
The Complexity of Rerouting Shortest Paths✩

Paul Bonsma1

Humboldt University Berlin, Computer Science Department, Unter den Linden 6, 10099

Berlin, Germany.

Abstract

The Shortest Path Reconfiguration problem has as input a graph G with unit
edge lengths, with vertices s and t, and two shortest st-paths P and Q. The
question is whether there exists a sequence of shortest st-paths that starts with
P and ends with Q, such that subsequent paths differ in only one vertex. This
is called a rerouting sequence.

This problem is shown to be PSPACE-complete. For claw-free graphs and
chordal graphs, it is shown that the problem can be solved in polynomial time,
and that shortest rerouting sequences have linear length. For these classes, it is
also shown that deciding whether a rerouting sequence exists between all pairs
of shortest st-paths can be done in polynomial time. Finally, a polynomial time
algorithm for counting the number of isolated paths is given.

Keywords: shortest path, reconfiguration, reachability, PSPACE-hard,
claw-free graph, chordal graph

1. Introduction

In this paper, we study the Shortest Path Reconfiguration (SPR) Problem,
introduced by Kamiński et al [16, 17]. The input consists of a graph G, with
vertices s and t, and two shortest st-paths P and Q. The question is whether
P can be modified to Q by changing one vertex at a time, and maintaining
a shortest st-path throughout. Edges have unit lengths, so all shortest st-
paths have the same number of vertices. We define the following solution graph
SP(G, s, t): its vertex set is the set of all shortest st-paths in G. Two paths P
and Q are adjacent if they differ in one vertex, so |V (P)\V (Q)| = 1 (and thus
|V (Q)\V (P)| = 1). SPR can now be reformulated as: does there exist a walk
from P to Q in SP(G, s, t)? Such a walk is also called a rerouting sequence.

✩An extended abstract of this paper appeared in the proceedings of MFCS 2012. This

is the author’s version of the accepted journal paper. The published version is available at

http://dx.doi.org/10.1016/j.tcs.2013.09.012.
1Email adress: bonsma@informatik.hu-berlin.de. Current address: University of Twente,

Faculty of EEMCS, PO Box 217, 7500 AE Enschede, the Netherlands.

Preprint submitted to Elsevier January 30, 2014

Shortest paths form a central concept in graph theory, optimization, algo-
rithms and networking. Questions related to rerouting (shortest) paths are often
studied in networking applications. Although we are not aware of an applica-
tion where this reachability question is studied, it is a very natural question,
and its study may provide insight to practical rerouting problems. Nevertheless,
the main motivation for this research is of a more theoretical nature. Similar
reconfiguration problems can be defined based on many different combinatorial
problems: Consider all solutions to a problem (or all solutions of at least/at
most given weight, in the case of optimization problems), and define a (sym-
metric) adjacency relation on them. Such problems have been studied often in
recent literature. Examples include reconfiguration problems based on satisfia-
bility problems [11], independent sets [12, 14, 18], vertex colorings [1, 4, 5, 6, 7],
matchings [14], list edge-colorings [15], matroid bases [14], subsets of a (multi)set
of numbers [10]. Of course, to obtain a reconfiguration problem, one needs to
define an adjacency relation between solutions. Usually, the most natural adja-
cency relation is considered, e.g. two independent sets I and J are considered
adjacent in [14] if J can be obtained from I by removing one vertex and adding
another; boolean assignments are considered adjacent in [11] if exactly one vari-
able differs, etc. We remark that in the context of local search, similar problems
have been studied earlier, with the important distinction that the neighborhood
is not symmetric, and the objective is to reach a local optimum, instead of a
given target solution, see e.g. [19].

An initial motivation of these questions was to explore the solution space of
NP-hard problems, to study e.g. the performance of heuristics [11] and random
sampling methods [5]. This has revealed interesting, often recurring patterns in
the complexity behavior of these problems. This is perhaps best exemplified by
the known results on the reconfiguration of vertex colorings using k colors: in
the problem k-Color Path, two k-colorings of a graph are given, and the ques-
tion is whether one can be modified to the other by changing one vertex color
at a time, and maintaining a k-coloring throughout. This problem is polyno-
mial time solvable for k ≤ 3 [7], and PSPACE-complete for k ≥ 4 [4]. Note
that the corresponding decision problem of deciding whether a graph admits a
k-coloring is polynomial time solvable for k ≤ 2, and NP-complete for k ≥ 3.
This gives an example of the following common pattern: for instance classes
for which deciding whether a solution exists is in P, the reconfiguration prob-
lem is often in P as well. See [11, 13, 14] for more extensive examples. This
motivated Ito et al [13] to ask for examples of reconfiguration problems that
break this pattern. Secondly, it has been observed that there is a strong corre-
lation between the complexity of reconfiguration problems and the diameter of
the components of the solution graph: for all known ‘natural’ reconfiguration
problems in P, the diameter is polynomially bounded (see e.g. [1, 7, 11, 14, 18]),
and for all PSPACE-complete reconfiguration problems, the diameter may be
superpolynomial or exponential (see e.g. [4, 11]). The latter is unsurprising,
since polynomial diameter would imply NP=PSPACE (assuming that the prop-
erty of being a solution and adjacency of solutions can be tested in polynomial
time, which holds for all aforementioned problems). One can easily construct

2

artificial instance classes of reconfiguration problems such that the problem is in
P, but has exponential diameter [4], but to our knowledge no natural examples
are known. (That is, not constructed specifically to prove something about the
reconfiguration problem at hand.)

With the goal of breaking one of these patterns, Kamiński et al [16, 17]
introduced the SPR problem. Finding a shortest path can be done in polynomial
time. Nevertheless, in [16, 17] examples were constructed where the solution
graph has exponential diameter. This shows that regardless of whether SPR
is in P or PSPACE-complete, one of the patterns is broken. The main open
question from [17] was therefore that of determining the complexity of SPR.

In this paper, we answer that question by showing that SPR is PSPACE-
complete. Therefore, this also answers the question posed in [13], by giving a
rare example of a PSPACE-complete reconfiguration problem based on a de-
cision problem in P. We remark that it is not the first example: in [4] it is
shown that 4-Color Path is also PSPACE-hard for bipartite graphs. Since ev-
ery bipartite graph is 2-colorable, the corresponding decision problem is triv-
ial. Our PSPACE-completeness result is presented in Section 3. We remark
that our PSPACE-completeness result, after it appeared in a preprint [2], has
already proved its usefulness for showing PSPACE-completeness of other prob-
lems: in [18], the result has been applied to show that Independent Set Recon-
figuration remains PSPACE-hard even when restricted to perfect graphs.

Furthermore, we give the following positive results on SPR in this paper: we
show that when G is chordal or claw-free, SPR can be decided in polynomial
time. A graph is chordal if it contains no induced cycle of length more than
3. This is a well-studied class of perfect graphs, which includes for instance
k-trees and interval graphs [9]. A graph is claw-free if it contains no induced
K1,3 subgraph. This is again a well-studied graph class, see e.g. [8]. We also
show that for these graph classes, the diameter of components of SP(G, s, t) is
always linearly bounded. For claw-free graphs G, we show that if there exists
a rerouting sequence from P to Q, then in polynomial time we can find one of
length at most 2n+ 2d− 6, where n = |V (G)| and d is the length of P and Q.
For chordal graphs, we show that in polynomial time, we can find a rerouting
sequence of length |V (P)\V (Q)|. Hence we can actually find a shortest rerouting
sequence efficiently in this case. In contrast, in [16], it was shown that for general
graphs, finding a shortest rerouting sequence is NP-hard, even for graph classes
where there always exists one of polynomial length. Recently, a positive result
for SPR similar to the results in this paper has been found: in [3], it is shown
that for planar graphs, SPR can be decided in polynomial time.

In the context of reconfiguration problems, other types of questions are com-
monly studied as well. Above, we considered the reachability question: can one
given solution be reached from another given solution? The related connectiv-
ity question has also been well-studied [5, 6, 10, 11]: can every solution reach
every other solution? In other words, is the solution graph connected? For
chordal graphs G, we answer affirmatively: we show that SP(G, s, t) is always
connected. Furthermore, we show that if G is claw-free, it can be decided in
polynomial time whether SP(G, s, t) is connected. Our results on chordal graphs

3

are presented in Section 4, and the results on claw-free graphs in Section 5.
Another type of question that has been studied in this context is related to

the existence of isolated states [10]. In the case of SPR, an isolated st-path is
a shortest st-path in G that has no neighbor in SP(G, s, t). The reader may
observe that deciding whether a given path is an isolated st-path is a trivial
problem, that can be decided in linear time. Similarly, deciding whether all
shortest st-paths are isolated can trivially be done in polynomial time as well.
The problem of deciding whether there exists an isolated st-path is less trivial.
In Section 6 we give an algorithm for this problem. In fact, we give a polynomial
time algorithm for the more general problem of counting the number of isolated
paths. In Section 7, we end with a discussion.

2. Preliminaries

For graph theoretical notions not defined here, we refer to [9]. We will
consider undirected and simple graphs throughout. A walk of length k from v0 to
vk in a graphG is a vertex sequence v0, . . . , vk, such that for all i ∈ {0, . . . , k−1},
vivi+1 ∈ E(G). It is a path if all vertices are distinct. It is a cycle if k ≥ 3,
v0 = vk, and v0, . . . , vk−1 is a path. With a path or cycle W = v0, . . . , vk we
associate a subgraph of G as well, with vertex set V (W) = {v0, . . . , vk} and
edge set E(W) = {vivi+1 | i ∈ {0, . . . , k − 1}}. A path from s to t is also called
an st-path. The distance from s to t is the length of a shortest st-path. The
diameter of a graph is the maximum distance from s to t over all vertex pairs
s, t.

A hypergraph H = (V,E) consists of a vertex set V , and a set E of hy-
peredges, which are subsets of V . A walk in H of length k is a sequence of
vertices v0, . . . , vk such that for every i, there exists a hyperedge e ∈ E with
{vi, vi+1} ⊆ e. Using this notion of walks, the notions of connectivity and
components of hypergraphs are defined the same as for graphs.

Throughout this paper, we will consider a graph G with vertices s, t ∈ V (G).
We will only be interested in shortest st-paths in G, and use d to denote their
length. For i ∈ {0, . . . , d}, we define Li ⊆ V (G) to be the set of vertices that lie
on a shortest st-path, at distance i from s. So L0 = {s}, and Ld = {t} (even if
there may be more vertices at distance d of s). A set Li is also called a layer.
With respect to a given layer Li, the previous layer is Li−1, and the next layer
is Li+1. Clearly, if there is an edge xy ∈ E(G) with x ∈ Li and y ∈ Lj, then
|j − i| ≤ 1. Note that a shortest st-path P contains exactly one vertex from
every layer. For i ∈ {0, . . . , d}, this vertex will be called the Li-vertex of P .

The graph G will be undirected, so we use the notation N(v) to denote the
set of neighbors of a vertex v ∈ V (G). However, if v ∈ Li, then we will use
N−(v) to denote N(v) ∩ Li−1, and call these neighbors the in-neighbors of v.
Similarly, N+(v) denotes N(v)∩Li+1, and these are called the out-neighbors of
v.

Recall that for two shortest st-paths P and Q, a rerouting sequence from P

to Q is a walk in SP(G, s, t) from P to Q. So this is a sequence Q0, . . . , Qk of

4

shortest st-paths with Q0 = P , Qk = Q, such that for every j ∈ {0, . . . , k − 1},
Qj and Qj+1 differ in exactly one vertex. Since these are all shortest st-paths,
this implies that there is a unique layer Li such that the Li-vertices of Qj and
Qj+1 differ. If these Li-vertices are u and v respectively, then we also say that
Qj+1 is obtained from Qj with a rerouting step u → v (in layer Li). Observe
that the entire rerouting sequence can be deduced from the knowledge of the
starting path Q0, and the rerouting steps from Qj to Qj+1 for every j. So for
short, we will also describe rerouting sequences from a given starting path by
just giving the sequence of rerouting steps. We will often use the following basic
observation: Let Q be a shortest st-path with Li-vertex u, and let v be another
Li-vertex. Then a rerouting step u → v is possible if and only if v is adjacent
to both the Li−1-vertex of Q and the Li+1-vertex of Q.

3. PSPACE-completeness

In this section we prove that the SPR problem is PSPACE-complete. We
first define the problem that we reduce from. A k-color assignment α for a
graph G is a function α : V (G) → {1, . . . , k}. A k-coloring α for a graph G is a
color assignment such that for all uv ∈ E(G), α(u) 6= α(v). For a given graph
G, the k-color graph Ck(G) has as vertex set all k-colorings of G, where two
colorings are adjacent if they differ only in one vertex. A walk in Ck(G) from α

to β will also be called a recoloring sequence from α to β. The problem k-Color
Path is defined as follows.

k-Color Path:
instance: Graph G, two k-colorings α and β of G.
Question: Is there a walk between α and β in Ck(G)?

This problem has been shown to be PSPACE-complete for k ≥ 4, in [4]. In
Section 3.1 we give the transformation from an instance G,α, β of 4-Color Path
to an instance G′, Pα, Pβ of SPR. In Section 3.2 we prove that these instances
are equivalent; there is a recoloring sequence between α and β if and only if
there is a rerouting sequence between Pα and Pβ . This shows that SPR is
PSPACE-hard.

3.1. Construction

Let G be a graph with two 4-colorings α and β, and V (G) = {v1, . . . , vn}.
This is an instance of 4-Color Path. In this section we will use G to construct
an equivalent SPR instance G′ with two shortest st-paths Pα and Pβ . Every
shortest st-path in G′ will correspond to a 4-color assignment for G (though
not necessarily a 4-coloring!). To indicate this correspondence, some vertices of
G′ will be colored with the four colors {1, 2, 3, 4}. The other vertices will be
colored with a fifth color, namely black. Note that this 5-color assignment for
G′ will not be a coloring of G′.

G′ will consist of one main strand, which contains the paths Pα and Pβ , and
6n recoloring strands: one for every combination of a vertex vi ∈ V (G) and two

5

(f)

(c)

s∗i r t∗il

s∗i t∗irl

si ti

(d)

(a)

si

s∗i/ t∗i/

ti

tisi

s∗i t∗i

(e)

(b)

s∗i t∗i

t∗is∗i

tisi

: color 1

: color 2

: color 3

: color 4
: black

Figure 1: Gadgets Hi and H∗

i used in the construction, and edges between them.

colors {c1, c2} ⊂ {1, 2, 3, 4}. The recoloring strand for vertex vi and colors c1, c2
will be used for rerouting paths in a way that will correspond to recoloring vi
from color c1 to c2, or from c2 to c1.

The construction of G′ starts by introducing the vertices s and t. The main
strand is constructed as follows. For each vi ∈ V (G), introduce a vertex gadget
Hi as shown in Figure 1 (a). The leftmost vertex of Hi is labeled si, and the
rightmost vertex ti. These vertices are colored black. Hi consists of four disjoint
siti-paths of length 4, one for each color. All internal vertices of the paths are
colored in the color assigned to the path. The four vertices of Hi that are neither
adjacent to si nor to ti are called middle vertices of Hi. These gadgets Hi are
connected as follows: add edges ss1 and tnt, and for every i ∈ {1, . . . , n − 1},
add an edge tisi+1.

At this point the graph is connected, and every vertex lies on a shortest
st-path. Observe that the distance from s to si (resp. ti) is 5i − 4 (resp. 5i),
and the distance from s to t is 5n + 1. So for every vertex v, this determines
uniquely the layer Li such that v ∈ Li (with i ∈ {0, . . . , 5n+ 1}).

Now we show how the recoloring strands are constructed. For each vi ∈ V (G)
and each color pair {c1, c2} ⊂ {1, 2, 3, 4}, we introduce a recoloring strand called
the vi, {c1, c2}-strand, defined as follows. Let {1, 2, 3, 4}\{c1, c2} = {c3, c4}.
First we introduce gadgets H∗

j for every j ∈ {1, . . . , n}. (For every recoloring
strand, we will introduce gadgetsH∗

j , for j = 1, . . . , n. Whenever we mentionH∗
j

gadgets below, this should be interpreted as the H∗
j -gadgets for the vi, {c1, c2}-

strand. The same holds for the vertices s∗j , t
∗
j , l and r that we will introduce

below for every strand.)

• If j 6= i and vivj 6∈ E(G), then define H∗
j to be isomorphic to Hj (see Fig-

ure 1 (a)), with the same 5-color assignment. The leftmost and rightmost
(black) vertices are now labeled s∗j and t∗j respectively.

6

• If j 6= i and vivj ∈ E(G), then define H∗
j to be as shown in Figure 1 (b).

The leftmost and rightmost (black) vertices are labeled s∗j and t∗j again.
Now there are only two disjoint paths from s∗j to t∗j , which are colored
with the colors c3 and c4.

• H∗
i is the gadget shown in Figure 1 (c). Here s∗i has one neighbor labeled

l, and t∗i has one neighbor labeled r.

Complete the strand by adding edges ss∗1, t
∗
nt and t∗i s

∗
i+1 for every i ∈ {1, . . . , n−

1}. Note that if we add edges from l and r to the same vertex in layer L5i−2,
which we will do below, then all vertices of the new strand lie on st-paths of
length 5n+ 1 as well, and no shorter st-paths have been created. This defines
for every vertex in the new strand which distance layer it is part of. We will
refer to these layers in the next step, where we show how to connect the vertices
of this recoloring strand to the main strand, see Figure 1 (d)–(f). For all j < i:

• Add edges between s∗j and every main-strand vertex in the next layer that
has a color that is also used in H∗

j .

• For every non-black vertex v of H∗
j , add an edge between v and the main-

strand vertex in the next layer that has the same color as v, or is black.

• Add an edge t∗jsj+1.

Similarly, for all j > i:

• Add edges between t∗j and every main-strand vertex in the previous layer
that has a color that is also used in H∗

j .

• For every non-black vertex v of H∗
j , add an edge between v and the main-

strand vertex in the previous layer that has the same color as v, or is
black.

• Add an edge s∗j tj−1.

For H∗
i we add edges as follows.

• Connect s∗i to the main strand vertices in the next layer with colors c1
and c2.

• Connect t∗i to the main strand vertices in the previous layer with colors
c1 and c2.

• Connect both remaining vertices l and r of H∗
i to both middle vertices of

Hi that have colors c1 and c2.

Introducing such a vi, {c1, c2}-strand for every vi ∈ V (G) and {c1, c2} ⊂
{1, 2, 3, 4} completes the construction of G′.

Finally, we show how to construct a path Pγ for any given 4-coloring γ of G,
see Figure 2. The path Pγ contains only main strand vertices. Since it should

7

: color 1

: color 2

: black vertex

Main strand

H∗
4H∗

3

l r

H∗
2

H∗
1

s

H1 H2 H3 H4

t

Strand v3, {2, 4}

v4 v3

v2v1

G, α: G, β:

: color 3

: color 4 : Pα

Figure 2: A k-Color Path instance G, α, β, and two strands of the resulting graph G′.

s t

Figure 3: An intermediate path in a rerouting sequence from Pα to Pβ , using the v3, {2, 4}-
strand.

be a shortest st-path, it contains exactly one vertex of every layer. Every layer
contains vertices of a unique gadget Hi of the main strand. In the case that the
layer contains a single black vertex from Hi, this is the vertex that is included
in Pγ . In the case that the layer contains vertices of colors 1, . . . , 4 of Hi, use
the vertex of color γ(vi) for Pγ . This way, we define the paths Pα and Pβ , using
the given colorings α and β, respectively.

For an example of the construction see Figure 2. Here G is a cycle on four
vertices. Two colorings α and β are shown, which differ only in vertex v3,
α(v3) = 2 and β(v3) = 4. A part of the resulting graph G′ is illustrated: only
the main strand and the v3, {2, 4} strand are shown. The marked path in G′ is
Pα.

3.2. Equivalence of the instances

We first show that if γ and δ are adjacent colorings in Ck(G), which differ in
vertex vi, then the vi, {γ(vi), δ(vi)}-strand can be used to reroute the path Pγ

to Pδ.

Lemma 1. If there is a recoloring sequence for G from α to β, then there is a
rerouting sequence from Pα to Pβ for G′.

8

Proof: It suffices to show that for any two adjacent colorings γ and δ in Ck(G),
there is a rerouting sequence from Pγ to Pδ, where Pγ and Pδ are the shortest
st-paths in G′ that are constructed using γ and δ as explained at the end of
Section 3.1. If this can be done for every consecutive pair in the recoloring
sequence from α to β, then a rerouting sequence from Pα to Pβ exists. So, let
γ and δ be adjacent colorings in Ck(G). Let vi be the unique vertex in which
they differ, and let c1 = γ(vi) and c2 = δ(vi).

Pγ can be transformed into Pδ as follows: Let H∗
j denote the gadgets of the

vi, {c1, c2}-strand of G′. First, for the layers d = 1, . . . , 5i−3, replace the vertex
v of Pγ in layer Ld by the unique vertex of H∗

j (in the same layer) that has the
same color as v. This is possible by making the changes in increasing layer order.
Similarly, for the layers d = 5n, 5n− 1, . . . , 5i− 1, replace the vertex v in layer
Ld by the vertex of H∗

j with the same color as v. This is possible by making
the changes in decreasing layer order. (When starting with the path shown in
Figure 2, this gives the path shown in Figure 3.) Note that these changes are
possible if and only if Pγ does not use vertices of color c1 or c2 from gadgets
Hj with vivj ∈ E(G). The latter property is ensured by the construction of Pγ ,
since γ is a coloring of G, so all neighbors vj of vi have γ(vj) 6∈ {c1, c2}.

Now we can change the middle vertex of Hi that is used in the path: replace
the middle vertex of color c1 with the one of color c2. Next, we can move the
entire path from the vi, {c1, c2}-strand back to the main strand, similar to before
(but in reverse order). This yields a rerouting sequence from Pγ to Pδ. Since
we can do this for every recoloring step in the recoloring sequence (there is a
strand for every vi and every {c1, c2}), this concludes the proof. �

Loosely speaking, we now show that any rerouting sequence from Pα to Pβ

must consist of a sequence of rerouting sequences that are of the type given in
the previous proof. This establishes the converse of the above lemma.

Lemma 2. If there is a rerouting sequence from Pα to Pβ for G′, then there is
a recoloring sequence in G from α to β.

Proof: First we define how any shortest st-path P in G′ is mapped to a color
assignment of G: vi receives the same color as the vertex of P in layer L5i−2;
this is the layer that contains the middle vertices of Hi. Note that this defines
a color assignment for G, but that this is not necessarily a (proper) coloring.

In a rerouting sequence from Pα to Pβ , consider a step where the sequence
moves from a path P that corresponds to a color assignment γ, to a path P ′

that corresponds to a different color assignment δ. We will prove that if γ is a
coloring of G, then δ is a coloring of G as well. (So then γ and δ are adjacent
vertices in Ck(G), since a rerouting step changes at most one color.) Say γ and
δ differ in vi, where γ(vi) = c1 and δ(vi) = c2.

First we observe that the path P contains the l and r vertices of the vi, {c1, c2}-
strand: l is the only vertex in layer L5i−3 that is adjacent to both a vertex of
color c1 in L5i−2 and a vertex of color c2 in L5i−2. Similarly, r is the only such
vertex in layer L5i−1.

9

Therefore, all vertices of P except the one in layer L5i−2 are part of the
vi, {c1, c2}-strand. Indeed, the only neighbor of l in layer L5i−4 is part of this
strand (this is s∗i), and the only neighbor of s∗i in layer L5i−5 is part of this
strand (this is t∗i−1), all neighbors of t

∗
i−1 in layer L5i−6 are part of this strand,

etc. Similarly, starting from r we can argue that the vertices of P in layers 5i,
5i+ 1, etc. are part of this strand.

Since we now have that all internal vertices of P lie in the vi, {c1, c2}-strand,
we conclude that for all for neighbors vj of vi, γ(vj) ∈ {1, 2, 3, 4}\{c1, c2}: This
follows from the construction of the vi, {c1, c2}-strand (recall that for neighbors
vj of vi, H

∗
j contains no vertices of color c1 or c2).

So if γ is modified by changing the color of vi from γ(vi) = c1 to δ(vi) = c2,
then again a coloring of G is obtained, which is δ. We conclude that all paths in
the rerouting sequence correspond to colorings, since we started with one that
corresponded to a coloring, namely Pα. �

Theorem 3. SPR is PSPACE-complete.

Proof: 4-Color Path is PSPACE-complete [4]. Our transformation from G to
G′ is polynomial; G′ has 6n + 1 strands and O(n2) vertices and edges. By
Lemmas 1 and 2, G, α, β is a YES-instance for 4-Color Path if and only if G′,
Pα, Pβ is a YES-instance for SPR. This proves PSPACE-hardness. Membership
in PSPACE follows from Savitch’s Theorem [20] which states that PSPACE =
NPSPACE; the problem is easily seen to be in NPSPACE. �

4. Chordal Graphs

Recall that with a cycle C, we associate a vertex set V (C) and edge set
E(C). A chord of C is an edge uv with u, v ∈ V (C) but uv 6∈ E(C). A graph
G is chordal if every cycle of length at least 4 has a chord. We will show in
this section that for chordal graphs G, the SPR problem can be decided in
polynomial time. In fact, we prove a much stronger statement: if G is chordal,
then SP(G, s, t) is connected and has diameter at most d − 1, where d is the
distance from s to t. This requires the following property of edge pairs that lie
on shortest st-paths in a chordal graph G.

Proposition 4. Let vivi+1 and v′iv
′
i+1 be two edges of a chordal graph G, that

both lie on a shortest st-path, with {vi, v′i} ⊆ Li and {vi+1, v
′
i+1} ⊆ Li+1 for

some i. Then viv
′
i+1 ∈ E(G) or v′ivi+1 ∈ E(G).

Proof: If vi = v′i or vi+1 = v′i+1 then the statement follows immediately, so now
assume that vi 6= v′i and vi+1 6= v′i+1, and thus 1 ≤ i ≤ d − 2, where d is the
distance from s to t.

Let PL be a shortest path from vi to v′i in G[L0 ∪ . . . ∪ Li−1 ∪ {vi, v′i}].
(Combining the initial parts of the shortest st-paths on which vi and v′i lie
gives a walk from vi to v′i in this subgraph, so such a shortest path PL indeed

10

exists.) Analogously, we may define PR to be a shortest path from vi+1 to v′i+1

in G[Li+2 ∪ . . . ∪ Ld ∪ {vi+1, v
′
i+1}]. The paths PL and PR are vertex disjoint,

so combining these paths with the edges vivi+1 and v′iv
′
i+1 gives a cycle C in

G. This cycle has length at least four, and therefore contains a chord xy. Since
PL and PR are both shortest paths, w.l.o.g. we may assume that x ∈ V (PL)
and y ∈ V (PR). Since all edges of G are between vertices in the same layer
or in consecutive layers, it follows that x ∈ {vi, v′i} and y ∈ {vi+1, v

′
i+1}. The

statement now follows because xy 6∈ E(C). �

Theorem 5. Let G be a chordal graph, and let P and Q be two shortest st-paths
in G, of length d. Then a rerouting sequence from P to Q exists, of length at
most |V (P)\V (Q)| ≤ d− 1.

Proof: We prove the statement by induction over c = |V (P)\V (Q)|. If c = 0
then P = Q, so the statement is trivial. So now assume that c ≥ 1; P and Q

differ in at least one vertex. Let P = u0, u1, . . . , ud, and Q = v0, v1, . . . , vd. Let
i be the lowest index such that ui 6= vi (such an i exists since c ≥ 1). Consider
the edges uiui+1 and vivi+1. By Proposition 4, uivi+1 or viui+1 is an edge of
G as well. If viui+1 ∈ E(G), then we can apply the rerouting step ui → vi to
P , since then vi is also adjacent to both ui−1 = vi−1 and ui+1. This gives a
new shortest st-path P ′ that has one more vertex in common with Q. So by
induction, the distance from P ′ to Q in SP(G, s, t) is at most c− 1. Hence the
distance from P to Q is at most c. Similarly, if uivi+1 ∈ E(G), then applying
the rerouting step vi → ui to Q gives a shortest st-path Q′ that has one more
vertex in common with P , and the claim follows analogously. �

The above proof gives a polynomial time algorithm for constructing the
rerouting sequence. Obviously a rerouting sequence from P to Q requires at
least |V (P)\V (Q)| rerouting steps, so we may conclude:

Corollary 6. Let G be a chordal graph with shortest st-paths P and Q. In
polynomial time, a shortest rerouting sequence from P to Q can be constructed.

5. Claw-free Graphs

In this section we show that deciding SPR, and deciding whether SP(G, s, t)
is connected can both be done in polynomial time in the case where G is claw-
free. A claw is a K1,3 graph. A graph G is claw-free if it contains no claw as
induced subgraph. In other words, G is not claw-free if and only if it contains a
subgraph H that consists of one vertex c of degree 3, and three leaves l1, l2, l3,
such that the leaves are pairwise nonadjacent in G. Such an induced subgraph
will be called a c-claw with leaves l1, l2, l3 for short.

Consider a graph G, and layers Li defined with respect to s, t ∈ V (G) as
before. Let u ∈ Li. We say that u has maximal in-neighborhood if there is
no v ∈ Li with N−(u) ⊂ N−(v). (Note that we distinguish between sub-
set ⊆ and strict subset ⊂.) In that case, the vertex set N−(u) is called a

11

maximal in-neighborhood in Li−1. These notions are defined analogously for
out-neighborhoods.

With a layer Li, we associate the following hypergraph Hi: Hi has vertex
set Li, and the hyperedges correspond to the maximal in-neighborhoods of Li.
So for every e ∈ E(Hi), there exists a vertex a ∈ Li+1 with N−(a) = e.

The main result of this section is proved as follows. We first give some simple
reduction rules. These are based on the fact that it is safe to delete a vertex
v, if we know that it is not part of any shortest st-path that can be reached
from the given shortest st-path P . We give two ways to identify such vertices.
For reduced, claw-free SPR instances G′, P,Q that do not have such vertices,
we actually show that SP(G′, s, t) is connected.

This is done by first rerouting P to a shortest st-path P ′ in which every
vertex has maximal in-neighborhood, and rerouting Q to a shortest st-path Q′

in which every vertex has maximal out-neighborhood. We show that this is
possible in reduced claw-free graphs. Clearly it then suffices to decide whether
Q′ is reachable from P ′. It is easy to see that these maximal neighborhood
properties are useful if we wish to reroute P ′ to Q′ layer by layer, in increasing
order of layers (that is, intermediate paths will start with a subpath of Q′, and
end with a subpath of P ′). Indeed, this is our main strategy. However rerouting
in one layer is already nontrivial, and may require multiple rerouting steps. To
find a short rerouting sequence for one layer, we use a shortest path in the
hypergraph Hi.

We first prove the properties underlying the reduction rules. Note that the
next proposition does not require G to be claw-free.

Proposition 7. Let P be a shortest st-path in a graph G. For every shortest
st-path Q that is reachable from P in SP(G, s, t) and every i, the Li-vertex of
Q is part of the same component of Hi as the Li-vertex of P .

Proof: Whenever a rerouting step x → y in layer Li is made, there is a vertex
z ∈ Li+1 with x, y ∈ N−(z), so x and y are in the same component of Hi. �

Proposition 8. Let P be a shortest st-path of length d in a claw-free graph G.
For every shortest st-path Q that is reachable from P in SP(G, s, t) and every
i ∈ {2, . . . , d− 2}, the Li-vertex of Q is adjacent to the Li-vertex of P .

Proof: Consider a rerouting sequence Q0, . . . , Qk from Q0 = P to Qk = Q, and
let xj be the Li-vertex of Qj , for every j ∈ {0, . . . , k}. Assume that the claim is
not true, so then we may choose ℓ to be the lowest index such that x0xℓ 6∈ E(G).

If x0 and xℓ have a common neighbor z in either Li−1 or Li+1, then a z-
claw with leaves x0, xℓ and y exists, for some vertex y ∈ Li−2 or y ∈ Li+2,
respectively. (Here we use the fact that by definition of Li−1 or Li+1, z lies on
a shortest st-path, so it has at least one neighbor in Li−2 or Li+2, respectively.
Clearly this neighbor y is not adjacent to the vertices x0 and xℓ in layer Li.
By definition, x0xℓ 6∈ E(G).) So since G is claw-free, we may conclude that
N−(x0) ∩N−(xℓ) = ∅, and N+(x0) ∩N+(xℓ) = ∅.

12

If xℓ−1 has a neighbor y ∈ Li−1\N−(x0) and a neighbor z ∈ Li+1\N+(x0),
then an xℓ−1-claw with leaves x0, y, z exists. So w.l.o.g. we may assume that
N−(xℓ−1) ⊆ N−(x0). But then N−(xℓ−1)∩N−(xℓ) = ∅, which contradicts that
a rerouting step xℓ−1 → xℓ is possible. �

Now we can define the notion of a reduced claw-free instance, and prove that
such an instance can always be found in polynomial time.

Definition 9. Let G be a claw-free graph with vertices s and t at distance d

from each other. Then G is called st-reduced if

• all vertices lie on a shortest st-path,

• for every i ∈ {1, . . . , d− 1}, Hi is connected, and

• for every i ∈ {2, . . . , d− 2}, Li is a clique.

Lemma 10. Let G be a claw-free graph, with shortest st-path P . In polynomial
time, we can construct an induced (claw-free) subgraph G′ of G such that

• G′ is st-reduced, and

• a shortest st-path Q of G is reachable from P in SP(G, s, t) if and only if
V (Q) ⊆ V (G′) and Q is reachable from P in SP(G′, s, t).

Proof: Let d denote the length of P . If we know that a given vertex v is not
part of any shortest st-path that can be reached from P in SP(G, s, t), then it
is easily seen that deleting v is safe, that is, the resulting graph G′ = G − v

satisfies the second property from the lemma statement.
To obtain G′ from G we apply the following three reduction rules, which

all delete vertices. First, we delete every vertex that does not lie on a shortest
st-path, which clearly is safe. Secondly, for every i ∈ {1, . . . , d − 1}, we delete
the vertices that do not lie in the same component of Hi as the Li-vertex of P .
By Proposition 7, this is safe. Finally, for every i ∈ {2, . . . , d − 2}, we delete
every vertex in Li that is not adjacent to the Li-vertex of P . By Proposition 8,
this is safe. We apply these three reduction rules iteratively, until no rule can be
applied anymore. Every reduction rule application deletes at least one vertex,
so this process terminates in polynomial time. Call the resulting graph G′.
Clearly, G′ is an st-reduced graph. Since we only deleted vertices, G′ is an
induced subgraph of G, and therefore again claw-free. �

The last property from Definition 9 shows that every pair of vertices in
one layer is adjacent; this makes it much easier in our proofs to obtain a con-
tradiction by exhibiting an induced claw. We use this to prove the following
three statements. First, we show that indeed maximal in-neighborhoods (or
out-neighborhoods) can be guaranteed for every vertex.

Lemma 11. Let P be a shortest st-path of length d in a claw-free st-reduced
graph G. In polynomial time, a rerouting sequence of length at most d−1 can be

13

constructed, from P to a shortest st-path P ′ in which every vertex has maximal
out-neighborhood. Similarly, a rerouting sequence of length at most d− 1 can be
constructed, from P to a shortest st-path P ′′ in which every vertex has maximal
in-neighborhood.

Proof: Let P = u0, u1, . . . , ud−1, ud. Define v0 := u0(= s). For i = 1, . . . , d− 1,
in increasing order, we change the Li-vertex ui of P as follows. If the out-
neighborhood of ui is not maximal, then choose vi ∈ Li with N+(ui) ⊂ N+(vi),
and N+(vi) maximal. If possible, choose vi such that vi ∈ N+(vi−1). Then,
apply the rerouting step ui → vi. If ui already has maximal out-neighborhood
then simply define vi = ui.

It remains to show that ui → vi is in fact a rerouting step. By definition,
ui+1 ∈ N+(vi), so the Li+1-vertex of the current path v0, . . . , vi−1, ui, ui+1, . . . , ud

poses no problem. It might however be that vi is not adjacent to vi−1, the
Li−1-vertex of the current path. In that case, i ≥ 2. Choose a vertex x ∈
N−(vi). Since vi ∈ N+(x)\N+(vi−1), but N+(vi−1) is maximal, there exists
at least one y ∈ N+(vi−1)\N+(x). By choice of vi, there exists at least one
z ∈ N+(vi)\N+(y), otherwise y has maximal out-neighborhood as well, and we
would have chosen vi = y (since we gave preference to out-neighbors of vi−1).
This however gives a vi-claw with leaves x, y, z, a contradiction. (Since G is
st-reduced, viy ∈ E(G).)

If we wish to obtain a path with maximal in-neighborhoods for every vertex,
we can follow an analog method, starting with layer Ld−1 instead. �

The next two propositions are required to prove Lemma 14.

Proposition 12. Let G be a claw-free, st-reduced graph, with distance d from
s to t. For i ∈ {1, . . . , d − 1}, let x0, . . . , xℓ be a shortest path in Hi. Then for
all j ∈ {1, . . . , ℓ− 1} and k ∈ {0, . . . , ℓ}, it holds that N−(xj) ⊆ N−(xk).

Proof: Suppose to the contrary that there exists a vertex y ∈ N−(xj)\N−(xk),
for some j ∈ {1, . . . , ℓ − 1} and k ∈ {0, . . . , ℓ}. W.l.o.g. we may assume that
k > j. Let a0, . . . , ak−1 be vertices in Li+1 such that for all p ∈ {0, . . . , k − 1},
{xp, xp+1} ⊆ N−(ap). By definition of Hi, such vertices exist.

We now claim that there exists an xj-claw, with leaves y, aj−1, xk. These
three vertices are all adjacent to xj (xk is adjacent since G is st-reduced so Li

is a clique). Clearly, y ∈ Li−1 and aj−1 ∈ Li+1 are not adjacent. By choice of
y, it is not adjacent to xk. If xk ∈ N−(aj−1), then a shorter path from x0 to xk

in Hi would exist, namely x0, . . . , xj−1, xk, . . . , xℓ, a contradiction. Hence this
is indeed an induced claw, and thus from this contradiction we may conclude
that for all j, k as stated, N−(xj) ⊆ N−(xk). �

Proposition 13. Let G be a claw-free and st-reduced graph. If u, v ∈ Li have
distinct maximal in-neighborhoods, then N+(u) = N+(v). If u, v ∈ Li have
distinct maximal out-neighborhoods, then N−(u) = N−(v).

14

: P

: P ′

Li−2 Li Li+2Li−1 Li+1

.
.
.
.
.

.
.
.
.
.

ui−1

a1

a2
x2

x1

xk−1

y

ak
xk = w

ui−2 a0 = ui+1 ui+2x0 = ui

Figure 4: An illustration of the proof of Lemma 14. Vertical edges are omitted.

Proof: Suppose u, v ∈ Li have distinct maximal in-neighborhoods, and that
there exists x ∈ N+(u)\N+(v). Then we may choose y ∈ N−(u)\N−(v). This
gives a u-claw with leaves x, y, v. Note that uv ∈ E(G) since G is st-reduced.
The other cases are analog. �

Now we have all the tools for proving the following lemma, which is concerned
with rerouting a single layer Li, and requires maximal neighborhoods. Note that
the Li+1-vertex of the resulting path is not determined by the ‘input’ P and w,
but this will not be a problem later.

Lemma 14. Let G be a claw-free, st-reduced graph, and let P = u0, . . . , ud

be a shortest st-path. Let i ∈ {1, . . . , d − 1} such that ui−1 has maximal
out-neighborhood and ui+1 has maximal in-neighborhood. Then for every w ∈
N+(ui−1), using at most 2|Li| rerouting steps, P can be modified to a shortest
st-path P ′ = v0, . . . , vd with vi = w, and vj = uj for all j ∈ {0, . . . , d}\{i, i+1}.
Such a rerouting sequence can be found in polynomial time.

Proof: If i = d−1, the proof is trivial: ui+1 = t, which is adjacent to every vertex
in Ld−1. Therefore, we may simply apply the single rerouting step ui → v, to
obtain the desired shortest st-path P ′. So now assume that 1 ≤ i ≤ d− 2. The
following notations and proof are illustrated in Figure 4.

Consider a shortest path x0, . . . , xk in Hi from ui to w, so x0 = ui and xk =
w. For j ∈ {1, . . . , k}, let aj ∈ Li+1 be a vertex with maximal in-neighborhood
such that {xj−1, xj} ∈ N−(aj). (Such a vertex exists by the definition of the
hypergraph Hi.) Choose a1 = ui+1 if ui+1 satisfies this condition. In addition,
let a0 = ui+1.

The plan is to use this path to reroute P to P ′. In particular, the rerouting
sequence that we construct below uses the rerouting steps x0 → x1 → . . . → xk

in layer Li. But it may be necessary to make changes in layers Li−1 and Li+1

as well.
Firstly, a rerouting step in Li−1 is required if there exists a j with ui−1xj 6∈

E(G). In this case, let y ∈ Li−1 be an in-neighbor of xj with maximal out-
neighborhood. (Note that xj has at least one in-neighbor y that has maximal

15

out-neighborhood.) We claim that ui−2y ∈ E(G): this follows since ui−1 has
maximal out-neighborhood as well, so N−(ui−1) = N−(y) (Proposition 13).
Secondly, Proposition 12 shows that for every ℓ, yxℓ ∈ E(G). On the other
hand, if ui−1 is actually adjacent to every xj , in particular if i = 1, then for
the remainder of the proof we simply choose y = ui−1. The rerouting sequence
from P to P ′ is given by the following series of modifications (below we prove
that these are all actual rerouting steps):

(1) in Li−1: ui−1 → y (Skip if y = ui−1.)
(2) in Li+1: a0 → a1 (Recall that a0 = ui+1. Skip if a0 = a1.)
(3) in Li: x0 → x1 (Recall that x0 = ui.)
(4) in Li+1: a1 → a2
(5) in Li: x1 → x2

...
(2k) in Li+1: ak−1 → ak
(2k + 1) in Li: xk−1 → xk (Recall that xk = w.)
(2k + 2) in Li−1: y → ui−1 (Skip if y = ui−1.)

Let Q0, . . . , Qm be the vertex sequences that result from these changes, start-
ing with with Q0 = P . We first verify that for every ℓ ∈ {0, . . . ,m}, Qℓ is a
shortest st-path. In other words, we show that for every ℓ, the ℓth change p → q

above is a rerouting step; we verify that the Li−1-vertex and Li+1-vertex of Qℓ−1

are both also adjacent to q.
As observed above, if i ≥ 2, then y is adjacent to ui−2, so in every Qℓ the

Li−2-vertex and Li−1-vertex are adjacent. Furthermore, y is adjacent to every
xj , so it is adjacent to the Li-vertex of every Qℓ. This shows that for every Qℓ,
the Li−1-vertex and the Li-vertex are adjacent.

Now we show that Li-vertex and Li+1-vertex are adjacent in every Qℓ. If
a rerouting step xj → xj+1 is made in layer Li, then at that point, the vertex
in layer Li+1 is aj+1, which by definition is adjacent to both xj and xj+1.
Similarly, if a rerouting step aj → aj+1 is made in layer Li+1, then at that
point the Li-vertex is xj , which is adjacent to both.

Finally, we show that the Li+1-vertex and Li+2-vertex are adjacent in every
Qℓ. We first argue that whenever a rerouting step aj → aj+1 is applied, aj and
aj+1 have distinct maximal in-neighborhoods. For j ≥ 1, this follows from the
fact that x0, . . . , xk is a shortest path in Hi, so there is no in-neighborhood that
contains both xj−1 and xj+1. For a0 and a1 it follows from the choice of a1:
recall that a0 = ui+1, which we assumed to have a maximal in-neighborhood. So
if x1 6∈ N−(a0), then a0 and a1 again have distinct maximal in-neighborhoods.
If x1 ∈ N−(a0), then we have chosen a1 = a0, and in fact no rerouting step is
made. Hence we may now conclude that Proposition 13 can be applied for every
rerouting step aj → aj+1, which shows that N+(aj) = N+(aj+1) for every j.
Therefore, ui+2 is an out-neighbor of every aj .

This concludes the proof that every Qℓ is a shortest st-path, so Q0, . . . , Qm is
a rerouting sequence, which results in the pathQm = u0, . . . , ui−1, w, ak, ui+2, . . . , ud,
which is of the form we required for P ′. Observe that the above rerouting se-

16

quence can be found in polynomial time (by finding a shortest path in Hi, etc).
Finally, note that this rerouting sequence used at most 2k + 2 rerouting steps.
Since k ≤ |Li| − 1, this proves the statement. �

Combining Lemmas 11 and 14 gives the main combinatorial result, for st-
reduced claw-free graphs.

Theorem 15. Let G be an st-reduced claw-free graph on n vertices, with dis-
tance d from s to t. Between any two shortest st-paths P and Q in G, a rerout-
ing sequence of length at most 2n + 2d − 6 exists, which can be constructed in
polynomial time.

Proof: First apply at most d − 1 rerouting steps to P to obtain a shortest st-
path P ′ in which every vertex has a maximal in-neighborhood (Lemma 11).
Similarly, apply at most d− 1 rerouting steps to Q to obtain a shortest st-path
Q′ in which every vertex has a maximal out-neighborhood (Lemma 11).

Now P ′ can be modified to Q′ in d − 1 stages i, with i ∈ {1, . . . , d − 1}.
Denote P0 = P ′ = u0, . . . , ud, and Q′ = v0, . . . , vd. At the start of the ith stage,
we have a shortest st-path Pi−1 = v0, . . . , vi−1, a, ui+1, . . . , ud for some a ∈ Li

(note that for i = 1, P0 is of this form). Using at most 2|Li| rerouting steps,
Pi−1 can be modified into a shortest st-path Pi = v0, . . . , vi, a

′, ui+2, . . . , ud

for some a′ ∈ Li+1. This follows from Lemma 14; note that in particular the
conditions that the Li−1-vertex of Pi−1 has maximal out-neighborhood and that
the Li+1-vertex of Pi+1 has maximal in-neighborhood are satisfied, since these
are vertices from Q′ and P ′, respectively.

After d − 1 stages, this procedure terminates with a path v0, . . . , vd−1, ud,
which equals Q′. The total number of rerouting steps for these stages is at most∑

i∈{1,...,d−1} 2|Li| = 2(n − 2). In total, this shows that P and Q can both be

rerouted to a common shortest st-path Q′, in at most 2(n − 2) + (d − 1) and
d− 1 steps, respectively. Combining these rerouting sequences gives a rerouting
sequence from P to Q of length at most 2n + 2d − 6. Since the rerouting
sequences from Lemmas 11 and 14 can both be found in polynomial time, the
entire rerouting sequence can be found in polynomial time. �

Now we can easily deduce our main two algorithmic results.

Theorem 16. Let G be a claw-free graph on n vertices, and let P and Q be
two shortest st-paths in G, of length d. In polynomial time it can be decided
whether Q is reachable from P in SP(G, s, t), and if so, a rerouting sequence of
length at most 2n+ 2d− 6 exists.

Proof: By Lemma 10, in polynomial time we can construct an st-reduced in-
duced subgraph G′ of G such that any shortest st-path Q′ is reachable from
P in G if and only if it is reachable from P in G′. So if Q is not a shortest
st-path of G′ (at least one of its vertices was deleted), we may conclude it is
not reachable. Otherwise, Theorem 15 shows that Q is reachable from P , with
a rerouting sequence of length at most 2|V (G′)|+ 2d− 6 ≤ 2n+ 2d− 6. �

17

Theorem 17. Let G be a claw-free graph on n vertices. In polynomial time it
can be decided whether SP(G, s, t) is connected.

Proof: In polynomial time we can first delete all vertices of G that do not lie on a
shortest st-path, to obtain G′. Clearly, SP(G, s, t) = SP(G′, s, t), and G′ is again
claw-free. Choose an arbitrary shortest st-path P . Using G′ and P , Lemma 10
can be applied to obtain an st-reduced subgraph G′′ of G′ in polynomial time. If
G′′ = G′ then Theorem 15 shows that SP(G′′, s, t) = SP(G′, s, t) is connected.
Otherwise, there exists at least one vertex v ∈ V (G′)\V (G′′), and we may
conclude that SP(G′, s, t) is not connected: G′ has a shortest st-path Q′ with
v ∈ V (Q′), which is not part of G′′, but all shortest st-paths that are reachable
from P are part of G′′ (Lemma 10). �

6. Isolated Paths

In this section we give a polynomial time algorithm for counting the number
of isolated paths. Recall that an isolated st-path is a shortest st-path in G that
has no neighbor in SP(G, s, t). For this, we need to consider isolated sy-paths
for vertices y 6= t. For three vertices s, x, y with s 6= y, we use isosy(x) to denote
the number of isolated sy-paths that contain the vertex x. We will use this
notation for the case where x is the second-to-last vertex on a shortest sy-path,
so it is adjacent to y.

Proposition 18. Let y and z be vertices at distance i and i+1 of s, respectively,
with i ≥ 1. Then isosz(y) =

∑
x isosy(x), where the summation is over all

vertices x at distance i− 1 from s such that N(x) ∩N(z) = {y}.

Proof: Let x be such a vertex. There are isosy(x) isolated sy-paths that end
with x and y. Since y is the only common neighbor of x and z, extending every
one of these paths with the vertex z gives a set of isolated sz-paths that contain
y, which are all distinct. All of these paths have x as Li−1-vertex, so when
choosing a different Li−1-vertex in the role of x, a different set of sz-paths is
obtained. This shows that there are at least

∑
x isosz(y) distinct isolated sz-

paths that contain y, where the summation is over all vertices x at distance i−1
from s such that N(x) ∩N(z) = {y}.

We conclude the proof by observing that every isolated sz-path that contains
y also contains some vertex x at distance i− 1 from s with N(x)∩N(z) = {y},
such that removing z yields an isolated sy-path. Indeed, obviously y ∈ N(x) ∩
N(z), and if |N(x) ∩ N(z)| ≥ 2, then the path is not isolated. Therefore, all
isolated sz-paths that contain y are counted this way, and thus we have equality.

�

Theorem 19. Let G be a graph with s, t ∈ V (G). In polynomial time, the
number of isolated st-paths can be computed.

18

Proof: Let d be the distance from s to t. As usual, the layers Li for i ∈ {0, . . . , d}
are defined with respect to s and t. The algorithm works by computing the
values isosz(y) for various choices of y and z, in increasing distance from s to
z. First, for every z ∈ L1, initialize isosz(s) = 1 (which is trivially correct).
Then, for i = 2, . . . , d, in increasing order of i, do the following. For every
z ∈ Li and every y ∈ Li−1, compute isosz(y) using Proposition 18. Note that
the required values isosy(x) have all been computed earlier. In the end, return∑

y∈Ld−1
isost(y), which is the total number of isolated st-paths.

Now we analyze the complexity. Let n = |V (G)|. Note that the number
of combinations of y and z for which isosz(y) is computed is less than n2. For
every such combination, evaluating the expression from Proposition 18 can be
done in polynomial time. �

The following example shows that this counting result is nontrivial: if we
choose G′′ to be just the main strand of the instance G′ constructed in Sec-
tion 3.1 (based on a graph G on n vertices), then G′′ contains 4n isolated paths,
which is exponential in the number of vertices of G′′ (which is 14n+ 2).

7. Discussion

In this paper we showed that SPR is PSPACE-complete, which is somewhat
surprising since the problem of finding shortest paths is easy. Nevertheless, the
results in this paper otherwise confirm the typical behavior of reconfiguration
problems: for instances where we can decide SPR in polynomial time (chordal
and claw-free graphs), the diameter is polynomially bounded – in this case, even
linearly bounded. In addition, for these graph classes it can be decided efficiently
whether the solution graph SP(G, s, t) is connected. The main question that
is left open here is: What is the complexity of deciding whether SP(G, s, t) is
connected, for general graphs G? Note that for the SPR instances G′, Pα, Pβ

constructed in Section 3, SP(G′, s, t) is always disconnected (unless the given
4-Color Path instance consists of an edgeless graph G): there exist shortest
st-paths that correspond to colorings, and shortest st-paths that do not. The
proof of Lemma 2 shows that these lie in different components of SP(G′, s, t).

We showed that for chordal graphs G, we could even find shortest rerouting
sequences in polynomial time. Is this possible for claw-free graphs as well? To
be precise, for two shortest st-paths P and Q in a claw-free graph G and k ∈ N,
can it be decided in polynomial time whether a rerouting sequence from P to
Q of length at most k exists, or is this problem NP-complete? Recall that for
general graphs, the NP-hardness of finding a shortest rerouting sequence was
proved in [16]. By our linear diameter result, this (decision) problem lies in NP
for claw-free graphs. Finally, it is interesting to search for other graph classes
for which SPR can be solved in polynomial time. Recently this was shown for
planar graphs [3]. Graphs of bounded treewidth form another prime candidate.

19

Acknowledgements

The author would like to thank Paul Medvedev and Martin Milanič for the
introduction to this problem, and for comments on an earlier version of this
paper. This research was supported by DFG grant BO 3391/1-1.

[1] M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma. Re-
configuration graphs for vertex colourings of chordal and chordal bipar-
tite graphs. Journal of Combinatorial Optimization, pages 1–12, 2012.
http://dx.doi.org/10.1007/s10878-012-9490-y.

[2] P. Bonsma. Shortest path reconfiguration is PSPACE-hard. ArXiv preprint
arXiv:1009.3217v1, 2010.

[3] P. Bonsma. Rerouting shortest paths in planar graphs. In FSTTCS 2012,
volume 18 of LIPIcs, pages 337–349. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012.

[4] P. Bonsma and L. Cereceda. Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. Theoret. Comput.
Sci., 410(50):5215–5226, 2009.

[5] L. Cereceda, J. van den Heuvel, and M. Johnson. Connectedness of the
graph of vertex-colourings. Discrete Appl. Math., 308(5–6):913–919, 2008.

[6] L. Cereceda, J. van den Heuvel, and M. Johnson. Mixing 3-colourings in
bipartite graphs. European J. Combin., 30(7):1593–1606, 2009.

[7] L. Cereceda, J. van den Heuvel, and M. Johnson. Finding paths between
3-colorings. J. Graph Theory, 67(1):69–82, 2011.

[8] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. In
Surveys in combinatorics 2005, pages 153–171. Cambridge Univ. Press,
2005.

[9] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin, fourth edition, 2010.

[10] C.E.J. Eggermont and G.J. Woeginger. Motion planning with pulley, rope,
and baskets. In STACS 2012, volume 14 of LIPIcs, pages 374–383, 2012.

[11] P. Gopalan, P.G. Kolaitis, E. Maneva, and C.H. Papadimitriou. The
connectivity of boolean satisfiability: Computational and structural di-
chotomies. SIAM J. Comput., 38(6), 2009.

[12] R.A. Hearn and E.D. Demaine. PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic
model of computation. Theoret. Comput. Sci., 343(1–2):72–96, 2005.

20

[13] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Ue-
hara, and Y. Uno. On the complexity of reconfiguration problems. In
ISAAC 2008, volume 5369 of LNCS, pages 28–39. Springer, 2008.

[14] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Ue-
hara, and Y. Uno. On the complexity of reconfiguration problems. Theoret.
Comput. Sci., 412(12–14):1054–1065, 2011.

[15] T. Ito, M. Kamiński, and E.D. Demaine. Reconfiguration of list edge-
colorings in a graph. In WADS 2009, volume 5664 of LNCS, pages 375–386.
Springer, 2009.

[16] M. Kamiński, P. Medvedev, and M. Milanič. Shortest paths between short-
est paths. Theoret. Comput. Sci., 412(39):5205–5210, 2011.

[17] M. Kamiński, P. Medvedev, and M. Milanič. Shortest paths between short-
est paths and independent sets. In IWOCA 2010, volume 6460 of LNCS,
pages 56–67. Springer, 2011.

[18] M. Kamiński, P. Medvedev, and M. Milanič. Complexity of independent
set reconfigurability problems. Theoret. Comput. Sci., 439:9–15, 2012.

[19] C.H. Papadimitriou, A.A. Schäffer, and M. Yannakakis. On the complexity
of local search. In STOC 1990, pages 438–445, New York, 1990. ACM.

[20] W.J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. System. Sci., 4:177–192, 1970.

21

