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Abstract: The toughness of a (noncomplete) graph G is the minimum

value of t for which there is a vertex cut A whose removal yields |A|/t com-

ponents. Determining toughness is an NP-hard problem for general input

graphs. The toughness conjecture of Chvátal, which states that there exists

a constant t such that every graph on at least three vertices with tough-

ness at least t is hamiltonian, is still open for general graphs. We extend
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some known toughness results for split graphs to the more general class

of 2K2-free graphs, that is, graphs that do not contain two vertex-disjoint

edges as an induced subgraph. We prove that the problem of determining

toughness is polynomially solvable and that Chvátal’s toughness conjecture

is true for 2K2-free graphs. C© 2013 Wiley Periodicals, Inc. J. Graph Theory 75: 244–255, 2014
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1. INTRODUCTION

Much of the background for this article and references to related work can be found

in [1]. A good reference for any undefined terms in graph theory is [4] and complexity

theory is [10]. We consider only undirected graphs with no loops or multiple edges. We

begin by setting up some standard notation and terminology.

Let ω(G) denote the number of components of a graph G. A vertex cut of a connected

graph G = (V, E ) is a set S ⊆ V with ω(G − S) > 1. A graph G is said to be t-tough if

|S| ≥ tω(G − S) for every vertex cut S of G. The toughness of G, denoted τ (G), is the

maximum value of t for which G is t-tough (taking τ (Kn) = ∞ for the complete graph

Kn on n ≥ 1 vertices). Hence if G is not a complete graph, τ (G) = min{|S|/ω(G − S)},

where the minimum is taken over all vertex cuts S of G. Following Plummer [16], a

vertex cut S of G is called a tough set if τ (G) = |S|/ω(G − S), that is, a tough set is a

vertex cut S of G for which this minimum is achieved. A graph G is hamiltonian if G

contains a Hamilton cycle, that is, a cycle containing every vertex of G. A 2-factor of G

is a 2-regular spanning subgraph of G. Hence, a Hamilton cycle is a connected 2-factor.

Historically, most of the research on toughness has been based on a number of con-

jectures in [6]. The most challenging of these conjectures, which is still open, states

that there is a constant t such that every t-tough graph is hamiltonian. This conjecture is

called Chvátal’s Conjecture and has been shown to be true when restricted to a number

of graph classes [1], including planar graphs, claw-free graphs, co-comparability graphs,

and chordal graphs.

A graph is chordal if every cycle on at least four vertices contains a chord, that is, an

edge joining two vertices that are not adjacent on the cycle. Alternatively, one can view

a chordal graph as the intersection graph of a family of subtrees of a tree. It was shown

in [5] that every 18-tough graph on at least three vertices is hamiltonian, but this result

is probably far from best possible. The best known negative result is from [2] where an

infinite class of chordal graphs with toughness close to 7/4 having no Hamilton path is

constructed.

There are several subclasses of chordal graphs, however, for which the smallest tough-

ness guaranteeing hamiltonicity is known. A graph is called a split graph if its vertex set

can be partitioned into a clique and an independent set; alternatively a split graph can

be viewed as the intersection graph of a family of connected subgraphs of a star (and so

split graphs are chordal graphs). It was shown in [13] that every 3/2-tough split graph on

at least three vertices is hamiltonian, and that this is best possible in the sense that there

is a sequence {Gn}
∞
n=1 of split graphs with no 2-factor and τ (Gn) → 3/2. This result

was generalized by Kaiser, Král, and Stacho [11], who showed that 3/2-tough spiders

are hamiltonian; a spider is the intersection graph of a family of connected subgraphs

of a subdivision of a star (and so spiders are chordal graphs). Keil [12] showed that
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every 1-tough interval graph is hamiltonian (an interval graph is the intersection graph

of subpaths of a path), which is clearly best possible. Deogun et al. [7] generalized this

by showing that 1-tough co-comparability graphs (not a subclass of chordal graphs) are

hamiltonian.

In this article, we consider a superclass of split graphs called 2K2-free graphs. These are

graphs that do not contain an induced copy of 2K2, the graph on four vertices consisting

of two vertex-disjoint edges. It is easy to see that every split graph is a 2K2-free graph.

One can also easily check that every cochordal graph (i.e., a graph that is the complement

of a chordal graph) is 2K2-free and so the class of 2K2-free graphs is as rich as the class

of chordal graphs. In Section 3, we show that Chvátal’s Conjecture holds for 2K2-free

graphs by proving the following theorem.

Theorem 1. Every 25-tough 2K2-free graph on at least three vertices is hamiltonian.

While this establishes Chvátal’s Conjecture for a new graph class, like the result

for chordal graphs [5], our bound is very likely to be far from extremal. The proof of

Theorem 1 relies on the very restrictive structure of triangle-free 2K2-free graphs, and

we are able to prove a sharp result for such graphs—triangle-free 2K2-free graphs are

hamiltonian if and only if they are 1-tough.

Research on toughness has also focused on computational complexity issues. It was

shown in [3] that the problem of recognizing t-tough graphs is coNP-complete for every

fixed positive rational t. This implies that it is NP-hard to compute the toughness of a

general input graph. On the other hand, toughness can be computed efficiently when the

input graph is restricted to certain graph classes; see [1] for more details. In particular,

recognizing t-tough graphs is polynomially solvable within the classes of claw-free

graphs and split graphs [18]. For many other interesting classes, this complexity question

is still open, for example, for (maximal) planar graphs and chordal graphs.

In Section 2, we extend the result of [18] on split graphs by showing that the toughness

of 2K2-free graphs can be computed in polynomial time.

Theorem 2. The toughness of a 2K2-free graph can be determined in polynomial time.

We note that while many other problems that are NP-hard in general can be solved in

polynomial time on 2K2-free graphs, the problem of deciding whether a 2K2-free graph

is hamiltonian is NP-complete; indeed, the Hamilton cycle problem is even NP-complete

on split graphs [15]. We refer the interested reader to [14] for more details and references

to other work on 2K2-free graphs.

2. COMPLEXITY

In this section, we show how to determine the toughness of 2K2-free graphs in polynomial

time. For a graph G = (V, E ), we denote by NG(I) the union of the sets of neighbors of

vertices of I ⊆ V in V \ I. We begin by stating two properties of 2K2-free graphs. The

first of them follows immediately from the definition and the second one was proved in

[9].

Observation 1. A graph G = (V, E ) is 2K2-free if and only if for every A ⊂ V at most

one component of the graph G − A contains edges.
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Lemma 1. [9] A 2K2-free graph on n vertices contains at most n2 maximal independent

sets; moreover, all of them can be listed in time O(n2).

Proof of Theorem 2. Given a 2K2-free graph G = (V, E ) on n vertices as input, use

the following algorithm.

Step 1. List all maximal independent sets of G using the (implicit) polynomial-time

algorithm from [9]. Denote them by I1, I2, . . . , Ik, where k ≤ n2.

Step 2. For every i ∈ {1, 2, . . . , k} consider the split graph Gi obtained from G by adding

all necessary edges that turnV \ Ii into a clique in Gi. Determine the toughness τi = τ (Gi)

using the (implicit) polynomial-time algorithm from [18].

Output. t = min{τi | i ∈ {1, 2, . . . , k}}.

Clearly, the algorithm outputs t in polynomial time. We show that t = τ (G). Let S be a

tough set of G. Then by Observation 1, at most one component of G − S contains edges;

the other components induce a nonempty independent set I in G. Clearly, NG(I) is also a

vertex cut, NG(I) ⊆ S and ω(G − NG(I)) ≥ ω(G − S). If NG(I) 6= S then |NG(I)| < |S|

and hence

|NG(I)|

ω(G − NG(I))
<

|S|

ω(G − S)
,

contradicting that S is a tough set of G. Thus, NG(I) = S. Let I j be a maximal independent

set of G containing I. Then S ∩ I j = ∅, since otherwise I j is not independent. Let G j be

obtained from G by turning V \ I j into a clique, and let τ j = τ (G j). Then ω(G j − S) =

ω(G − S), and so

t = min
i

τi ≤ τ j ≤
|S|

ω(G j − S)
=

|S|

ω(G − S)
= τ (G).

For inequality in the other direction, suppose t = τ j′ = mini τi, and suppose S j′ is

a tough set of G j′ . Then ω(G − S j′ ) ≥ ω(G j′ − S j′ ), since adding edges to G cannot

increase the number of components of G − S j′ . Hence,

τ (G) ≤
|S j′ |

ω(G − S j′ )
≤

|S j′ |

ω(G j′ − S j′ )
= τ j′ = t.

We conclude that t = τ (G), proving Theorem 2. �

3. TOUGHNESS AND HAMILTONICITY

In this section, we prove Chvátal’s Conjecture for 2K2-free graphs by proving Theorem 1.

Note that since all complete graphs on at least three vertices are hamiltonian, we will

restrict our attention to noncomplete graphs on at least three vertices.

We will repeatedly use the following easy proposition.

Proposition 1. Let G be a noncomplete t-tough graph. Then δ(G) ≥ 2t.

Proof. Let v be a vertex of degree δ(G). Since N(v) is a vertex cut of G and G is

t-tough, |N(v)| ≥ 2t. �
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In order to prove Theorem 1, we shall require some structural properties of triangle-free

2K2-free graphs.

A. Triangle-Free and Claw-Free Cases

We begin this subsection by giving a simple, but useful, characterization of triangle-free

2K2-free graphs.

We say that a graph G is of C∗
5 -type if its vertex set can be partitioned into five disjoint

nonempty sets A1, A2, . . . , A5 such that each Ai is an independent set, Ai ∪ Ai+1 induces

a complete bipartite graph in G for all i (taken modulo 5), and the union of any other pair

of sets Ai ∪ A j induces an independent set.

Lemma 2. Let G = (V, E ) be a connected triangle-free 2K2-free graph. Then either G

is bipartite or G is of C∗
5 -type.

Proof. Suppose G is not bipartite. Then G contains an odd cycle. Since G is triangle-

free and 2K2-free, this implies G contains an induced 5-cycle C = x1x2x3x4x5x1, and

every vertex of G has at most two neighbors in C. If x ∈ V \ V (C) has one neighbor in

C, say x1, then xx1 and x3x4 induce a copy of 2K2; if x has no neighbors in C, then by

connectivity x has at least one neighbor y in G. Since y has at most two neighbors in C,

there is some edge xixi+1 in C such that y is not adjacent to xi and xi+1. But then xixi+1 and

xy induce a copy of 2K2. Thus, every vertex of G has exactly two neighbors in C. Since

G is triangle-free, every vertex v of G has neighbors xi−1 and xi+1 in C for some i (taken

modulo 5). Let Ai denote the set of vertices adjacent to xi−1 and xi+1 so that the Ai’s form

a partition of the vertices. By triangle-freeness, each Ai ∪ Ai+2 is an independent set, and

by 2K2-freeness, each Ai ∪ Ai+1 induces a complete bipartite graph in G (if yi ∈ Ai and

yi+1 ∈ Ai+1 are nonadjacent, then xi−1yi and yi+1xi+2 induce a copy of 2K2). Thus, G is

of C∗
5 -type. �

Lemma 2 implies the following corollary. We write α(G) for the size of the largest

independent set of G.

Corollary 3. Let G be a connected 2K2-free graph on n vertices.

r If G is triangle-free, then α(G) ≥ 2n/5.
r If G is noncomplete and 4-tough, then G contains at least two vertex-disjoint

triangles.

Proof. Statement (i) follows immediately from Lemma 2.

Suppose that, contrary to (ii), G = (V, E ) is a noncomplete 4-tough 2K2-free graph

with no pair of vertex-disjoint triangles. Thus, we can make G triangle-free by removing

at most three vertices, and so, by (i) and using Proposition 1, G has an independent set

I with |I| ≥ 2(n − 3)/5 ≥ 2. Thus, V \ I is a vertex cut with |V \ I| ≤ 3(n−3)

5
+ 3. Since

G is 4-tough, we have

4 ≤
|V \ I|

ω(G − (V \ I))
≤

3(n − 3)/5 + 3

2(n − 3)/5
≤

3

2
+

3

2
= 3,

a contradiction. �

Now we prove that Chvátal’s Conjecture is true for triangle-free 2K2-free graphs;

moreover, we give the extremal lower bound on toughness that guarantees hamiltonicity.
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FIGURE 1. The special graphs.

While the proof is conceptually simple, it is technically awkward, and this makes it longer

than one might expect.

Theorem 4. Let G = (V, E ) be a triangle-free 2K2-free graph on at least three vertices.

Then G is hamiltonian if and only if G is 1-tough.

Proof. Since 1-toughness is clearly a necessary condition for hamiltonicity, it suffices

to prove that G is hamiltonian if G is 1-tough. For this, let G be a 1-tough triangle-free

2K2-free graph on n ≥ 3 vertices. Then G is 2-connected and by Lemma 2, G is either

bipartite or of C∗
5 -type.

First, suppose G is bipartite. Since G is 1-tough, the bipartition must be into two equal-

sized sets X = {x1, . . . , xk} and Y = {y1, . . . , yk}. Since G is 2K2-free, the neighborhoods

of the vertices in X are nested: we can order them so that N(xi) ⊆ N(x j) for all i ≤ j.

Since G is 1-tough, |N(xi)| > i for i = 1, . . . , k − 1 and N(xk) = Y . Thus, we can order

the vertices of Y such that N(xi) ⊇ {y1, . . . , yi+1} for i = 1, . . . , k − 1. This immediately

gives us the Hamilton cycle y1x1y2x2 · · · ykxky1.

Next suppose G is of C∗
5 -type with sets Ai of cardinality ai as in Lemma 2, where

indices are taken modulo 5. We choose an indexing of the sets Ai in such a way that

a1 − a5 = maxi |ai+1 − ai|. Note that G is 1-tough if and only if

ai−2 − ai−1 + ai − ai+1 + ai+2 ≥ 0 (1)

a j−1 − a j + a j+1 ≥ 1 (2)

for all i, j ∈ {1, . . . , 5}, because any tough set S of G is of the form S = Ai−2 ∪ Ai ∪ Ai+2

for some i or of the form S = A j−1 ∪ A j+1 for some j.

We prove by induction on n that G is hamiltonian. It is straightforward to verify that the

graphs in Figure 1 (we call them the special graphs) as well as the graphs with a1 = a5

are hamiltonian. This gives us the base of the induction.

For the induction step, assume that G is any 1-tough not special C∗
5 -type graph with

a1 ≥ a5 + 1 ≥ 2. Then a2 ≥ 2 since otherwise, by our choice of cyclic indexing, we have

a2 = a5 = 1 and a1 ≥ 2, which contradicts j = 1 in (2).

First, we show that the inequalities (1) and (2) remain true if we replace a1 and a2,

respectively, with a′
1 = a1 − 1 and a′

2 = a2 − 1. It is clearly true for i = 1, 2, 3, 5 in

(1) and j = 1, 2, 4 in (2). Since a2 − a3 + a4 ≥ 1 and a1 − a5 ≥ 1 we have a′
2 − a3 +

a4 − a5 + a′
1 = a2 − a3 + a4 − a5 + a1 − 2 ≥ 0, proving i = 4 of (1). Since a4 ≥ 1 and

a1 − a5 ≥ 1 we have a4 − a5 + a′
1 = a4 − a5 + a1 − 1 ≥ 1, proving j = 5 in (2).
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Finally, it remains to prove j = 3 in (2). If a1 ≥ a5 + 2, then by (1) we have a1 + a3 ≤

a2 + a4 + a5 ≤ a2 + a4 + a1 − 2, and rearranging gives a′
2 − a3 + a4 ≥ 1, as required.

Thus, we may assume a1 = a5 + 1; by our choice of a1 and a5 we have that for every i

|ai − ai−1| ≤ 1, (3)

and in particular, a3 − a4 ≤ 1. If a2 ≥ 3 or a3 ≤ a4, then a′
2 − a3 + a4 = a2 − a3 + a4 −

1 ≥ 1, as required. The only case remaining is when a5 = α, a1 = α + 1, a2 = 2, a3 =

β, a4 = β − 1 for some integers α, β, and due to (3), we must have α ∈ {1, 2} and

β ∈ {2, 3}. But this is impossible since the case α = 1, β = 2 corresponds to the special

graph a), the case α = 2, β = 3 corresponds to the special graph c), and the two other

cases yield the special graph b).

So, if we pick arbitrary x1 ∈ A1 and x2 ∈ A2 then the graph G′ = G − {x1, x2} is 1-tough

and of C∗
5 -type. Then by induction, G′ has a Hamilton cycle H ′. Taking two arbitrary

vertices y1 ∈ A1 \ {x1} and y2 ∈ A2 \ {x2} on H ′, if y1y2 is an edge of H ′, then we can

remove y1y2 and include x1y2, x2y1, and x1x2 to form a Hamilton cycle H of G. If y1y2

is not an edge of H ′ for any y1 ∈ A1 \ {x1} and y2 ∈ A2 \ {x2}, then let z1, z′
1 ∈ A5 and

z2, z′
2 ∈ A3 be the two neighbors in H ′ of y1 and y2, respectively. We remove the edges

y1z1 and y2z2 from H ′ and replace them with x1z1 and x2z2 to form H ′′; H ′′ is the union

of two paths that together span every vertex of G. We obtain a Hamilton cycle H of G

either by adding the edges x1x2 and y1y2, or by adding the edges x1y2 and y1x2 to H ′′. �

We require the following refinement of the previous theorem.

Lemma 3. Let G be a connected triangle-free 2K2-free graph on n vertices and suppose

that α(G) < n/2. Then G is of C∗
5 -type and for every edge e of G, there is a Hamilton

cycle of G that includes e.

Proof. Since α(G) < n/2, G cannot be bipartite, and so, by Lemma 2, G is of C∗
5 -type

with independent sets A1, . . . , A5. Recall that G is 1-tough if and only if the cardinalities

of Ai satisfy (1) and (2). Using α(G) < n/2, one can easily check that all 10 inequalities

(1) and (2) hold (and so G is 1-tough), and that in fact the inequalities (1) are strict. By

Theorem 4, G has a Hamilton cycle H.

Suppose the given edge e is not in H. Without loss of generality, let e = xy with

x ∈ A1 and y ∈ A5. If H has no edges connecting A1 with A5, then every edge of H

connects A2 ∪ A4 with A1 ∪ A3 ∪ A5, implying that |A2| + |A4| = |A1| + |A3| + |A5|. This

contradicts that (1) holds strictly, and so H contains an edge ab with a ∈ A1 and b ∈ A5.

By symmetry, we may simply switch the roles of a, b and x, y, respectively, to give a

Hamilton cycle of G passing through e = xy. �

Before moving on to our main result, we digress to prove the following result, which

stands independently from the rest of the article.

Theorem 5. Let G be a claw-free 2K2-free graph on at least three vertices. Then G is

hamiltonian if and only if G is 1-tough.

We use a fact proved in [17], namely that every 2-connected 2K2-free graph G has

a dominating cycle, that is, a cycle C such that G − V (C) is an independent set. For a

vertex x on C, we write x+ and x− for the successor and predecessor of x along a fixed

orientation of C. For vertices a, b on C, we write P(a, b) for the path from a to b along

the fixed orientation of C.
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Proof of Theorem 5. Let G be a 1-tough (and so 2-connected) claw-free, 2K2-free

graph on at least three vertices, and suppose G is not hamiltonian. Let C be a longest

dominating cycle of G, and fix an orientation of C. We show that C is a Hamilton cycle. If

not, let v ∈ V (G) \ V (C) and let x1 and x2 be two distinct neighbors of v on C. Obviously,

by the choice of C, vx+
i 6∈ E(G) and vx−

i 6∈ E(G). Hence, since G is claw-free, x−
i x+

i ∈

E(G). Considering the edges vx1 and x−
2

x+
2

, and using 2K2-freeness, at least one of x−
2
, x+

2

is a neighbor of x1, say x−
2

x1 ∈ E(G). Then the cycle x1vx2P(x2, x−
1
)x−

1
x+

1
P(x+

1
, x−

2
)x−

2
x1

is a longer dominating cycle than C, a contradiction. �

B. General Case

The proof of Theorem 1 follows immediately from Lemmas 4 and 5. Let G be a 2K2-free

graph. We say that G has a path-triangle factor (PT-factor for short) if G has a spanning

subgraph in which each component is either a triangle (a T-component) or a pair of

vertex-disjoint triangles connected by a path that has exactly one vertex in common with

each of the triangles (a TPT-component). In a TPT-component, the edge of a triangle that

is not incident with a vertex of the connecting path is called the free edge of that triangle.

Lemma 4. Let G be a 2K2-free graph. If G has a PT-factor, then G is hamiltonian.

Proof. Suppose G is a 2K2-free graph with a PT-factor, and let F be a PT-factor with

a minimum number of components. We first show that F has only one component.

If F has two T-components, then there is an edge between them since G is 2K2-free.

Thus, the two T-components can be reduced to a single TPT-component, contradicting

the choice of F .

Suppose F contains two TPT-components H1 and H2 where Hi consists of a path Qi

connecting the triangles Ti and T ′
i for i = 1, 2. Let ei be the free edge of T ′

i . Since G is

2K2-free, there must be an edge e connecting one end of e1 to one end of e2. We can

now construct a long path P from T1 to T2 using all the edges of Q1 and Q2, the edges e,

e1, and e2, and using another (suitable) edge from T ′
1 and another (suitable) edge from

T ′
2 . Together, T1, P, and T2 form a single TPT-component that includes all vertices of

H1 and H2. This contradicts our choice of F . In a similar way, a T-component and a

TPT-component in F can be reduced to a single TPT-component.

Thus F has a single component, which must be a TPT-component in case G is not

a complete graph. Let x1x2 and y1y2 be the free edges of the two triangles in this TPT-

component. It is easy to see that for every i ∈ {1, 2} and j ∈ {1, 2} there is a Hamilton

path in G connecting xi and y j. Since G is 2K2-free, there is an edge xiy j in G for some

i, j ∈ {1, 2}. Then the Hamilton path from xi to y j mentioned above combined with the

edge xiy j forms a Hamilton cycle of G. �

Lemma 5. Every 25-tough 2K2-free graph on at least three vertices has a PT-factor.

Proof. Let G = (V, E ) be a t-tough 2K2-free graph with t ≥ 25. By Proposition 1,

δ(G) ≥ 50, and by Corollary 3 (ii), G has at least two vertex-disjoint triangles, say T1

and T2. So G has vertex-disjoint triangles T1, T2, . . . , Tk such that the (possibly empty)

set of vertices X = V \ ∪ jTj induces a triangle-free subgraph G[X] of G. If X is empty,
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then we have a PT-factor as required. Otherwise, let p = |X | and let T denote the set of

triangles. We consider two cases.

Case 1. There is an independent set I of size at least p/2 in G[X].

First, we show that k ≥ 4p. If p ≤ 3, then since δ(G) ≥ 50, one easily obtains k ≥

4p. Otherwise, the removal from G of all vertices not in I produces at least p/2 ≥ 2

components, and therefore (3k + p/2)/(p/2) ≥ t ≥ 25. This yields k ≥ 4p.

We say that a vertex of X is adjacent to a triangle Tj of T if it is adjacent to at least one

vertex of Tj. We partition X into two sets A and B as follows: given x ∈ X we include x

in A if it is adjacent to fewer than 2p triangles from T and include x in B otherwise. We

observe that the set A is independent: if xy is an edge in G[A], then since both x and y are

adjacent to fewer than 2p of at least 4p triangles in T, there is a triangle T ∗ that is neither

adjacent to x nor to y. But then any edge of T ∗ together with xy induces a copy of 2K2, a

contradiction. Set a = |A| so that |B| = p − a.

Next, we show how to cover the set A by a set P(A) of disjoint paths of length 2 in

such a way that

(a) each vertex of A is an inner vertex of a path;

(b) all end vertices of the paths are either in B or in triangles of T; and

(c) each triangle of T contains an end vertex of at most one path.

In order to do this, consider an auxiliary bipartite graph H with a bipartition into sets

A and B ∪ T , where T = {t1, t2, . . . , tk} is a set of vertices corresponding to the triangles

of T. The edges of H consist of all edges joining vertices of A and B in G together with

all edges xt j for which x ∈ A is adjacent to the triangle Tj ∈ T. It is not hard to see that

having vertex-disjoint paths of length 2 satisfying (a), (b), and (c) is equivalent to having

a subgraph of H in which every vertex in A has degree 2 and all other vertices have

degree at most 1. Such a subgraph exists, for if not, then by the defect form of Hall’s

Theorem, there is a subset A′ ⊂ A whose neighborhood NH (A′) in H has cardinality less

than 2|A′|. But then the neighborhood NG(A′) of A′ in G has cardinality less than 6|A′|.

This violates the toughness condition on G, since taking NG(A′) as our vertex cut, we

find that G − NG(A′) has at least |A′| components (recall A is independent) and so

25 ≤ t ≤
|NG(A′)|

ω(G − NG(A′))
≤

6|A′|

|A′|
= 6,

a contradiction. (Note that if |A′| = 1, then NG(A′) may not be a vertex cut, but the

fact that |NG(A′)| < 6|A′| then violates the minimum degree condition on G.) Thus, G

contains a set P(A) of vertex-disjoint paths of length 2 satisfying conditions (a), (b), and

(c) above.

Call a triangle of T taken if it contains an end vertex of one of the paths in P(A), and

call it nontaken otherwise. Note that there are at most 2a taken triangles. By the definition

of B, each vertex of B is adjacent to at least 2p triangles of T and so adjacent to at least

2p − 2a nontaken triangles of T. Since |B| = p − a, we can greedily match each vertex

b ∈ B to two nontaken triangles adjacent to b such that each nontaken triangle is matched

with at most one vertex of B. Thus, we have a set P(B) of vertex-disjoint paths of length

2 such that

r each vertex of B is an inner vertex of a path;
r all end vertices of the paths are in nontaken triangles of T; and
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r each triangle of T contains an end vertex of at most one path.

Now we are ready to construct a PT-factor of G. Consider the subgraph F of G formed

from the edges of P(A), P(B), and T. Note that the edges of P(A) ∪ P(B) form a forest

F ′, and each leaf of that forest is a vertex of exactly one triangle from T. Note also that

in F ′, each a ∈ A has degree 2, each b ∈ B has degree 2 or 3, and each b ∈ B is adjacent

to exactly two leaves. We construct a subgraph F∗ of F as follows: for each b ∈ B that

has degree 3 in F , we remove one edge of F between b and a triangle of T. It is easy to

see that F∗ is a PT-factor of G.

Case 2. α(G[X]) < p/2

By Observation 1, G[X] is the union of one nontrivial component J and an independent

set I. Since α(G[X]) < p/2 = |X |/2, we have α(J) < |J|/2. By Lemma 3, J is of C∗
5 -type

and for every edge e in J there is a Hamilton cycle Ce of J that includes e.

Recall that k ≥ 2. We say that a vertex of J is bad if it is nonadjacent to all of the

triangles in T. Since G is 2K2-free, the set of all bad vertices is independent. Since J

contains an odd cycle, there must be an edge e = xy in J such that neither x nor y is bad.

Furthermore, every triangle in T is adjacent to x or to y. Since these vertices are not bad,

we can choose two different triangles T1, T2 in T such that x is adjacent to T1 and y is

adjacent to T2. Combined with the Hamilton path Ce − e they form a TPT-component

covering all vertices of J.

To finish the construction of a PT-factor, we have to match every vertex v ∈ I with

two distinct triangles from T \ {T1, T2} such that no triangle is matched with two dif-

ferent vertices. As in Case 1, by the defect form of Hall’s Theorem, this fails if and

only if there is a subset I′ ⊆ I adjacent to fewer than 2|I′| triangles, that is, |NG(I′)| <

6|I′| + 6. If |I′| = 1, this violates that δ(G) ≥ 50. If |I′| > 1 then NG(I′) is a vertex cut

with ω(G − NG(I′)) ≥ |I′|, violating that G is 25-tough. This completes the proof of

Lemma 5. �

4. CONCLUSION

Recall that in [13] it was shown that every 3/2-tough split graph on at least three vertices

is hamiltonian, and that this result is best possible. Since split graphs are 2K2-free, this

shows that we cannot decrease the bound in Theorem 1 below 3/2. Thus, there is a large

gap between our upper bound of 25 and the lower bound of 3/2. We are not sure whether

the lower bound is extremal, but we are almost certain that the upper bound is not! We

believe it may be possible to extend the method of PT-factors to obtain a bound close to

6 (note that Case 1 in Lemma 5 is the only place where toughness 25 is used), but we

believe a different approach will be needed to obtain the extremal bound.

For 2-tough 2K2-free graphs, we can use the existence of a 2-factor (guaranteed by a

result in [8]) to obtain a fairly long cycle. It is not difficult to see how to combine the

cycles of a 2-factor in a 2K2-free graph to obtain a long cycle that misses at most one

vertex of each cycle in the 2-factor (and that picks up all the vertices of the triangles of

the 2-factor). In particular one can prove the following result. We leave the details to the

reader.

Theorem 6. Let G be a 2K2-free graph on n ≥ 3 vertices and let k be the number of

cycles of length at least 4 in a 2-factor of G. Then G has a cycle of length at least n − k.
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It is not clear whether we can use the above result as a starting point for proving that

2-tough 2K2-free graphs are hamiltonian, let alone for obtaining a best possible toughness

result for general 2K2-free graphs.
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