb
, pc = a/(27b2).

The reference variable for the velocity is defined as uc = √
pc/ρc and the reference variable for time is L

uc
, with L the 

reference length. The Reynolds and Weber numbers are then equal to

Re = ρcuc L/μ, We = u2
c L2/(ρcλ).

The Prandtl number and the reduced heat capacity are defined as Pr = μC v/K , C̃ v = MCv/R .
The governing equations (44)–(47) then can be transformed into their dimensionless form, resulting in (6)–(9).
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