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Abstract A local discontinuous Galerkin (LDG) finite element method for the solution
of a hyperbolic–elliptic system modeling the propagation of phase transition in solids and
fluids is presented. Viscosity and capillarity terms are added to select the physically relevant
solution. The L2−stability of the LDG method is proven for basis functions of arbitrary
polynomial order. In addition, using a priori error analysis, we provide an error estimate for
the LDG discretization of the phase transition model when the stress–strain relation is linear,
assuming that the solution is sufficiently smooth and the system is hyperbolic. Also, results
of a linear stability analysis to determine the time step are presented. To obtain a reference
exact solution we solved a Riemann problem for a trilinear strain–stress relation using a
kinetic relation to select the unique admissible solution. This exact solution contains both
shocks and phase transitions. The LDG method is demonstrated by computing several model
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problems representing phase transition in solids and in fluids with a Van der Waals equation
of state. The results show the convergence properties of the LDG method.

Keywords Phase transition problem · Hyperbolic–elliptic system · Local discontinuous
Galerkin · L2−stability · A priori error analysis · Linear stability analysis
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1 Introduction

The propagation of phase transition in solids and fluids can be modeled with hyperbolic–
elliptic systems of partial differential equations (PDEs). Examples are solid–solid trans-
formations in elastic materials [2] and a homogeneous compressible fluid with liquid and
vapor phases with a van der Waals equation of state [24]. A well-known one-dimensional
hyperbolic–elliptic model that describes these phase transition phenomena is given by the
following PDEs

{
γt − vx = 0,
vt − (σ (γ ))x = 0,

(1.1)

where γ, v represent the deformation gradient (the strain) and velocity, respectively, and σ is
the stress. We consider a stress–strain relation σ(γ ) as sketched in Fig. 1. The system (1.1)
is hyperbolic for σ ′(γ ) > 0 and elliptic for σ ′(γ ) < 0. This mixed type hyperbolic–elliptic
system contains a rich mathematical structure. For example, the standard entropy condition
for a hyperbolic system is insufficient to determine the unique solution. This has stimulated
an extensive analysis to investigate conditions that ensure the uniqueness of solutions of
hyperbolic–elliptic systems, in particular their Riemann solutions. For an overview of the
general theory, we refer to [19].

The need to impose additional conditions to ensure uniqueness of the solution originates
from the fact that in the model equations small scale mechanisms that are induced by viscosity,
capillarity and heat conduction are neglected [3]. One way to reintroduce the neglected
physical information is the viscosity-capillarity (VC) approach. In the VC approach, solutions
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Fig. 1 Examples of strain–stress relation σ(γ ), general and trilinear case

123



690 J Sci Comput (2014) 59:688–720

of (1.1) are obtained by taking the limit of the solution of the system:

{
γ̃t − ṽx = 0,
ṽt − (σ (γ̃ ))x = νṽxx − λγ̃xxx ,

(1.2)

when the parameters ν and λ tend to zero, while the number ω = 2
√
λ/ν is fixed. The notion

of VC solutions for the equations describing a Van der Waals fluid was first proposed by
Slemrod [23] based on Korteweg’s theory of capillarity.

The solution of hyperbolic–elliptic systems may contain nonclassical shock waves or
subsonic propagating phase transitions. Such waves do not satisfy standard entropy criteria
and require an additional kinetic relation to select the unique admissible solution. For details
of the theory of both classical and nonclassical shock waves, we refer to [19]. In particular,
for the trilinear approximation to the stress–strain curve σ(γ ), Abeyaratne and Knowles [2]
derived the exact solution of (1.1) containing both shock waves and phase boundaries. The
kinetic relation and initiation criterion for the relevant phase transition must, however, be
provided separately using physical modeling. Later, in [1], Abeyaratne and Knowles pointed
out that a kinetic relation for (1.1) can also be obtained by considering traveling wave solutions
for the augmented system (1.2) that includes viscosity and capillarity terms.

The numerical solution of mixed hyperbolic–elliptic systems, such as (1.1), is non-trivial.
Standard numerical schemes smear out discontinuities and cause spurious solutions at the
elliptic–hyperbolic boundary. Also, commonly used stabilization techniques, such as lim-
iters, are counter productive for diffusive-dispersive regularization as given by the VC-
equations (1.2).

One way to obtain accurate numerical discretizations for hyperbolic–elliptic systems is
to use Glimm random choice methods [18] or front tracking techniques [4–6,10,11,20,29].
These methods use the exact solution of Riemann problems and resolve the phase boundary
over one cell. They converge to the correct solutions of the non-classical Riemann problem.
For complicated systems of hyperbolic–elliptic PDEs the use of an exact Riemann problem
is, however, non-trivial, in particular in multiple dimensions.

An alternative is provided by finite difference and finite element discretizations of the
VC-equations (1.2) using numerical methods that were originally developed to capture shocks
and contact discontinuities in hyperbolic PDEs. Both for finite difference and finite element
methods extensive research has been conducted to ensure that stable and high order accurate
numerical solutions are obtained without spurious oscillations at phase boundaries, see e.g. [3,
7,8,15,16]. This is non-trivial and still a topic of ongoing research.

In this article we will investigate the use of the local discontinuous Galerkin (LDG) finite
element method for the solution of the VC-equations (1.2). The LDG method is an extension
of the discontinuous Galerkin (DG) method that aims to solve PDEs that contain higher than
first order spatial derivatives and was originally developed by Cockburn and Shu in [14] for
solving nonlinear convection-diffusion equations containing second-order spatial derivatives.
The idea behind LDG methods is to rewrite equations with higher order derivatives as a first
order system, then apply the DG method to this extended system. The design of the numerical
fluxes is the key ingredient for ensuring stability. LDG techniques have been developed for
convection diffusion equations [14], nonlinear KdV type equations [28], the Camassa–Holm
equation [25] and many other types of PDEs. For a review, see [26]. The LDG method results
in an extremely local discretization, which offers great advantages in parallel computing and
is well suited for hp-adaptation. In particular, the LDG method offers provable nonlinear
stability. The LDG method for the VC-equations (1.2) that we describe in this paper shares
all these elegant properties.
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Recently, the LDG method was also used in [17] for the solution of the VC-equations
(1.2) including a non-local convolution type regularization of (1.1). For this non-local model
discretized with piecewise constant basis functions and central numerical fluxes in the LDG
discretization, Haink and Rohde proved in Theorem 3.1 in [17] a discrete energy estimate. In
this article we will prove a general L2−stability estimate for the LDG discretization of (1.2)
using alternating numerical fluxes and basis functions of arbitrary polynomial order. This
L2−stability estimate is also crucial for the a priori error analysis in which we prove that
the LDG discretization is of optimal order. Another important topic we address is a detailed
comparison of the LDG solutions with exact solutions of Riemann problems containing both
phase transitions and shocks. For this purpose, we use the detailed analysis provided in [1,2].

The outline of the article is as follows. In Sect. 2 we present the LDG discretization for
(1.2). Next, in Sect. 3 the L2−stability of the LDG scheme is proven and an error estimate
of the semi-discrete LDG scheme is given in Sect. 4. In Sect. 5, we discuss a linear stability
analysis of the LDG method for the VC-equations. Numerical experiments for phase transition
in solids and fluids, including the Van der Waals model [9], are described in Sect. 6. Special
attention is given to demonstrate that solutions of the LDG method consistently converge to
exact solutions of the phase transition model (1.1). Finally, conclusions are drawn in Sect. 7.

2 LDG Discretization Using the Viscosity–Capillarity Approach

2.1 Notation

We denote the mesh in the domain Ω ⊂ R by K j = (x j−1/2, x j+1/2), for j = 1, . . . ,M .
The center of an element is x j = 1

2 (x j−1/2 + x j+1/2) and the mesh size is denoted by
h j = x j+1/2 − x j−1/2, with h = max1≤ j≤M h j being the maximum mesh size. We assume
that the mesh is regular, namely the ratio between the maximum and the minimum mesh size
stays bounded during mesh refinement. We define the space V k

h as the space of polynomials
of degree up to k in each element K j , i.e.

V k
h =

{
v ∈ L2(Ω) : v(x) ∈ Pk(K j ) for x ∈ K j , j = 1, . . .M

}
.

Note that functions in V k
h are allowed to be discontinuous across element faces. For Pk(K j ),

we use Legendre polynomials as basis functions in V k
h throughout this article.

The numerical solution is denoted by uh , and belongs to the finite element space V k
h . We

denote by (uh)
−
j+1/2 and (uh)

+
j+1/2 the traces of uh at x j+1/2, taken from the left element

K j , and the right element K j+1, respectively. We use the standard notation [uh] = u+
h − u−

h
to denote the jump of uh at each element boundary point.

2.2 LDG Discretization

In this section, we present the LDG method for the VC-equations (1.2), which are defined
as: {

γt = vx ,

vt = (σ (γ ))x + νvxx − λγxxx ,
(2.1)

with initial conditions: {
γ (x, 0) = γ0(x),
v(x, 0) = v0(x).

(2.2)
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To define the LDG scheme, we first rewrite (2.1) as a first-order system:
{
γt = vx ,

vt = fx + νqx − λsx ,
(2.3)

where we introduced the auxiliary variables f, s, p and q , which satisfy the equations:
⎧⎪⎪⎨
⎪⎪⎩

f = σ(γ ),

s = px ,

p = γx ,

q = vx .

(2.4)

The LDG method for (2.3), when f, q and s are assumed known, can be formulated as: find
γh, vh ∈ V k

h , such that for all test functions φ, ϕ ∈ V k
h ,

∫
K j

(γh)tφdx +
∫
K j

vhφx dx − v̂hφ
−| j+1/2 + v̂hφ

+| j−1/2 = 0,

∫
K j

(vh)tϕdx +
∫
K j

fhϕx dx − f̂hϕ
−| j+1/2 + f̂hϕ

+| j−1/2

−λ
∫
K j

shϕx dx + λŝhϕ
−| j+1/2 − λŝhϕ

+| j−1/2 + ν

∫
K j

qhϕx dx

−νq̂hϕ
−| j+1/2 + νq̂hϕ

+| j−1/2 = 0, j = 1, . . . ,M. (2.5)

The “hat” terms in the cell boundary contributions in (2.5), resulting from integration by
parts, are the so-called “numerical fluxes”, which are single-valued functions defined at the
element boundaries and should be designed to ensure stability. Here we take the alternating
numerical fluxes:

v̂h = v+
h , f̂h = f −

h , ŝh = s−
h , q̂h = q−

h . (2.6)

Similarly, we derive for the auxiliary equations (2.4) the following LDG discretization: find
fh, sh, ph, qh ∈ V k

h , such that for all test functions ζ, η, ξ, τ ∈ V k
h ,

∫
K j

fhζdx −
∫
K j

σ(γh)ζdx = 0, (2.7a)

∫
K j

shηdx +
∫
K j

phηx dx − p̂hη
−| j+1/2 + p̂hη

+| j−1/2 = 0, (2.7b)

∫
K j

phξdx +
∫
K j

γhξx dx − γ̂hξ
−| j+1/2 + γ̂hξ

+| j−1/2 = 0, (2.7c)

∫
K j

qhτdx +
∫
K j

vhτx dx − v̂hτ
−| j+1/2 + v̂hτ

+| j−1/2 = 0. (2.7d)

The numerical fluxes in (2.7) are chosen as:

p̂h = p+
h , γ̂h = γ−

h , v̂h = v+
h . (2.8)
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We remark that the choice of numerical fluxes in (2.6) and (2.8) is not unique. We can, for
example, also choose the following numerical fluxes:

v̂h = v−
h , γ̂h = γ+

h , ŝh = s+
h , p̂h = p−

h , q̂h = q+
h , f̂h = f +

h . (2.9)

In Sect. 3 we will prove that both the numerical fluxes (2.6), (2.8) and (2.9) result in an LDG
discretization which is L2− stable.

2.3 Time Discretization

Suppose that the coefficients of the polynomial expansions of γh(x, t) and vh(x, t) in each
element are given by

(γ0(t), γ1(t), . . . , γk(t), v0(t), v1(t), . . . , vk(t)) ≡ U (t).

The LDG discretization (2.5) for γh and vh then can be written as the ODE system:{
Ut = F(U, t),
U (0) = U0,

(2.10)

which we discretize in time by the third-order accurate explicit Runge–Kutta time stepping
method [22], given as:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V = U n +Δt F(U n, tn),

W = 3

4
U n + 1

4
V + 1

4
Δt F(V, tn +Δt),

U n+1 = 1

3
U n + 2

3
W + 2

3
Δt F(W, tn + 1

2
Δt).

(2.11)

3 L2−Stability of the LDG Scheme

The solution of the VC equations (2.1) preserves energy. In [13] Cockburn and Gau proved
that the related discrete energy is also preserved for the finite difference discretization they
proposed. In this section, we will prove that the LDG scheme (2.5)–(2.8) also preserves a
discrete energy. This implies L2−stability of the LDG discretization and it is an important
and necessary property to obtain a stable and robust LDG scheme.

Theorem 1 (L2−stability of the LDG scheme) Assume ∂W (γ )
∂γ

= σ(γ ), and define the
discrete energy Eh as

Eh =
M∑

j=1

⎛
⎜⎝
∫
K j

W (γh)dx + 1

2

∫
K j

v2
hdx + λ

2

∫
K j

p2
hdx

⎞
⎟⎠ .

Then the discrete energy Eh computed from the LDG discretization of the VC equations given
by (2.5)–(2.8) satisfies the relation

d

dt
Eh = −ν

M∑
j=1

∫
K j

(qh)
2dx, (3.1)

when periodic boundary conditions are applied at the domain boundary.
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Proof We first take the time derivative of (2.7c),
∫
K j

(ph)tξdx +
∫
K j

(γh)tξx dx − ̂(γh)tξ
−| j+1/2 + ̂(γh)tξ

+| j−1/2 = 0. (3.2)

After choosing in (2.5), (2.7) and (3.2) the following test functions,

φ = fh − λsh, ϕ = vh, ζ = −(γh)t , η = λ(γh)t , ξ = λph, τ = νqh,

we get
∫
K j

(γh)t ( fh − λsh)dx +
∫
K j

vh( fh − λsh)x dx − v̂h( fh − λsh)
−| j+1/2

+v̂h( fh − λsh)
+| j−1/2 = 0, (3.3a)∫

K j

(vh)tvhdx +
∫
K j

( fh + νqh − λsh)(vh)x dx

−( f̂h + νq̂h − λŝh)v
−
h | j+1/2 + ( f̂h + νq̂h − λŝh)v

+
h | j−1/2 = 0, (3.3b)

−
∫
K j

fh(γh)t dx +
∫
K j

σ(γh)(γh)t dx = 0, (3.3c)

λ

∫
K j

sh(γh)t dx + λ

∫
K j

ph((γh)t )x dx − λ p̂h(γh)
−
t | j+1/2

+λ p̂h(γh)
+
t | j−1/2 = 0, (3.3d)

λ

∫
K j

(ph)t phdx + λ

∫
K j

(γh)t (ph)x dx − λ̂(γh)t p−
h | j+1/2

+λ̂(γh)t p+
h | j−1/2 = 0, (3.3e)

ν

∫
K j

q2
h dx + ν

∫
K j

vh(qh)x dx − νv̂hq−
h | j+1/2 + νv̂hq+

h | j−1/2 = 0. (3.3f)

Adding (3.3a)–(3.3f), and integrating the divergence terms, we obtain:
∫
K j

((γh)tσ(γh)+ (vh)tvh + λ(ph)t ph) dx

+ν
∫
K j

q2
h dx + Fj+1/2 − Fj−1/2 +Θ j−1/2 = 0. (3.4)

The numerical entropy fluxes are given by:

F = v−
h f −

h − λs−
h v

−
h + λp−

h (γh)
−
t + νq−

h v
−
h − v̂h f −

h + λv̂hs−
h

− f̂hv
−
h − νq̂hv

−
h + λŝhv

−
h − λ p̂h(γh)

−
t − λ̂(γh)t p−

h − νv̂hq−
h

= λv+
h s−

h − λp+
h (γh)

−
t − νv+

h q−
h − f −

h v
+
h ,

123



J Sci Comput (2014) 59:688–720 695

where we used the numerical fluxes (2.6) and (2.8). The Θ term is given by

Θ = − [vh fh] + λ[shvh] − λ
[

ph(γh)t
]− ν [qhvh] + v̂h[ fh] − λv̂h[sh]

+ f̂h[vh] + νq̂h[vh] − λŝh[vh] + λ p̂h[(γh)t ] + λγ̂h t [ph] + νv̂h[qh].
Using the definition of the numerical fluxes (2.6) and (2.8) and after some algebraic manip-
ulation, we obtain:

Θ = 0.

After summation of (3.4) over all j and applying periodic boundary conditions, all entropy
fluxes cancel and we obtain the following expression for the rate of change of the discrete
energy:

d

dt
Eh(t) ≡

M∑
j=1

∫
K j

(σ (γh)(γh)t + (vh)tvh + λ(ph)t ph) dx

= −ν
M∑

j=1

∫
K j

(qh)
2dx, (3.5)

which proves (3.1). �	
Remark 1 From the proof of Theorem 1, we can see that it holds for a general nonlinear σ
function, which is not always an increasing function. From the definition of W (γ ), it follows
that the summation of

∑
j

∫
K j

W (γh) is in general not negative, since σ(γ ) is an increasing-
decreasing-increasing function, thus W (γ ) is a double well function, the same definition of
W (γ ) can be found in [13].

4 Error Estimates

In this section we will prove an error estimate for the LDG discretization of the phase transition
model (1.1) and also for the VC-equations (2.1) when ν, λ are finite and strictly positive. In
the proof, the stress–strain relation is linear and we assume that the system is hyperbolic.

4.1 Projection Operator

In what follows, we will use two projections π± from the Sobolev space H1(Ω) onto the
finite element space V k

h ,

π± : H1(Ω) → V k
h ,

which are defined as follows. Given a function ψ ∈ H1(Ω) and an arbitrary element K j ⊂
Ω, j = 1, . . . ,M , the restriction of π±ψ to K j is defined as the elements of Pk(K j ) that
satisfy: ∫

K j

(π+ψ − ψ)ωdx = 0, ∀ω ∈ Pk−1(K j ), π
+ψ(x+

j−1/2) = ψ(x+
j−1/2), (4.1a)

∫
K j

(π−ψ − ψ)ωdx = 0, ∀ω ∈ Pk−1(K j ), π
−ψ(x−

j+1/2) = ψ(x−
j+1/2). (4.1b)
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For the projections mentioned above, it is easy to see (c.f. [12]) that,

||π±ψ − ψ ||Ω ≤ Chk+1, (4.2)

with the positive constant C only depending on u and independent of h. We will denote the
standard L2-inner product as (·, ·)Ω and the L2-norm as || · ||Ω .

4.2 Notations and Lemmas for the LDG Discretization

The error analysis can be greatly simplified by introducing the DG discretization operator D,

D(η, φ; η̂) =
∑

j

DK j (η, φ; η̂), (4.3)

where DK j (η, φ; η̂) is defined in each element K j as:

DK j (η, φ; η̂) = −(η, φx )K j + (̂ηφ−) j+1/2 − (̂ηφ+) j−1/2. (4.4)

The following lemma from [27] gives very useful relations for the operator D.

Lemma 1 The DG discretization operator (4.3) with periodic boundary conditions satisfies
the following relations: for all φ ∈ V k

h ,

D(η, φ; η−)+ D(φ, η;φ+) = 0, (4.5a)

D(η, φ; η+)+ D(φ, η;φ−) = 0, (4.5b)

D(η − π−η, φ; (η − π−η)−) = 0, (4.5c)

D(η − π+η, φ; (η − π+η)+) = 0. (4.5d)

For the error analysis of the LDG scheme given by (2.5)–(2.8), we define the following
two bilinear forms:

A (γ, v, s, p, q;φ, ϕ, η, ξ, τ ) =
∑

j

AK j (γ, v, s, p, q;φ, ϕ, η, ξ, τ ) ,

B (γ, v, s, p, q;φ, ϕ, η, ξ, τ ) =
∑

j

BK j (γ, v, s, p, q;φ, ϕ, η, ξ, τ ) , (4.6)

with

AK j (γ, v, s, p, q;φ, ϕ, η, ξ, τ ) =
(γt , φ)K j + (vt , ϕ)K j + (s, η)K j + (pt , ξ)K j + (q, τ )K j ,

BK j (γ, v, s, p, q;φ, ϕ, η, ξ, τ ) =
−DK j (v, φ; v+)− σ ′DK j (γ, ϕ; γ−)− νDK j (q, ϕ; q−)+ λDK j (s, ϕ; s−)
−DK j (p, η; p+)− DK j (γt , ξ ; γ−)− DK j (v, τ ; v+). (4.7)

The LDG scheme for the VC equations (2.1), given by (2.5), (2.7a), (2.7b), (2.7d) and (3.2)
and numerical fluxes (2.6), (2.8) can now be expressed as: find γh, vh, sh, ph, qh ∈ V k

h ,
such that for all test functions φ, ϕ, η, ξ, τ ∈ V k

h , the following relation is satisfied.

A(γh, vh, sh, ph, qh;φ, ϕ, η, ξ, τ )+ B(γh, vh, sh, ph, qh;φ, ϕ, η, ξ, τ ) = 0, (4.8)

where we use in this formulation the time derivative of (2.7c), given by (3.2).
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We also define the following error contributions:

eγ = γ − γh = γ − π−γ + π−eγ , ev = v − vh = v − π+v + π+ev,

es = s − sh = s − π−s + π−es, ep = p − ph = p − π+ p + π+ep,

eq = q − qh = q − π−q + π−eq . (4.9)

4.3 Error Estimates of the Initial Conditions

We choose the initial conditions as

γh(x, 0) = π−γ (x, 0), vh(x, 0) = π+v(x, 0), (4.10)

then (4.2) gives

||v(·, 0)− vh(·, 0)||Ω ≤ Chk+1,

||γ (·, 0)− γh(·, 0)||Ω ≤ Chk+1, (4.11)

which means

||π+ev(t = 0)||Ω ≤ Chk+1, ||π−eγ (t = 0)||Ω ≤ Chk+1. (4.12)

From (2.7c), we can easily get∫
K j

(p(x, 0)− ph(x, 0)) ξdx +
∫
K j

(γ (x, 0)− γh(x, 0)) ξx

− (γ̂ (x, 0)− γ̂h(x, 0)) ξ−| j+1/2 + (γ̂ (x, 0)− γ̂h(x, 0)) ξ+| j−1/2 = 0 (4.13)

For the choice γ̂ = γ− using (4.10), we have∫
K j

(p(x, 0)− ph(x, 0)) ξdx = 0. (4.14)

Choosing ξ = π−ep(x, 0), we then easily get the relation

||π−ep(t = 0)||Ω ≤ Chk+1. (4.15)

4.4 A Priori Error Estimate of the LDG Discretization

In the next theorem, we provide an error estimate for the LDG discretization (2.5)–(2.8) of
the phase transition model (1.1) using the VC-equations (2.1) with ν, λ going to zero. We
consider a linear stress–strain relation and assume that the system is hyperbolic.

Theorem 2 Assume a linear stress–strain relation in the phase transition model (1.1) and the
related VC-equations (2.1) with σ(γ ) = γ0 +σ ′γ , where the constant σ ′ satisfies σ ′ ≥ C2

σ >

0. Assume that the exact solution satisfies γ (t) ∈ Hk+2(Ω), v(t) ∈ Hk+1(Ω) for t ∈ (t0, T ]
on a domain Ω ⊂ R with periodic boundary conditions. Let γh, vh ∈ V k

h , the space of
element wise discontinuous polynomials of degree up to k, be the numerical solution of the
semi-discrete LDG scheme (2.5)–(2.8) and initial condition (4.10). If the parameters ν, λ ↓ 0,
with the number ω = 2

√
λ/ν constant and λ ∼ h, then the following error estimate for the

LDG solution of (1.1) holds:

σ ′||eγ ||2Ω + 2||ev||2Ω ≤ Ch2k+2, (4.16)
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where C depends on the final time T, ||γ ||L∞(0,T );Hk+2(Ω), ||v||L∞(0,T );Hk+1(Ω) and
||γt ||L∞(0,T );Hk+1(Ω).

Proof We give proof for the error estimates in the following steps.

• Energy equation for the error estimates

After choosing the test functions in (4.8) as

φ = σ ′π−eγ − λπ−es, ϕ = π+ev, η = λπ−eγt , ξ = λπ+ep, τ = νπ−eq ,

using the consistency of the LDG scheme and summation over all elements K j , we obtain
the following relation for the error

A(γ − γh, v − vh, s − sh, p − ph, q − qh; σ ′π−eγ − λπ−es, π
+ev,

λπ−eγt , λπ
+ep, νπ

−eq)+
B(γ − γh, v − vh, s − sh, p − ph, q − qh; σ ′π−eγ − λπ−es, π

+ev,

λπ−eγt , λπ
+ep, νπ

−eq) = 0. (4.17)

If we introduce now the relations for the error given by (4.9), we can express (4.17) as

A(γ − π−γ, v − π+v, s − π−s, p − π+ p, q − π−q; σ ′π−eγ − λπ−es,

π+ev, λπ
−eγt , λπ

+ep, νπ
−eq)+

B(γ − π−γ, v − π+v, s − π−s, p − π+ p, q − π−q; σ ′π−eγ − λπ−es,

π+ev, λπ
−eγt , λπ

+ep, νπ
−eq)+

A(π−eγ , π
+ev, π

−es, π
+ep, π

−eq ; σ ′π−eγ − λπ−es, π
+ev, λπ

−eγt ,

λπ+ep, νπ
−eq)+

B(π−eγ , π
+ev, π

−es, π
+ep, π

−eq ; σ ′π−eγ − λπ−es, π
+ev, λπ

−eγt ,

λπ+ep, νπ
−eq) = 0. (4.18)

Next, if we use the expressions for A and B given by (4.7) and the properties of the operator
D defined in Lemma 1, we obtain after a lengthy but straightforward computation that

A(π−eγ , π
+ev, π

−es, π
+ep, π

−eq ; σ ′π−eγ − λπ−es, π
+ev, λπ

−eγt ,

λπ+ep, νπ
−eq)+

B(π−eγ , π
+ev, π

−es, π
+ep, π

−eq ; σ ′π−eγ − λπ−es, π
+ev, λπ

−eγt ,

λπ+ep, νπ
−eq) =

1

2

d

dt
(σ ′||π−eγ ||2Ω + ||π+ev||2Ω + λ||π+ep||2Ω)+ ν||π−eq ||2Ω. (4.19)

Also, using (4.5c), (4.5d) in Lemma 1 and the properties of the projection operators π± given
by (4.1), we obtain the relation

B(γ − π−γ, v − π+v, s − π−s, p − π+ p, q − π−q; σ ′π−eγ − λπ−es,

π+ev, λπ
−eγt , λπ

+ep, νπ
−eq) (4.20)

= −λD ((γ − π−γ )t , π+ep; (γ − π−γ )−t
)− νD(q − π−q, π+ev; (q − π−q)−)

−D(v−π+v, σ ′π−eγ − λπ−es; (v − π+v)+)− σ ′D(γ − π−γ, π+ev; (γ − π−γ )−)
+λD(s − π−s, π+ev; (s − π−s)−)− λD(p − π+ p, π−eγt ; (p − π+ p)+)
−νD((v − π+v), π−eq ; (v − π+v)+)
= 0.
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If we introduce now relations (4.19)–(4.20) into (4.18), and use (4.7), the error equation
(4.18) can be simplified as

1

2

d

dt
(σ ′||π−eγ ||2Ω + ||π+ev||2Ω + λ||π+ep||2Ω)+ ν||π−eq ||2Ω

+G − λ((γ − π−γ )t , π−es)Ω + λ((s − π−s), π−eγt )Ω = 0, (4.21)

where we define the following contribution

G = σ ′ ((γ − π−γ )t , π−eγ
)
Ω

+ ((v − π+v)t , π+v)Ω
+λ((p − π+ep)t , π

+ep)Ω + ν(q − π−q, π−eq)Ω. (4.22)

In the following, we will give estimates for G, λ((γ − π−γ )t , π−es)Ω and λ((s −
π−s), π−eγt )Ω separately.

• Error estimate forG.

Using Cauchy’s inequality with ε and the interpolation estimate (4.2), we can estimate G
as

G ≤ σ ′

4ε2
1

||γt − π−γt ||2Ω + σ ′ε2
1 ||π−eγ ||2Ω + 1

4ε2
2

||vt − π+vt ||2Ω + ε2
2 ||π+ev||2Ω

+ λ

4ε2
3

||pt − π+ pt ||2Ω + λε2
3 ||π+ep||2Ω + ν

4ε2
4

||q − π−q||2Ω + νε2
4 ||π−eq ||2Ω

≤ Ch2k+2 + σ ′ε2
1 ||π−eγ ||2Ω + ε2

2 ||π+ev||2Ω + λε2
3 ||π+ep||2Ω + νε2

4 ||π−eq ||2Ω. (4.23)

with εi > 0, (i = 1, 2, 3, 4). Introducing (4.23) into (4.21) gives:

1

2

d

dt

(
σ ′||π−eγ ||2Ω + ||π+ev||2Ω + λ||π+ep||2Ω

)+ ν||π−eq ||2Ω
−λ((γ − π−γ )t , π−es)Ω + λ(s − π−s, π−eγt )Ω ≤ Ch2k+2

+σ ′ε2
1 ||π−eγ ||2Ω + ε2

2 ||π+ev||2Ω + λε2
3 ||π+ep||2Ω + νε2

4 ||π−eq ||2Ω. (4.24)

• Error estimate forλ((γ − π−γ )t , π−es)Ω .

Next, we consider the contribution λ((γ − π−γ )t , π−es)Ω . Using the Cauchy and Schwarz
inequalities we obtain:

λ
(
(γ − π−γ )t , π−es

)
Ω

≤ 1

2
||γt − π−γt ||2Ω + λ2

2
||π−es ||2Ω. (4.25)

The upper bound in (4.25) contains, however, ||π−es ||Ω , which can not be directly bounded
in (4.21). We therefore use the LDG equation (3.3d) together with the numerical fluxes (2.8)
to derive the following error equation

(s − sh, η)K j + (p − ph, ηx )K j − ((p − ph)
+η−)

j+1/2

+ ((p − ph)
+η+)

j−1/2 = 0, ∀η ∈ V k
h . (4.26)

Using the error relations (4.9), we can transform (4.26) into

(s − π−s, η)K j + (π−es, η)K j + (π+ep, ηx )K j − (π+ep)
+η−| j+1/2

+(π+ep)
+η+| j−1/2 = 0, ∀η ∈ V k

h . (4.27)
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Here, we used that

(p − π+ p, ηx )K j − (p − π+ p)+η−| j+1/2 + (p − π+ p)+η+| j−1/2 = 0,

for the projection operator π+ defined in (4.1) and η ∈ V k
h .

The error equation (4.27) can be further evaluated using the following trace and inverse
inequalities

|η(x j± 1
2
)| ≤ Ctrace√

h
||η||K j , ||ηx ||K j ≤ Cinv

h
||η||K j , for η ∈ V k

h

and selecting η = π−es . This provides an estimate for ||π−es ||Ω by summing over the
elements K j and introducing ε5

||π−es ||Ω ≤ 1

2
√
ε5

||s − π−s||Ω +
√
ε5

2h
(Cinv + Ctrace) ||π+ep||Ω. (4.28)

Collecting all contributions and using the interpolation estimate (4.2) then results in the
following estimate for (4.25)

λ(γt − π−γt , π
−es)Ω ≤ 1

2
||γt − π−γt ||2Ω + λ2

4ε5
||s − π−s||2Ω

+ ε5

4h2 λ
2(Cinv + Ctrace)

2||π+ep||2Ω. (4.29)

Note that the parameter λ in the VC system (2.1) goes to zero, so if we choose

λ ∼ O(h), λ = 2C1h, (4.30)

(4.29) becomes

λ(γt − π−γt , π
−es)Ω ≤ Ch2k+2 + ε5C2

1 (Cinv + Ctrace)
2 ||π+ep||2Ω. (4.31)

Introducing (4.31) into (4.24) and after integration in time, we obtain,

1

2

(
σ ′||π−eγ ||2Ω + ||π+ev||2Ω + λ||π+ep||2Ω

)+ ν

t∫
0

||π−eq ||2Ωdt

+λ
t∫

0

(s − π−s, π−eγt )Ωdt

≤ Ch2k+2 + 1

2
σ ′||π−eγ (t = 0)||2Ω + 1

2
||π+ev(t = 0)||2Ω

+1

2
λ||π+ep(t = 0)||2Ω +

t∫
0

(σ ′ε2
1 ||π−eγ ||2Ω + ε2

2 ||π+ev||2Ω

+νε2
4 ||π−eq ||2Ω + (λε2

3 + ε5C2
1 (Cinv + Ctrace)

2)||π+ep||2Ω)dt. (4.32)
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Finally, introducing the estimates of the initial conditions (4.12) and (4.15) into (4.32) results
in the estimate

1

2

(
σ ′||π−eγ ||2Ω + ||π+ev||2Ω + λ||π+ep||2Ω

)+ ν

t∫
0

||π−eq ||2Ωdt

+λ
t∫

0

(s − π−s, π−eγt )Ωdt

≤ Ch2k+2 +
t∫

0

(σ ′ε2
1 ||π−eγ ||2Ω + ε2

2 ||π+ev||2Ω + νε2
4 ||π−eq ||2Ω

+(λε2
3 + ε5C2

1 (Cinv + Ctrace)
2)||π+ep||2Ω)dt. (4.33)

• Error estimate forλ
∫ t

0 (s − π−s, π−eγt )Ωdt .

Consider now λ
∫ t

0 (s − π−s, π−eγt )Ωdt . Using (4.12), this contribution can be estimated
straightforwardly as

λ

t∫
0

(
s − π−s, π−eγt

)
Ω

dt

= λ
(
s − π−s, π−eγ

) |t0 − λ

t∫
0

(st − π−st , π
−eγ )dt

≤ λ||s − π−s||Ω ||π−eγ ||Ω + λ||(s − π−s)(t = 0)||Ω ||π−eγ (t = 0)||Ω

+λ
t∫

0

||st − π−st ||Ω ||π−eγ ||Ωdt

≤ λ

4ε2
6

||s − π−s||2Ω + λε2
6 ||π−eγ ||2Ω + λ

4ε2
7

||(s − π−s)(t = 0)||2Ω

+λε2
7 ||π−eγ (t = 0)||2Ω + λ

4ε2
8

t∫
0

||(st − π−st )||2Ωdt + λε2
8

t∫
0

||π−eγ ||2Ωdt

≤ Ch2k+2 + λε2
6 ||π−eγ ||2Ω + λε2

8

t∫
0

||π−eγ ||2Ωdt. (4.34)

Introducing (4.34) into (4.33) gives

1

2

(
σ ′||π−eγ ||2Ω + ||π+ev||2Ω + λ||π+ep||2Ω

)+ ν

t∫
0

||π−eq ||2Ωdt (4.35)

≤ Ch2k+2 +
t∫

0

(σ ′ε2
1 ||π−eγ ||2Ω + ε2

2 ||π+ev||2Ω + νε2
4 ||π−eq ||2Ω

+(λε2
3 + ε5C2

1 (Cinv + Ctrace)
2)||π+ep||2Ω + λε2

8 ||π−eγ ||2Ω)dt + λε2
6 ||π−eγ ||2Ω,
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which is equivalent to

(
1

2
σ ′ − λε2

6

)
||π−eγ ||2Ω + 1

2
||π+ev||2Ω + λ

2
||π+ep||2Ω + ν(1 − ε2

4)

t∫
0

||π−eq ||2Ωdt

≤ Ch2k+2 +
t∫

0

(
(
σ ′ε2

1 + λε2
8

) ||π−eγ ||2Ω + ε2
2 ||π+ev||2Ω (4.36)

+ (λε2
3 + ε5C2

1 (Cinv + Ctrace)
2) ||π+ep||2Ω)dt.

Choose now ε1 = 1
2
√

2
and ε6, ε8 as

ε6 = 1

2

√
σ ′
λ
, then

1

2
σ ′ − λε2

6 = 1

4
σ ′,

ε8 = 1

2

√
σ ′
2λ
, then σ ′ε2

1 + λε2
8 = 1

4
σ ′. (4.37)

Select ε3 = 1
2 and ε5 such that

λε2
3 + ε5C2

1 (Cinv + Ctrace)
2 = λ

2
.

Finally, choosing ε2 = ε4 = 1√
2

, we obtain the inequality

σ ′

4
||π−eγ ||2Ω + 1

2
||π+ev||2Ω + λ

2
||π+ep||2Ω

≤ Ch2k+2 +
t∫

0

(
σ ′

4
||π−eγ ||2Ω + 1

2
||π+ev||2Ω + λ

2
||π+ep||2Ω

)
dt. (4.38)

Since λ ↓ 0, the final estimate for the error contributions is now obtained using Gronwall’s
Lemma for integrals, resulting in:

maxt
σ ′

4
||π−eγ ||2Ω + maxt

1

2
||π+ev||2Ω ≤ Ch2k+2, (4.39)

and using (4.9), (4.39) gives the result stated in Theorem 2. �	
Remark 2 For the case λ, ν ↓ 0 with ω = 2

√
λ/ν constant we obtain by choosing λ =

2C1h, ε6, ε8 as (4.37) and 0 < ε4 < 1, that the bounding constant C in (4.16) is independent
of ν and λ.

Corollary 1 Under the assumptions of Theorem 2 except, that λ, ν > 0 have finite, strictly
positive values, the following error estimate holds,

σ ′||eγ ||2Ω + 2||ev||2Ω + 2λ||ep||2Ω ≤ Ch2k,

where C depends on the final time T, ||γ ||L∞(0,T );Hk+2(Ω), ||v||L∞(0,T );Hk+1(Ω) and
||γt ||L∞(0,T );Hk+1(Ω).

Proof Since λ > 0 has a finite value, the term λ(γt − π−γt , π
−es)Ω in (4.29) should be

estimated in a different way.

• Error estimate for λ((γ − π−γ )t , π−es)Ω .

Using the Cauchy and Schwarz inequalities we obtain:
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λ
(
(γ − π−γ )t , π−es

)
Ω

≤ 1

2h2 ||γt − π−γt ||2Ω + λ2h2

2
||π−es ||2Ω. (4.40)

Using (4.28), (4.40) becomes

λ
(
(γ − π−γ )t , π−es

)
Ω

≤ Ch2k + ε5
λ2

4
(Cinv + Ctrace)

2||π+ep||2Ω. (4.41)

The rest proof is similar to the proof of Theorem 2, finally we obtain the result stated in
Corollary 1. �	

5 Linear Stability Analysis of the LDG Scheme

In order to obtain a reasonable estimate for a stable time step for the third order accurate TVD
Runge–Kutta scheme (2.11) applied to the LDG discretization, we perform in this section a
linear stability analysis.

First, we explain the specific problem that we analyze. The parameters ν, λ in the
VC-equations (2.1) are defined as in [13]:

ν = 2ν0, λ = ω2ν2
0 , (5.1)

where

ν0 =
(

sup
γ≥−1

max{0, σ ′(γ )}
)1/2

(Δx)β, (5.2)

for β ∈ (0, 1] and ω = 2
√
λ/ν a fixed number. We assume that the stress–strain relation

σ(γ ) in (2.1) is a trilinear function, defined as

σ(γ ) =
⎧⎨
⎩
μ1γ, γ ∈ (−1, γM ),

−μ2γ + b, γ ∈ (γM , γm),

μ3γ, γ ∈ (γm,∞),

(5.3)

see also Fig. 1. We thus consider locally a linear stress–strain relation σ(γ ) = σ ′γ , and
assume that σ ′ > 0. In the elliptic part, where σ ′ < 0, the exact solution is unstable and γ
will rapidly move to the hyperbolic part. The third order TVD Runge–Kutta time stepping
method (2.11) has an amplification matrix Q, that is equal to

Q = I d + A + 1

2
A2 + 1

6
A3, (5.4)

with A = Δt B and F(U (t)) = BU (t) after linearization of σ(γ ). For stability, the following
condition on the operator norm of Q must hold

||Q|| ≤ 1, (5.5)

which is equivalent in the hyperbolic part to∣∣∣∣1 + λi + 1

2
λ2

i + 1

6
λ3

i

∣∣∣∣ ≤ 1, (5.6)

with λi the eigenvalues of A for i = 1, . . . , n, and provides a restriction on the time stepΔt .
Since A depends on the polynomial order used in the LDG discretization, we will compute
now the time step restriction for various polynomial orders.

Since the LDG matrix A has a block Toeplitz structure on a uniform mesh when periodic
boundary conditions are applied, we can compute the eigenvalues using a discrete Fourier
transform. For piecewise constant polynomials, we obtain the matrix
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Fig. 2 Piecewise cubic
strain–stress relation
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Â(θ) = Δt

Δx

(
0 a

σ ′b − λ
Δx2 ab2 ν

Δx ab

)
, (5.7)

with

a = eiθ − 1, b = 1 − e−iθ , c = ab = −4 sin2
(
θ

2

)
and θ ∈ [−π, π).

The eigenvalues of Â, taking (5.1) and (5.2) into account, are equal to

λ1,2 = Δt

Δx

ν

Δx

⎛
⎝ c

2
±
√
(1 − ω2)

c2

4
+ σ ′c
(ν/Δx)2

⎞
⎠

= Δtμ

(
c ±

√
(1 − ω2)c2 + σ ′c

μ

)
, (5.8)
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Fig. 4 Phase transitions and
shocks in an elastic solid model
with trilinear stress–strain
relation σ, ω = 1.0, initial
condition A. a Strain γ . b
Velocity v

−0.4 −0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

x
(a)

(b)

γ

Exact solution
M=800
M=1600
M=3200

elliptic region

hyperbolic region

shock wave

hyperbolic region

subsonic phase
transition

−0.4 −0.2 0 0.2 0.4

−0.8

−0.6

−0.4

−0.2

0

x

v

0

Exact solution
M=800
M=1600
M=3200

with μ = ν
2(Δx)2

. Given a value of ω, σ ′ and μ we can compute now the time step Δt such
that λ1,2 satisfy (5.6) for all θ ∈ [−π, π).

For linear basis functions, we obtain the matrix Â(θ)

Â(θ) = Δt

(
0 p

σ ′q − λqpq νqp

)
⎛
⎜⎜⎝
γ0

γ1

v0

v1

⎞
⎟⎟⎠ , (5.9)

with

p = 1

Δx

(
eiθ − 1 1 − eiθ

3(eiθ − 1) −3(eiθ + 1)

)
, q = 1

Δx

(
1 − e−iθ 1 − e−iθ

3(e−iθ − 1) 3(1 + e−iθ )

)
.

The matrix Â(θ) has eigenvalues λi (θ), i = 1, . . . , 4, which can be used to compute the time
step constraint using (5.6) in the same way as done for constant basis functions. Unfortu-
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Fig. 5 Phase transitions and
shocks in an elastic solid model
with trilinear stress–strain
relation σ , initial condition A,
various ω, M = 800. a Strain γ .
b Velocity v
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nately, it is not possible to obtain completely analytic expressions for the time step. In the
computations performed in the next section, we use the parameters maxγ σ ′ = 20, β = 1 in
(5.1), (5.2) and determine the time step Δt = C F LΔx with

C F L ≤
⎧⎨
⎩

0.03, ω = 0.15,
0.05, ω = 1.0,
0.02, ω = 3.0,

(5.10)

for constant basis functions, and

C F L ≤
⎧⎨
⎩

0.006, ω = 0.15,
0.008, ω = 1.0,
0.01, ω = 3.0,

(5.11)

for linear basis functions. For quadratic basis functions, the numerical experiments show that
the CFL bounds should be (5.11) divided by five.

123



J Sci Comput (2014) 59:688–720 707

Fig. 6 Phase transitions in an
elastic solid model with trilinear
stress–strain relation σ , initial
condition B, various
ω, M = 800. a Strain γ . b
Velocity v
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6 Numerical Experiments

In this section, we describe three numerical experiments to investigate the performance of
the proposed LDG scheme. Examples 6.1 and 6.2 are model test cases for phase transition in
an elastic solid. Numerical simulations for compressible fluids with a liquid and vapor phase
and the Van der Waals equation of state are shown in Example 6.3. For the first test case,
which has a trilinear σ function, we computed the exact solution by following the analysis
in [2], with the kinetic relation specified in [1]. This model problem was also studied by
Cockburn and Gau [13] using a finite difference method, but their calculations only showed
convergence to the exact solution for certain values of the coefficients in the VC-equations.
In all computations, we employ the LDG scheme (2.5), (2.7) with numerical fluxes given by
(2.6) and (2.8).
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Fig. 7 Phase transitions in an
elastic solid model with trilinear
stress–strain relation σ , initial
condition C, various
ω, M = 800. a Strain γ . b
Velocity v
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Example 6.1 Piecewise linear stress–strain curve

For the trilinear stress–strain relation (5.3), we use the following parameters:

γM = 0.1, γm = 0.2, μ1 = 20, μ2 = 10, μ3 = 5, b = 3.

These conditions were also studied in [13]. The parameters ν, λ are chosen as (5.1) and (5.2),
and the initial conditions are given by:

A : γ (x, 0) =
{

0.3, x < 0,
0.4, x > 0,

v(x, 0) =
{

0, x < 0,
−0.8, x > 0,

(6.1)

which is the most challenging Riemann problem among all possible types of solutions, and
includes two phase transitions and two shocks.

123



J Sci Comput (2014) 59:688–720 709

Fig. 8 Phase transitions in an
elastic solid model with trilinear
stress–strain relation σ , initial
condition D, various
ω, M = 800. The solutions of
ω = 0.15 and ω = 1.0 are almost
the same. a Strain γ . b Velocity v
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The computational domain [−0.5, 0.5] is discretized uniformly by M elements, and we
impose the following boundary conditions:

{
γ L

0 = γ R
0 , γ R

M = γ L
M ,

vL
0 = vR

0 , vR
M = vL

M .

We tested the LDG scheme for the solution of the VC-equations (2.1) with piecewise constant,
linear and quadratic polynomial basis functions, and compared the results at time Tend = 0.05
with the exact solution. Here, we only present the results for quadratic polynomials.

First, we compare the exact solution and the numerical solutions in Fig. 4 for piecewise
quadratic basis functions and ω = 1.0 using various mesh resolutions. From this figure, it
is clear that the numerical solutions converge well to the exact solution. As expected, there
are shock waves and phase transitions in γ : for example, the left value of γ jumps from the

123



710 J Sci Comput (2014) 59:688–720

Fig. 9 Phase transitions in an
elastic solid model with trilinear
stress–strain relation σ , trace of
the numerical solution, ω = 1.0.
a Initial condition A. b Initial
condition B
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hyperbolic state 0.3 (phase 3) to 0.25 (also in phase 3) with a shock wave, then goes through
the elliptic region to 0.05 (phase 1), which gives a phase transition. Next, γ changes phase
from phase 1 to phase 3, followed by a shock to the right initial γ state.

Note also that the solution at the phase boundaries remains monotonic without the use
of a limiter. Figure 5 describes the numerical results of the LDG scheme with quadratic
polynomial basis functions for ω = 0.15, 1.0 and 3.0, when initially both γ values are
outside the elliptic region. The effect of changing ω on the solution near the phase boundary
is rather small, but relatively large near the shock waves in the hyperbolic region. As can be
seen by comparison with Fig. 5, values ω ≤ 1 give better agreement with the exact solution.

If we compare our LDG results with the results of the finite difference method discussed
in [13], then the LDG scheme shows the following improvements:

– for ω = 0.15 and a fixed mesh resolution e.g. M = 800, the solutions of the LDG
scheme in Fig. 5 are more accurate than those obtained with the finite difference method
presented in [13];
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Fig. 10 Phase transitions in an
elastic solid model with trilinear
stress–strain relation σ , trace of
the numerical solution, ω = 1.0.
a Initial condition C. b Initial
condition D
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– for the parameter β = 1.0, the numerical solutions of the finite difference method [13]
converge to a wrong solution, while the LDG results converge to the exact solution.

Apart from the initial condition (6.1), we also explore three other sets of initial conditions
depending on whether the initial value of γ is in the elliptic or hyperbolic region.

B: Both initial γ−values are in the hyperbolic region, but close to the elliptic region,

γ (x, 0) =
{

0.08, x < 0,
0.22, x > 0.

(6.2)

C: One initial γ−value is inside the elliptic region,

γ (x, 0) =
{

0.12, x < 0,
0.40, x > 0.

(6.3)
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Fig. 11 Phase transition in an
elastic solid model with cubic
stress–strain relation σ, ω = 1.0.
a Strain γ . b Velocity v
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D: Both initial γ−values are inside the elliptic region,

γ (x, 0) =
{

0.120, x < 0,
0.125, x > 0.

(6.4)

We use the same initial condition (6.1) for the velocity in all these test cases.
The results of the LDG calculations of γ, v for the initial conditions B, C, D are shown

in Figs. 6, 7, 8. From these results, we observe that the solutions oscillate and dissipate most
near the phase boundary when ω = 3.0. We also plot the traces of the numerical solution
(points connecting initial γ−values SL and SR) for various initial conditions in Figs. 9 and
10. One important observation is that the solutions never stay inside the elliptic region:

– when an initial state is outside the elliptic region, or the solution evolves to the boundary
of the hyperbolic region, the solution will immediately go through the elliptic region to
another hyperbolic region;
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Fig. 12 Phase transition in an
elastic solid model with cubic
stress–strain relation
σ, M =1,600. a Strain γ . b
Velocity v

−0.8 −0.4 0 0.4 0.8

0

0.4

0.8

1.2

x
(a)

(b)

γ
 

 

ω=0.15
ω=1.0
ω=3.0

elliptic region

hyperbolic region

hyperbolic region

subsonic phase
transition

shock wave

−0.8 −0.4 0 0.4 0.8
−0.06

−0.02

0.02

0.06

x

v

 

 

ω=0.15
ω=1.0
ω=3.0

– when the initial state is inside the elliptic region, the solution will move quickly to a
hyperbolic region.

Example 6.2 Cubic stress–strain curve

In this section, we present results of the LDG scheme for the VC-equations (2.1) with a
cubic stress–strain relation

σ(γ ) = γ (γ − 0.5)(γ − 1), (6.5)

see Fig. 2.
The initial data are given as:

γ0(x) =
{

1.07265, x < 0,
0.15000, x > 0,

v0(x) ≡ 0. (6.6)
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Table 1 Accuracy test for
modified VC-equations (6.8) with
the exact solution (6.7). Periodic
boundary condition. Uniform
meshes with M cells at time
t = 0.2

M L∞− error order L2− error order

P0 20 7.33E-02 – 5.54E-02 –

40 3.54E-02 1.05 2.67E-02 1.05

80 1.73E-02 1.03 1.32E-02 1.02

160 8.58E-03 1.01 6.55E-03 1.01

320 4.28E-03 1.00 3.27E-03 1.00

P1 20 8.11E-03 – 5.80E-03 –

40 2.05E-03 1.98 1.45E-03 2.00

80 5.14E-04 2.00 3.63E-04 2.00

160 1.28E-04 2.00 9.09E-05 2.00

320 3.21E-05 2.00 2.27E-05 2.00

P2 20 2.57E-04 – 1.91E-04 –

40 3.22E-05 2.99 2.34E-05 3.03

80 4.04E-06 3.00 2.89E-06 3.02

160 5.05E-07 3.00 3.59E-07 3.01

320 6.31E-08 3.00 4.47E-08 3.00

From the numerical results in Figs. 11 and 12, it is easy to see that:

1. the numerical results in Figs. 11 and 12 are very similar to those of the trilinear stress–
strain relation (Figs. 4, 5, 6, 7, 8, 9, 10): both of these two test cases include shocks and
phase transitions;

2. Figure 12 shows the results for quadratic polynomials using various ω values for a fixed
mesh resolution M = 1, 600, which indicates that solutions with larger values of ω have
more dissipation at the phase boundary;

3. comparing the LDG results with those of the finite difference method in [13], the LDG
results are much closer to the exact solution. For example, we don’t observe numer-
ical oscillations around the first phase transition in the LDG scheme (see Figs. 11
and 12), which exist in the velocity figures computed with the finite difference
method [13].

In order to verify the a priori error analysis discussed in Sect. 4, we also selected the
following smooth exact solution,

γ (x, t) = 0.6 + 0.5 sin(2πx + t), v(x, t) = 0.1 cos(2πx − t), (6.7)

which satisfies the VC system (2.1) with source terms a(x, t), b(x, t).
{
γt = vx + a(x, t),

vt = σ(γ )x + νvxx − λγxxx + b(x, t).
(6.8)

We compute the error of γ in the L∞ and L2 norm, and obtain the order of accuracy. The
results are presented in Table 1, which shows that for k-th order polynomials the LDG
discretization has k +1-th order accuracy. We emphasize that the numerical results are better
than the theoretical error estimate given in Sect. 4.
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Fig. 13 Van der Waals fluid,
initial condition E, ω = 1.0,
Tend = 0.15. a Specific volume.
b Velocity
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Example 6.3 General non-monotonic stress–strain curve

Next, we investigate the LDG scheme for (2.1) with a general non-monotonic stress–strain
relation. In this part, we consider a VC model for a compressible fluid with a liquid and vapor
phase [9], given by {

vt − ux = 0,
ut + P(v)x = νuxx − λvxxx ,

(6.9)

where v = 1/ρ is the specific volume, u the particle velocity. The Van der Waals equation
of state is given by:

P(v, T ) = RT

v − b
− a

v2 ,
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Fig. 14 Van der Waals fluid,
initial condition F,
ω = 1.0, Tend = 0.2. a Specific
volume. b Velocity
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where a, b, R are constants with the temperature T > 0 fixed. We use the non-dimensional
formulation in which:

a = 3, b = 1

3
, R = 8

3
,

and take the relative temperature to be T = 0.95 (See Fig. 3).
The system (6.9) under consideration is close to that for (1.2) except for the difference

between σ(γ ) and −P(v), which are both increasing-decreasing-increasing functions. With
appropriate viscosity and capillarity coefficients, for example ν = h, λ = ων2 with ω =
0.5, 1.0 and 3.0, we can obtain the same results as those obtained in [9]. Two test cases are
considered, both of them use meshes with 400, 800 and 1,600 elements.
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Fig. 15 Van der Waals fluid,
initial condition E,
M = 800, Tend = 0.15. a
Specific volume. b Velocity
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E: Propagating phase boundary with initial conditions:

v(x, 0) =
{

0.6, x < 0,
1.5, x > 0,

u(x, 0) =
{−2.0, x < 0,

0.0, x > 0.

The solutions of the LDG method are considered at time Tend = 0.15.
F: Stationary phase boundary with initial conditions:

v(x, 0) =
{

0.684117091, x < 0,
1.72700257, x > 0,

u(x, 0) ≡ 0. (6.10)

This initial condition is very close to the Maxwell stationary phase boundary and the
LDG method should keep the Maxwell discontinuity stationary. The numerical results
are shown at Tend = 0.2.
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Fig. 16 Van der Waals fluid,
initial condition F,
M = 800, Tend = 0.2. a Specific
volume. b Velocity
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Figures 13 and 14 show solutions obtained with the LDG method for various mesh reso-
lutions M = 400, 800,1,600; Figs. 15 and 16 show solutions with various values ofω. From
these figures, we can draw several conclusions:

1. The numerical solutions converge consistently;
2. Figures 13 and 15 show that the propagating phase boundary case also includes both

shock waves and phase transitions;
3. Figures 14 and 16 show that the LDG method keeps the Maxwell discontinuity stationary;
4. Figure 15 shows for various values of ω that the width of the jump in the specific volume
v is larger for bigger ω.

From this test case, we conclude that the LDG method that we presented in this paper also
applies to the VC system (2.1) with general nonlinear stress–strain relations σ .
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7 Conclusion

In this article, we have designed, analyzed and tested an LDG method for the numerical
solution of the VC equations modeling the propagation of phase transitions in solids [13] and
fluids [9]. L2−stability is proved for general solutions of the VC system. We also provide an
a priori error estimate of the semi-discrete LDG method when the solutions are assumed to
be sufficiently smooth and the stress–strain relation in (1.1) and (2.1) is linear. Also, a linear
stability analysis is performed to obtain an estimate for a stable time step in the Runge–Kutta
time integration method. Numerical experiments show that the results of the LDG scheme
converge well to the exact solution of the phase transition model given by (1.1). Moreover,
the LDG scheme can also be applied to a model of Van der Waals fluids [9] when the artificial
viscosity is taken to be proportional toΔx . The error analysis for a linear stress–strain relation
shows that the LDG discretization of the phase transition model (1.1) is of optimal order,
when λ ∼ Ch and λ, ν ↓ 0, with ω = 2

√
λ/ν fixed. For finite values of λ, ν, the error bound

is suboptimal, but numerical results indicate that in practice still an optimal convergence rate
is obtained.

In the future, we will consider the extension of the LDG scheme to the non-isothermal
Navier–Stokes–Korteweg equations with a Van der Waals equation of state [21]. This will
be a challenge because this non-isothermal flow model contains highly nonlinear high-order
terms.
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