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The Shortest Path Reconfiguration problem has as input a graph G with unit edge lengths,
with vertices s and t, and two shortest st-paths P and Q . The question is whether there
exists a sequence of shortest st-paths that starts with P and ends with Q , such that
subsequent paths differ in only one vertex. This is called a rerouting sequence.
This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it
is shown that the problem can be solved in polynomial time, and that shortest rerouting
sequences have linear length. For these classes, it is also shown that deciding whether a
rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial
time. Finally, a polynomial time algorithm for counting the number of isolated paths is
given.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the Shortest Path Reconfiguration (SPR) Problem, introduced by Kamiński et al. [16,17]. The input
consists of a graph G , with vertices s and t , and two shortest st-paths P and Q . The question is whether P can be modified
to Q by changing one vertex at a time, and maintaining a shortest st-path throughout. Edges have unit lengths, so all
shortest st-paths have the same number of vertices. We define the following solution graph SP(G, s, t): its vertex set is the
set of all shortest st-paths in G . Two paths P and Q are adjacent if they differ in one vertex, so |V (P )\V (Q )| = 1 (and
thus |V (Q )\V (P )| = 1). SPR can now be reformulated as: does there exist a walk from P to Q in SP(G, s, t)? Such a walk
is also called a rerouting sequence.

Shortest paths form a central concept in graph theory, optimization, algorithms and networking. Questions related to
rerouting (shortest) paths are often studied in networking applications. Although we are not aware of an application where
this reachability question is studied, it is a very natural question, and its study may provide insight to practical rerouting
problems. Nevertheless, the main motivation for this research is of a more theoretical nature. Similar reconfiguration prob-
lems can be defined based on many different combinatorial problems: Consider all solutions to a problem (or all solutions of
at least/at most given weight, in the case of optimization problems), and define a (symmetric) adjacency relation on them.
Such problems have been studied often in recent literature. Examples include reconfiguration problems based on satisfia-
bility problems [11], independent sets [12,14,18], vertex colorings [1,4–7], matchings [14], list edge-colorings [15], matroid
bases [14], subsets of a (multi)set of numbers [10]. Of course, to obtain a reconfiguration problem, one needs to define an
adjacency relation between solutions. Usually, the most natural adjacency relation is considered, e.g. two independent sets
I and J are considered adjacent in [14] if J can be obtained from I by removing one vertex and adding another; Boolean
assignments are considered adjacent in [11] if exactly one variable differs, etc. We remark that in the context of local search,
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similar problems have been studied earlier, with the important distinction that the neighborhood is not symmetric, and the
objective is to reach a local optimum, instead of a given target solution, see e.g. [19].

An initial motivation of these questions was to explore the solution space of NP-hard problems, to study e.g. the per-
formance of heuristics [11] and random sampling methods [5]. This has revealed interesting, often recurring patterns in
the complexity behavior of these problems. This is perhaps best exemplified by the known results on the reconfiguration
of vertex colorings using k colors: in the problem k-Color Path, two k-colorings of a graph are given, and the question is
whether one can be modified to the other by changing one vertex color at a time, and maintaining a k-coloring throughout.
This problem is polynomial time solvable for k � 3 [7], and PSPACE-complete for k � 4 [4]. Note that the corresponding de-
cision problem of deciding whether a graph admits a k-coloring is polynomial time solvable for k � 2, and NP-complete for
k � 3. This gives an example of the following common pattern: for instance classes for which deciding whether a solution
exists is in P, the reconfiguration problem is often in P as well. See [11,13,14] for more extensive examples. This motivated
Ito et al. [13] to ask for examples of reconfiguration problems that break this pattern. Secondly, it has been observed that
there is a strong correlation between the complexity of reconfiguration problems and the diameter of the components of
the solution graph: for all known ‘natural’ reconfiguration problems in P, the diameter is polynomially bounded (see e.g. [1,
7,11,14,18]), and for all PSPACE-complete reconfiguration problems, the diameter may be superpolynomial or exponential
(see e.g. [4,11]). The latter is unsurprising, since polynomial diameter would imply NP = PSPACE (assuming that the prop-
erty of being a solution and adjacency of solutions can be tested in polynomial time, which holds for all aforementioned
problems). One can easily construct artificial instance classes of reconfiguration problems such that the problem is in P, but
has exponential diameter [4], but to our knowledge no natural examples are known. (That is, not constructed specifically to
prove something about the reconfiguration problem at hand.)

With the goal of breaking one of these patterns, Kamiński et al. [16,17] introduced the SPR problem. Finding a shortest
path can be done in polynomial time. Nevertheless, in [16,17] examples were constructed where the solution graph has
exponential diameter. This shows that regardless of whether SPR is in P or PSPACE-complete, one of the patterns is broken.
The main open question from [17] was therefore that of determining the complexity of SPR.

In this paper, we answer that question by showing that SPR is PSPACE-complete. Therefore, this also answers the question
posed in [13], by giving a rare example of a PSPACE-complete reconfiguration problem based on a decision problem in P.
We remark that it is not the first example: in [4] it is shown that 4-Color Path is also PSPACE-hard for bipartite graphs.
Since every bipartite graph is 2-colorable, the corresponding decision problem is trivial. Our PSPACE-completeness result
is presented in Section 3. We remark that our PSPACE-completeness result, after it appeared in a preprint [2], has already
proved its usefulness for showing PSPACE-completeness of other problems: in [18], the result has been applied to show that
Independent Set Reconfiguration remains PSPACE-hard even when restricted to perfect graphs.

Furthermore, we give the following positive results on SPR in this paper: we show that when G is chordal or claw-free,
SPR can be decided in polynomial time. A graph is chordal if it contains no induced cycle of length more than 3. This is
a well-studied class of perfect graphs, which includes for instance k-trees and interval graphs [9]. A graph is claw-free if
it contains no induced K1,3 subgraph. This is again a well-studied graph class, see e.g. [8]. We also show that for these
graph classes, the diameter of components of SP(G, s, t) is always linearly bounded. For claw-free graphs G , we show that
if there exists a rerouting sequence from P to Q , then in polynomial time we can find one of length at most 2n + 2d − 6,
where n = |V (G)| and d is the length of P and Q . For chordal graphs, we show that in polynomial time, we can find a
rerouting sequence of length |V (P )\V (Q )|. Hence we can actually find a shortest rerouting sequence efficiently in this case.
In contrast, in [16], it was shown that for general graphs, finding a shortest rerouting sequence is NP-hard, even for graph
classes where there always exists one of polynomial length. Recently, a positive result for SPR similar to the results in this
paper has been found: in [3], it is shown that for planar graphs, SPR can be decided in polynomial time.

In the context of reconfiguration problems, other types of questions are commonly studied as well. Above, we considered
the reachability question: can one given solution be reached from another given solution? The related connectivity question
has also been well-studied [5,6,10,11]: can every solution reach every other solution? In other words, is the solution graph
connected? For chordal graphs G , we answer affirmatively: we show that SP(G, s, t) is always connected. Furthermore, we
show that if G is claw-free, it can be decided in polynomial time whether SP(G, s, t) is connected. Our results on chordal
graphs are presented in Section 4, and the results on claw-free graphs in Section 5.

Another type of question that has been studied in this context is related to the existence of isolated states [10]. In
the case of SPR, an isolated st-path is a shortest st-path in G that has no neighbor in SP(G, s, t). The reader may observe
that deciding whether a given path is an isolated st-path is a trivial problem, that can be decided in linear time. Similarly,
deciding whether all shortest st-paths are isolated can trivially be done in polynomial time as well. The problem of deciding
whether there exists an isolated st-path is less trivial. In Section 6 we give an algorithm for this problem. In fact, we give
a polynomial time algorithm for the more general problem of counting the number of isolated paths. In Section 7, we end
with a discussion.

2. Preliminaries

For graph theoretical notions not defined here, we refer to [9]. We will consider undirected and simple graphs through-
out. A walk of length k from v0 to vk in a graph G is a vertex sequence v0, . . . , vk , such that for all i ∈ {0, . . . ,k − 1},
vi vi+1 ∈ E(G). It is a path if all vertices are distinct. It is a cycle if k � 3, v0 = vk , and v0, . . . , vk−1 is a path. With a
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path or cycle W = v0, . . . , vk we associate a subgraph of G as well, with vertex set V (W ) = {v0, . . . , vk} and edge set
E(W ) = {vi vi+1 | i ∈ {0, . . . ,k − 1}}. A path from s to t is also called an st-path. The distance from s to t is the length of a
shortest st-path. The diameter of a graph is the maximum distance from s to t over all vertex pairs s, t .

A hypergraph H = (V , E) consists of a vertex set V , and a set E of hyperedges, which are subsets of V . A walk in H of
length k is a sequence of vertices v0, . . . , vk such that for every i, there exists a hyperedge e ∈ E with {vi, vi+1} ⊆ e. Using
this notion of walks, the notions of connectivity and components of hypergraphs are defined the same as for graphs.

Throughout this paper, we will consider a graph G with vertices s, t ∈ V (G). We will only be interested in shortest
st-paths in G , and use d to denote their length. For i ∈ {0, . . . ,d}, we define Li ⊆ V (G) to be the set of vertices that lie on
a shortest st-path, at distance i from s. So L0 = {s}, and Ld = {t} (even if there may be more vertices at distance d of s).
A set Li is also called a layer. With respect to a given layer Li , the previous layer is Li−1, and the next layer is Li+1. Clearly,
if there is an edge xy ∈ E(G) with x ∈ Li and y ∈ L j , then | j − i| � 1. Note that a shortest st-path P contains exactly one
vertex from every layer. For i ∈ {0, . . . ,d}, this vertex will be called the Li -vertex of P .

The graph G will be undirected, so we use the notation N(v) to denote the set of neighbors of a vertex v ∈ V (G).
However, if v ∈ Li , then we will use N−(v) to denote N(v) ∩ Li−1, and call these neighbors the in-neighbors of v . Similarly,
N+(v) denotes N(v) ∩ Li+1, and these are called the out-neighbors of v .

Recall that for two shortest st-paths P and Q , a rerouting sequence from P to Q is a walk in SP(G, s, t) from P to Q .
So this is a sequence Q 0, . . . , Q k of shortest st-paths with Q 0 = P , Q k = Q , such that for every j ∈ {0, . . . ,k − 1}, Q j and
Q j+1 differ in exactly one vertex. Since these are all shortest st-paths, this implies that there is a unique layer Li such
that the Li -vertices of Q j and Q j+1 differ. If these Li -vertices are u and v respectively, then we also say that Q j+1 is
obtained from Q j with a rerouting step u → v (in layer Li ). Observe that the entire rerouting sequence can be deduced
from the knowledge of the starting path Q 0, and the rerouting steps from Q j to Q j+1 for every j. So for short, we will
also describe rerouting sequences from a given starting path by just giving the sequence of rerouting steps. We will often
use the following basic observation: Let Q be a shortest st-path with Li -vertex u, and let v be another Li -vertex. Then a
rerouting step u → v is possible if and only if v is adjacent to both the Li−1-vertex of Q and the Li+1-vertex of Q .

3. PSPACE-completeness

In this section we prove that the SPR problem is PSPACE-complete. We first define the problem that we reduce from.
A k-color assignment α for a graph G is a function α : V (G) → {1, . . . ,k}. A k-coloring α for a graph G is a color assignment
such that for all uv ∈ E(G), α(u) �= α(v). For a given graph G , the k-color graph Ck(G) has as vertex set all k-colorings
of G , where two colorings are adjacent if they differ only in one vertex. A walk in Ck(G) from α to β will also be called a
recoloring sequence from α to β . The problem k-Color Path is defined as follows.

k-Color Path:
instance: Graph G , two k-colorings α and β of G .
Question: Is there a walk between α and β in Ck(G)?

This problem has been shown to be PSPACE-complete for k � 4, in [4]. In Section 3.1 we give the transformation from an
instance G,α,β of 4-Color Path to an instance G ′, Pα, Pβ of SPR. In Section 3.2 we prove that these instances are equivalent;
there is a recoloring sequence between α and β if and only if there is a rerouting sequence between Pα and Pβ . This shows
that SPR is PSPACE-hard.

3.1. Construction

Let G be a graph with two 4-colorings α and β , and V (G) = {v1, . . . , vn}. This is an instance of 4-Color Path. In this sec-
tion we will use G to construct an equivalent SPR instance G ′ with two shortest st-paths Pα and Pβ . Every shortest st-path
in G ′ will correspond to a 4-color assignment for G (though not necessarily a 4-coloring!). To indicate this correspondence,
some vertices of G ′ will be colored with the four colors {1,2,3,4}. The other vertices will be colored with a fifth color,
namely black. Note that this 5-color assignment for G ′ will not be a coloring of G ′ .

G ′ will consist of one main strand, which contains the paths Pα and Pβ , and 6n recoloring strands: one for every combi-
nation of a vertex vi ∈ V (G) and two colors {c1, c2} ⊂ {1,2,3,4}. The recoloring strand for vertex vi and colors c1, c2 will
be used for rerouting paths in a way that will correspond to recoloring vi from color c1 to c2, or from c2 to c1.

The construction of G ′ starts by introducing the vertices s and t . The main strand is constructed as follows. For each
vi ∈ V (G), introduce a vertex gadget Hi as shown in Fig. 1(a). The leftmost vertex of Hi is labeled si , and the rightmost
vertex ti . These vertices are colored black. Hi consists of four disjoint siti -paths of length 4, one for each color. All internal
vertices of the paths are colored in the color assigned to the path. The four vertices of Hi that are neither adjacent to si
nor to ti are called middle vertices of Hi . These gadgets Hi are connected as follows: add edges ss1 and tnt , and for every
i ∈ {1, . . . ,n − 1}, add an edge ti si+1.

At this point the graph is connected, and every vertex lies on a shortest st-path. Observe that the distance from s to si
(resp. ti ) is 5i − 4 (resp. 5i), and the distance from s to t is 5n + 1. So for every vertex v , this determines uniquely the layer
Li such that v ∈ Li (with i ∈ {0, . . . ,5n + 1}).
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Fig. 1. Gadgets Hi and H∗
i used in the construction, and edges between them.

Now we show how the recoloring strands are constructed. For each vi ∈ V (G) and each color pair {c1, c2} ⊂ {1,2,3,4},
we introduce a recoloring strand called the vi, {c1, c2}-strand, defined as follows. Let {1,2,3,4}\{c1, c2} = {c3, c4}. First we
introduce gadgets H∗

j for every j ∈ {1, . . . ,n}. (For every recoloring strand, we will introduce gadgets H∗
j , for j = 1, . . . ,n.

Whenever we mention H∗
j gadgets below, this should be interpreted as the H∗

j -gadgets for the vi, {c1, c2}-strand. The same
holds for the vertices s∗

j , t∗
j , l and r that we will introduce below for every strand.)

• If j �= i and vi v j /∈ E(G), then define H∗
j to be isomorphic to H j (see Fig. 1(a)), with the same 5-color assignment. The

leftmost and rightmost (black) vertices are now labeled s∗
j and t∗

j respectively.
• If j �= i and vi v j ∈ E(G), then define H∗

j to be as shown in Fig. 1(b). The leftmost and rightmost (black) vertices are
labeled s∗

j and t∗
j again. Now there are only two disjoint paths from s∗

j to t∗
j , which are colored with the colors c3

and c4.
• H∗

i is the gadget shown in Fig. 1(c). Here s∗
i has one neighbor labeled l, and t∗

i has one neighbor labeled r.

Complete the strand by adding edges ss∗
1, t∗

nt and t∗
i s∗

i+1 for every i ∈ {1, . . . ,n−1}. Note that if we add edges from l and r to
the same vertex in layer L5i−2, which we will do below, then all vertices of the new strand lie on st-paths of length 5n + 1
as well, and no shorter st-paths have been created. This defines for every vertex in the new strand which distance layer it is
part of. We will refer to these layers in the next step, where we show how to connect the vertices of this recoloring strand
to the main strand, see Fig. 1(d)–(f). For all j < i:

• Add edges between s∗
j and every main-strand vertex in the next layer that has a color that is also used in H∗

j .
• For every non-black vertex v of H∗

j , add an edge between v and the main-strand vertex in the next layer that has the
same color as v , or is black.

• Add an edge t∗
j s j+1.

Similarly, for all j > i:

• Add edges between t∗
j and every main-strand vertex in the previous layer that has a color that is also used in H∗

j .
• For every non-black vertex v of H∗

j , add an edge between v and the main-strand vertex in the previous layer that has
the same color as v , or is black.

• Add an edge s∗
j t j−1.

For H∗
i we add edges as follows.

• Connect s∗
i to the main-strand vertices in the next layer with colors c1 and c2.

• Connect t∗
i to the main-strand vertices in the previous layer with colors c1 and c2.

• Connect both remaining vertices l and r of H∗
i to both middle vertices of Hi that have colors c1 and c2.

Introducing such a vi, {c1, c2}-strand for every vi ∈ V (G) and {c1, c2} ⊂ {1,2,3,4} completes the construction of G ′ .
Finally, we show how to construct a path Pγ for any given 4-coloring γ of G , see Fig. 2. The path Pγ contains only

main-strand vertices. Since it should be a shortest st-path, it contains exactly one vertex of every layer. Every layer contains
vertices of a unique gadget Hi of the main strand. In the case that the layer contains a single black vertex from Hi , this is
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Fig. 2. A k-Color Path instance G , α, β , and two strands of the resulting graph G ′ .

Fig. 3. An intermediate path in a rerouting sequence from Pα to Pβ , using the v3, {2,4}-strand.

the vertex that is included in Pγ . In the case that the layer contains vertices of colors 1, . . . ,4 of Hi , use the vertex of color
γ (vi) for Pγ . This way, we define the paths Pα and Pβ , using the given colorings α and β , respectively.

For an example of the construction see Fig. 2. Here G is a cycle on four vertices. Two colorings α and β are shown,
which differ only in vertex v3, α(v3) = 2 and β(v3) = 4. A part of the resulting graph G ′ is illustrated: only the main strand
and the v3, {2,4}-strand are shown. The marked path in G ′ is Pα .

3.2. Equivalence of the instances

We first show that if γ and δ are adjacent colorings in Ck(G), which differ in vertex vi , then the vi, {γ (vi), δ(vi)}-strand
can be used to reroute the path Pγ to Pδ .

Lemma 1. If there is a recoloring sequence for G from α to β , then there is a rerouting sequence from Pα to Pβ for G ′ .

Proof. It suffices to show that for any two adjacent colorings γ and δ in Ck(G), there is a rerouting sequence from Pγ

to Pδ , where Pγ and Pδ are the shortest st-paths in G ′ that are constructed using γ and δ as explained at the end of
Section 3.1. If this can be done for every consecutive pair in the recoloring sequence from α to β , then a rerouting sequence
from Pα to Pβ exists. So, let γ and δ be adjacent colorings in Ck(G). Let vi be the unique vertex in which they differ, and
let c1 = γ (vi) and c2 = δ(vi).

Pγ can be transformed into Pδ as follows: Let H∗
j denote the gadgets of the vi, {c1, c2}-strand of G ′ . First, for the layers

d = 1, . . . ,5i − 3, replace the vertex v of Pγ in layer Ld by the unique vertex of H∗
j (in the same layer) that has the same

color as v . This is possible by making the changes in increasing layer order. Similarly, for the layers d = 5n,5n−1, . . . ,5i −1,
replace the vertex v in layer Ld by the vertex of H∗

j with the same color as v . This is possible by making the changes in
decreasing layer order. (When starting with the path shown in Fig. 2, this gives the path shown in Fig. 3.) Note that these
changes are possible if and only if Pγ does not use vertices of color c1 or c2 from gadgets H j with vi v j ∈ E(G). The latter
property is ensured by the construction of Pγ , since γ is a coloring of G , so all neighbors v j of vi have γ (v j) /∈ {c1, c2}.

Now we can change the middle vertex of Hi that is used in the path: replace the middle vertex of color c1 with the
one of color c2. Next, we can move the entire path from the vi, {c1, c2}-strand back to the main strand, similar to before
(but in reverse order). This yields a rerouting sequence from Pγ to Pδ . Since we can do this for every recoloring step in the
recoloring sequence (there is a strand for every vi and every {c1, c2}), this concludes the proof. �

Loosely speaking, we now show that any rerouting sequence from Pα to Pβ must consist of a sequence of rerouting
sequences that are of the type given in the previous proof. This establishes the converse of the above lemma.
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Lemma 2. If there is a rerouting sequence from Pα to Pβ for G ′ , then there is a recoloring sequence in G from α to β .

Proof. First we define how any shortest st-path P in G ′ is mapped to a color assignment of G: vi receives the same color
as the vertex of P in layer L5i−2; this is the layer that contains the middle vertices of Hi . Note that this defines a color
assignment for G , but that this is not necessarily a (proper) coloring.

In a rerouting sequence from Pα to Pβ , consider a step where the sequence moves from a path P that corresponds to a
color assignment γ , to a path P ′ that corresponds to a different color assignment δ. We will prove that if γ is a coloring of
G , then δ is a coloring of G as well. (So then γ and δ are adjacent vertices in Ck(G), since a rerouting step changes at most
one color.) Say γ and δ differ in vi , where γ (vi) = c1 and δ(vi) = c2.

First we observe that the path P contains the l and r vertices of the vi, {c1, c2}-strand: l is the only vertex in layer L5i−3
that is adjacent to both a vertex of color c1 in L5i−2 and a vertex of color c2 in L5i−2. Similarly, r is the only such vertex in
layer L5i−1.

Therefore, all vertices of P except the one in layer L5i−2 are part of the vi, {c1, c2}-strand. Indeed, the only neighbor of l
in layer L5i−4 is part of this strand (this is s∗

i ), and the only neighbor of s∗
i in layer L5i−5 is part of this strand (this is t∗

i−1),
all neighbors of t∗

i−1 in layer L5i−6 are part of this strand, etc. Similarly, starting from r we can argue that the vertices of P
in layers 5i, 5i + 1, etc. are part of this strand.

Since we now have that all internal vertices of P lie in the vi, {c1, c2}-strand, we conclude that for all neighbors v j of vi ,
γ (v j) ∈ {1,2,3,4}\{c1, c2}: This follows from the construction of the vi, {c1, c2}-strand (recall that for neighbors v j of vi ,
H∗

j contains no vertices of color c1 or c2).
So if γ is modified by changing the color of vi from γ (vi) = c1 to δ(vi) = c2, then again a coloring of G is obtained,

which is δ. We conclude that all paths in the rerouting sequence correspond to colorings, since we started with one that
corresponded to a coloring, namely Pα . �
Theorem 3. SPR is PSPACE-complete.

Proof. 4-Color Path is PSPACE-complete [4]. Our transformation from G to G ′ is polynomial; G ′ has 6n + 1 strands and
O (n2) vertices and edges. By Lemmas 1 and 2, G , α, β is a YES-instance for 4-Color Path if and only if G ′ , Pα , Pβ is
a YES-instance for SPR. This proves PSPACE-hardness. Membership in PSPACE follows from Savitch’s Theorem [20] which
states that PSPACE = NPSPACE; the problem is easily seen to be in NPSPACE. �
4. Chordal graphs

Recall that with a cycle C , we associate a vertex set V (C) and edge set E(C). A chord of C is an edge uv with u, v ∈ V (C)

but uv /∈ E(C). A graph G is chordal if every cycle of length at least 4 has a chord. We will show in this section that for
chordal graphs G , the SPR problem can be decided in polynomial time. In fact, we prove a much stronger statement: if G is
chordal, then SP(G, s, t) is connected and has diameter at most d − 1, where d is the distance from s to t . This requires the
following property of edge pairs that lie on shortest st-paths in a chordal graph G .

Proposition 4. Let vi vi+1 and v ′
i v ′

i+1 be two edges of a chordal graph G, that both lie on a shortest st-path, with {vi, v ′
i} ⊆ Li and

{vi+1, v ′
i+1} ⊆ Li+1 for some i. Then vi v ′

i+1 ∈ E(G) or v ′
i vi+1 ∈ E(G).

Proof. If vi = v ′
i or vi+1 = v ′

i+1 then the statement follows immediately, so now assume that vi �= v ′
i and vi+1 �= v ′

i+1, and
thus 1 � i � d − 2, where d is the distance from s to t .

Let P L be a shortest path from vi to v ′
i in G[L0 ∪· · ·∪ Li−1 ∪{vi, v ′

i}]. (Combining the initial parts of the shortest st-paths
on which vi and v ′

i lie gives a walk from vi to v ′
i in this subgraph, so such a shortest path P L indeed exists.) Analogously,

we may define P R to be a shortest path from vi+1 to v ′
i+1 in G[Li+2 ∪ · · · ∪ Ld ∪ {vi+1, v ′

i+1}]. The paths P L and P R are
vertex disjoint, so combining these paths with the edges vi vi+1 and v ′

i v ′
i+1 gives a cycle C in G . This cycle has length

at least four, and therefore contains a chord xy. Since P L and P R are both shortest paths, w.l.o.g. we may assume that
x ∈ V (P L) and y ∈ V (P R). Since all edges of G are between vertices in the same layer or in consecutive layers, it follows
that x ∈ {vi, v ′

i} and y ∈ {vi+1, v ′
i+1}. The statement now follows because xy /∈ E(C). �

Theorem 5. Let G be a chordal graph, and let P and Q be two shortest st-paths in G, of length d. Then a rerouting sequence from P to
Q exists, of length at most |V (P )\V (Q )| � d − 1.

Proof. We prove the statement by induction over c = |V (P )\V (Q )|. If c = 0 then P = Q , so the statement is trivial. So now
assume that c � 1; P and Q differ in at least one vertex. Let P = u0, u1, . . . , ud , and Q = v0, v1, . . . , vd . Let i be the lowest
index such that ui �= vi (such an i exists since c � 1). Consider the edges uiui+1 and vi vi+1. By Proposition 4, ui vi+1 or
viui+1 is an edge of G as well. If viui+1 ∈ E(G), then we can apply the rerouting step ui → vi to P , since then vi is also
adjacent to both ui−1 = vi−1 and ui+1. This gives a new shortest st-path P ′ that has one more vertex in common with Q .
So by induction, the distance from P ′ to Q in SP(G, s, t) is at most c − 1. Hence the distance from P to Q is at most c.
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Similarly, if ui vi+1 ∈ E(G), then applying the rerouting step vi → ui to Q gives a shortest st-path Q ′ that has one more
vertex in common with P , and the claim follows analogously. �

The above proof gives a polynomial time algorithm for constructing the rerouting sequence. Obviously a rerouting se-
quence from P to Q requires at least |V (P )\V (Q )| rerouting steps, so we may conclude:

Corollary 6. Let G be a chordal graph with shortest st-paths P and Q . In polynomial time, a shortest rerouting sequence from P to Q
can be constructed.

5. Claw-free graphs

In this section we show that deciding SPR, and deciding whether SP(G, s, t) is connected can both be done in polynomial
time in the case where G is claw-free. A claw is a K1,3 graph. A graph G is claw-free if it contains no claw as induced
subgraph. In other words, G is not claw-free if and only if it contains a subgraph H that consists of one vertex c of
degree 3, and three leaves l1, l2, l3, such that the leaves are pairwise nonadjacent in G . Such an induced subgraph will be
called a c-claw with leaves l1, l2, l3 for short.

Consider a graph G , and layers Li defined with respect to s, t ∈ V (G) as before. Let u ∈ Li . We say that u has maximal
in-neighborhood if there is no v ∈ Li with N−(u) ⊂ N−(v). (Note that we distinguish between subset ⊆ and strict subset ⊂.)
In that case, the vertex set N−(u) is called a maximal in-neighborhood in Li−1. These notions are defined analogously for
out-neighborhoods.

With a layer Li , we associate the following hypergraph Hi : Hi has vertex set Li , and the hyperedges correspond to the
maximal in-neighborhoods of Li . So for every e ∈ E(Hi), there exists a vertex a ∈ Li+1 with N−(a) = e.

The main result of this section is proved as follows. We first give some simple reduction rules. These are based on the
fact that it is safe to delete a vertex v , if we know that it is not part of any shortest st-path that can be reached from the
given shortest st-path P . We give two ways to identify such vertices. For reduced, claw-free SPR instances G ′, P , Q that do
not have such vertices, we actually show that SP(G ′, s, t) is connected.

This is done by first rerouting P to a shortest st-path P ′ in which every vertex has maximal in-neighborhood, and
rerouting Q to a shortest st-path Q ′ in which every vertex has maximal out-neighborhood. We show that this is possible
in reduced claw-free graphs. Clearly it then suffices to decide whether Q ′ is reachable from P ′ . It is easy to see that these
maximal neighborhood properties are useful if we wish to reroute P ′ to Q ′ layer by layer, in increasing order of layers (that
is, intermediate paths will start with a subpath of Q ′ , and end with a subpath of P ′). Indeed, this is our main strategy.
However rerouting in one layer is already nontrivial, and may require multiple rerouting steps. To find a short rerouting
sequence for one layer, we use a shortest path in the hypergraph Hi .

We first prove the properties underlying the reduction rules. Note that the next proposition does not require G to be
claw-free.

Proposition 7. Let P be a shortest st-path in a graph G. For every shortest st-path Q that is reachable from P in SP(G, s, t) and every i,
the Li -vertex of Q is part of the same component of Hi as the Li -vertex of P .

Proof. Whenever a rerouting step x → y in layer Li is made, there is a vertex z ∈ Li+1 with x, y ∈ N−(z), so x and y are in
the same component of Hi . �
Proposition 8. Let P be a shortest st-path of length d in a claw-free graph G. For every shortest st-path Q that is reachable from P in
SP(G, s, t) and every i ∈ {2, . . . ,d − 2}, the Li -vertex of Q is adjacent to the Li -vertex of P .

Proof. Consider a rerouting sequence Q 0, . . . , Q k from Q 0 = P to Q k = Q , and let x j be the Li -vertex of Q j , for every
j ∈ {0, . . . ,k}. Assume that the claim is not true, so then we may choose � to be the lowest index such that x0x� /∈ E(G).

If x0 and x� have a common neighbor z in either Li−1 or Li+1, then a z-claw with leaves x0, x� and y exists, for some
vertex y ∈ Li−2 or y ∈ Li+2, respectively. (Here we use the fact that by definition of Li−1 or Li+1, z lies on a shortest
st-path, so it has at least one neighbor in Li−2 or Li+2, respectively. Clearly this neighbor y is not adjacent to the vertices
x0 and x� in layer Li . By definition, x0x� /∈ E(G).) So since G is claw-free, we may conclude that N−(x0) ∩ N−(x�) = ∅, and
N+(x0) ∩ N+(x�) = ∅.

If x�−1 has a neighbor y ∈ Li−1\N−(x0) and a neighbor z ∈ Li+1\N+(x0), then an x�−1-claw with leaves x0, y, z exists. So
w.l.o.g. we may assume that N−(x�−1) ⊆ N−(x0). But then N−(x�−1) ∩ N−(x�) = ∅, which contradicts that a rerouting step
x�−1 → x� is possible. �

Now we can define the notion of a reduced claw-free instance, and prove that such an instance can always be found in
polynomial time.

Definition 9. Let G be a claw-free graph with vertices s and t at distance d from each other. Then G is called st-reduced if
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• all vertices lie on a shortest st-path,
• for every i ∈ {1, . . . ,d − 1}, Hi is connected, and
• for every i ∈ {2, . . . ,d − 2}, Li is a clique.

Lemma 10. Let G be a claw-free graph, with shortest st-path P . In polynomial time, we can construct an induced (claw-free) subgraph
G ′ of G such that

• G ′ is st-reduced, and
• a shortest st-path Q of G is reachable from P in SP(G, s, t) if and only if V (Q ) ⊆ V (G ′) and Q is reachable from P in SP(G ′, s, t).

Proof. Let d denote the length of P . If we know that a given vertex v is not part of any shortest st-path that can be reached
from P in SP(G, s, t), then it is easily seen that deleting v is safe, that is, the resulting graph G ′ = G − v satisfies the second
property from the lemma statement.

To obtain G ′ from G we apply the following three reduction rules, which all delete vertices. First, we delete every
vertex that does not lie on a shortest st-path, which clearly is safe. Secondly, for every i ∈ {1, . . . ,d − 1}, we delete the
vertices that do not lie in the same component of Hi as the Li -vertex of P . By Proposition 7, this is safe. Finally, for every
i ∈ {2, . . . ,d − 2}, we delete every vertex in Li that is not adjacent to the Li -vertex of P . By Proposition 8, this is safe. We
apply these three reduction rules iteratively, until no rule can be applied anymore. Every reduction rule application deletes
at least one vertex, so this process terminates in polynomial time. Call the resulting graph G ′ . Clearly, G ′ is an st-reduced
graph. Since we only deleted vertices, G ′ is an induced subgraph of G , and therefore again claw-free. �

The last property from Definition 9 shows that every pair of vertices in one layer is adjacent; this makes it much easier
in our proofs to obtain a contradiction by exhibiting an induced claw. We use this to prove the following three statements.
First, we show that indeed maximal in-neighborhoods (or out-neighborhoods) can be guaranteed for every vertex.

Lemma 11. Let P be a shortest st-path of length d in a claw-free st-reduced graph G. In polynomial time, a rerouting sequence
of length at most d − 1 can be constructed, from P to a shortest st-path P ′ in which every vertex has maximal out-neighborhood.
Similarly, a rerouting sequence of length at most d − 1 can be constructed, from P to a shortest st-path P ′′ in which every vertex has
maximal in-neighborhood.

Proof. Let P = u0, u1, . . . , ud−1, ud . Define v0 := u0(= s). For i = 1, . . . ,d − 1, in increasing order, we change the Li -vertex
ui of P as follows. If the out-neighborhood of ui is not maximal, then choose vi ∈ Li with N+(ui) ⊂ N+(vi), and N+(vi)

maximal. If possible, choose vi such that vi ∈ N+(vi−1). Then, apply the rerouting step ui → vi . If ui already has maximal
out-neighborhood then simply define vi = ui .

It remains to show that ui → vi is in fact a rerouting step. By definition, ui+1 ∈ N+(vi), so the Li+1-vertex of the current
path v0, . . . , vi−1, ui, ui+1, . . . , ud poses no problem. It might however be that vi is not adjacent to vi−1, the Li−1-vertex
of the current path. In that case, i � 2. Choose a vertex x ∈ N−(vi). Since vi ∈ N+(x)\N+(vi−1), but N+(vi−1) is maximal,
there exists at least one y ∈ N+(vi−1)\N+(x). By choice of vi , there exists at least one z ∈ N+(vi)\N+(y), otherwise y has
maximal out-neighborhood as well, and we would have chosen vi = y (since we gave preference to out-neighbors of vi−1).
This however gives a vi -claw with leaves x, y, z, a contradiction. (Since G is st-reduced, vi y ∈ E(G).)

If we wish to obtain a path with maximal in-neighborhoods for every vertex, we can follow an analog method, starting
with layer Ld−1 instead. �

The next two propositions are required to prove Lemma 14.

Proposition 12. Let G be a claw-free, st-reduced graph, with distance d from s to t. For i ∈ {1, . . . ,d − 1}, let x0, . . . , x� be a shortest
path in Hi . Then for all j ∈ {1, . . . , � − 1} and k ∈ {0, . . . , �}, it holds that N−(x j) ⊆ N−(xk).

Proof. Suppose to the contrary that there exists a vertex y ∈ N−(x j)\N−(xk), for some j ∈ {1, . . . , � − 1} and k ∈ {0, . . . , �}.
W.l.o.g. we may assume that k > j. Let a0, . . . ,ak−1 be vertices in Li+1 such that for all p ∈ {0, . . . ,k − 1}, {xp, xp+1} ⊆
N−(ap). By definition of Hi , such vertices exist.

We now claim that there exists an x j -claw, with leaves y,a j−1, xk . These three vertices are all adjacent to x j (xk is
adjacent since G is st-reduced so Li is a clique). Clearly, y ∈ Li−1 and a j−1 ∈ Li+1 are not adjacent. By choice of y, it is
not adjacent to xk . If xk ∈ N−(a j−1), then a shorter path from x0 to xk in Hi would exist, namely x0, . . . , x j−1, xk, . . . , x� ,
a contradiction. Hence this is indeed an induced claw, and thus from this contradiction we may conclude that for all j,k as
stated, N−(x j) ⊆ N−(xk). �
Proposition 13. Let G be a claw-free and st-reduced graph. If u, v ∈ Li have distinct maximal in-neighborhoods, then N+(u) =
N+(v). If u, v ∈ Li have distinct maximal out-neighborhoods, then N−(u) = N−(v).
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Fig. 4. An illustration of the proof of Lemma 14. Vertical edges are omitted.

Proof. Suppose u, v ∈ Li have distinct maximal in-neighborhoods, and that there exists x ∈ N+(u)\N+(v). Then we may
choose y ∈ N−(u)\N−(v). This gives a u-claw with leaves x, y, v . Note that uv ∈ E(G) since G is st-reduced. The other
cases are analog. �

Now we have all the tools for proving the following lemma, which is concerned with rerouting a single layer Li , and
requires maximal neighborhoods. Note that the Li+1-vertex of the resulting path is not determined by the ‘input’ P and w ,
but this will not be a problem later.

Lemma 14. Let G be a claw-free, st-reduced graph, and let P = u0, . . . , ud be a shortest st-path. Let i ∈ {1, . . . ,d − 1} such that ui−1
has maximal out-neighborhood and ui+1 has maximal in-neighborhood. Then for every w ∈ N+(ui−1), using at most 2|Li | rerouting
steps, P can be modified to a shortest st-path P ′ = v0, . . . , vd with vi = w, and v j = u j for all j ∈ {0, . . . ,d}\{i, i + 1}. Such a
rerouting sequence can be found in polynomial time.

Proof. If i = d − 1, the proof is trivial: ui+1 = t , which is adjacent to every vertex in Ld−1. Therefore, we may simply apply
the single rerouting step ui → v , to obtain the desired shortest st-path P ′ . So now assume that 1 � i � d − 2. The following
notations and proof are illustrated in Fig. 4.

Consider a shortest path x0, . . . , xk in Hi from ui to w , so x0 = ui and xk = w . For j ∈ {1, . . . ,k}, let a j ∈ Li+1 be a vertex
with maximal in-neighborhood such that {x j−1, x j} ∈ N−(a j). (Such a vertex exists by the definition of the hypergraph Hi .)
Choose a1 = ui+1 if ui+1 satisfies this condition. In addition, let a0 = ui+1.

The plan is to use this path to reroute P to P ′ . In particular, the rerouting sequence that we construct below uses the
rerouting steps x0 → x1 → ·· · → xk in layer Li . But it may be necessary to make changes in layers Li−1 and Li+1 as well.

Firstly, a rerouting step in Li−1 is required if there exists a j with ui−1x j /∈ E(G). In this case, let y ∈ Li−1 be
an in-neighbor of x j with maximal out-neighborhood. (Note that x j has at least one in-neighbor y that has maxi-
mal out-neighborhood.) We claim that ui−2 y ∈ E(G): this follows since ui−1 has maximal out-neighborhood as well, so
N−(ui−1) = N−(y) (Proposition 13). Secondly, Proposition 12 shows that for every �, yx� ∈ E(G). On the other hand, if ui−1
is actually adjacent to every x j , in particular if i = 1, then for the remainder of the proof we simply choose y = ui−1. The
rerouting sequence from P to P ′ is given by the following series of modifications (below we prove that these are all actual
rerouting steps):

(1) in Li−1: ui−1 → y (Skip if y = ui−1.)
(2) in Li+1: a0 → a1 (Recall that a0 = ui+1. Skip if a0 = a1.)
(3) in Li : x0 → x1 (Recall that x0 = ui .)
(4) in Li+1: a1 → a2

(5) in Li : x1 → x2

.

.

.

(2k) in Li+1: ak−1 → ak

(2k + 1) in Li : xk−1 → xk (Recall that xk = w .)
(2k + 2) in Li−1: y → ui−1 (Skip if y = ui−1.)

Let Q 0, . . . , Q m be the vertex sequences that result from these changes, starting with Q 0 = P . We first verify that for
every � ∈ {0, . . . ,m}, Q � is a shortest st-path. In other words, we show that for every �, the �th change p → q above is a
rerouting step; we verify that the Li−1-vertex and Li+1-vertex of Q �−1 are both also adjacent to q.

As observed above, if i � 2, then y is adjacent to ui−2, so in every Q � the Li−2-vertex and Li−1-vertex are adjacent.
Furthermore, y is adjacent to every x j , so it is adjacent to the Li -vertex of every Q � . This shows that for every Q � , the
Li−1-vertex and the Li -vertex are adjacent.
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Now we show that Li -vertex and Li+1-vertex are adjacent in every Q � . If a rerouting step x j → x j+1 is made in layer Li ,
then at that point, the vertex in layer Li+1 is a j+1, which by definition is adjacent to both x j and x j+1. Similarly, if a
rerouting step a j → a j+1 is made in layer Li+1, then at that point the Li -vertex is x j , which is adjacent to both.

Finally, we show that the Li+1-vertex and Li+2-vertex are adjacent in every Q � . We first argue that whenever a rerouting
step a j → a j+1 is applied, a j and a j+1 have distinct maximal in-neighborhoods. For j � 1, this follows from the fact that
x0, . . . , xk is a shortest path in Hi , so there is no in-neighborhood that contains both x j−1 and x j+1. For a0 and a1 it follows
from the choice of a1: recall that a0 = ui+1, which we assumed to have a maximal in-neighborhood. So if x1 /∈ N−(a0),
then a0 and a1 again have distinct maximal in-neighborhoods. If x1 ∈ N−(a0), then we have chosen a1 = a0, and in fact no
rerouting step is made. Hence we may now conclude that Proposition 13 can be applied for every rerouting step a j → a j+1,
which shows that N+(a j) = N+(a j+1) for every j. Therefore, ui+2 is an out-neighbor of every a j .

This concludes the proof that every Q � is a shortest st-path, so Q 0, . . . , Q m is a rerouting sequence, which results in
the path Q m = u0, . . . , ui−1, w,ak, ui+2, . . . , ud , which is of the form we required for P ′ . Observe that the above rerouting
sequence can be found in polynomial time (by finding a shortest path in Hi , etc.). Finally, note that this rerouting sequence
used at most 2k + 2 rerouting steps. Since k � |Li | − 1, this proves the statement. �

Combining Lemmas 11 and 14 gives the main combinatorial result, for st-reduced claw-free graphs.

Theorem 15. Let G be an st-reduced claw-free graph on n vertices, with distance d from s to t. Between any two shortest st-paths P
and Q in G, a rerouting sequence of length at most 2n + 2d − 6 exists, which can be constructed in polynomial time.

Proof. First apply at most d − 1 rerouting steps to P to obtain a shortest st-path P ′ in which every vertex has a maximal
in-neighborhood (Lemma 11). Similarly, apply at most d − 1 rerouting steps to Q to obtain a shortest st-path Q ′ in which
every vertex has a maximal out-neighborhood (Lemma 11).

Now P ′ can be modified to Q ′ in d − 1 stages i, with i ∈ {1, . . . ,d − 1}. Denote P0 = P ′ = u0, . . . , ud , and Q ′ = v0, . . . , vd .
At the start of the ith stage, we have a shortest st-path Pi−1 = v0, . . . , vi−1,a, ui+1, . . . , ud for some a ∈ Li (note that
for i = 1, P0 is of this form). Using at most 2|Li | rerouting steps, Pi−1 can be modified into a shortest st-path Pi =
v0, . . . , vi,a′, ui+2, . . . , ud for some a′ ∈ Li+1. This follows from Lemma 14; note that in particular the conditions that the
Li−1-vertex of Pi−1 has maximal out-neighborhood and that the Li+1-vertex of Pi+1 has maximal in-neighborhood are
satisfied, since these are vertices from Q ′ and P ′ , respectively.

After d−1 stages, this procedure terminates with a path v0, . . . , vd−1, ud , which equals Q ′ . The total number of rerouting
steps for these stages is at most

∑
i∈{1,...,d−1} 2|Li | = 2(n − 2). In total, this shows that P and Q can both be rerouted to a

common shortest st-path Q ′ , in at most 2(n−2)+(d−1) and d−1 steps, respectively. Combining these rerouting sequences
gives a rerouting sequence from P to Q of length at most 2n+2d−6. Since the rerouting sequences from Lemmas 11 and 14
can both be found in polynomial time, the entire rerouting sequence can be found in polynomial time. �

Now we can easily deduce our main two algorithmic results.

Theorem 16. Let G be a claw-free graph on n vertices, and let P and Q be two shortest st-paths in G, of length d. In polynomial time
it can be decided whether Q is reachable from P in SP(G, s, t), and if so, a rerouting sequence of length at most 2n + 2d − 6 exists.

Proof. By Lemma 10, in polynomial time we can construct an st-reduced induced subgraph G ′ of G such that any shortest
st-path Q ′ is reachable from P in G if and only if it is reachable from P in G ′ . So if Q is not a shortest st-path of G ′
(at least one of its vertices was deleted), we may conclude it is not reachable. Otherwise, Theorem 15 shows that Q is
reachable from P , with a rerouting sequence of length at most 2|V (G ′)| + 2d − 6 � 2n + 2d − 6. �
Theorem 17. Let G be a claw-free graph on n vertices. In polynomial time it can be decided whether SP(G, s, t) is connected.

Proof. In polynomial time we can first delete all vertices of G that do not lie on a shortest st-path, to obtain G ′ . Clearly,
SP(G, s, t) = SP(G ′, s, t), and G ′ is again claw-free. Choose an arbitrary shortest st-path P . Using G ′ and P , Lemma 10
can be applied to obtain an st-reduced subgraph G ′′ of G ′ in polynomial time. If G ′′ = G ′ then Theorem 15 shows that
SP(G ′′, s, t) = SP(G ′, s, t) is connected. Otherwise, there exists at least one vertex v ∈ V (G ′)\V (G ′′), and we may conclude
that SP(G ′, s, t) is not connected: G ′ has a shortest st-path Q ′ with v ∈ V (Q ′), which is not part of G ′′ , but all shortest
st-paths that are reachable from P are part of G ′′ (Lemma 10). �
6. Isolated paths

In this section we give a polynomial time algorithm for counting the number of isolated paths. Recall that an isolated
st-path is a shortest st-path in G that has no neighbor in SP(G, s, t). For this, we need to consider isolated sy-paths for
vertices y �= t . For three vertices s, x, y with s �= y, we use isosy(x) to denote the number of isolated sy-paths that contain
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the vertex x. We will use this notation for the case where x is the second-to-last vertex on a shortest sy-path, so it is
adjacent to y.

Proposition 18. Let y and z be vertices at distance i and i + 1 of s, respectively, with i � 1. Then isosz(y) = ∑
x isosy(x), where the

summation is over all vertices x at distance i − 1 from s such that N(x) ∩ N(z) = {y}.

Proof. Let x be such a vertex. There are isosy(x) isolated sy-paths that end with x and y. Since y is the only common
neighbor of x and z, extending every one of these paths with the vertex z gives a set of isolated sz-paths that contain y,
which are all distinct. All of these paths have x as Li−1-vertex, so when choosing a different Li−1-vertex in the role of x,
a different set of sz-paths is obtained. This shows that there are at least

∑
x isosz(y) distinct isolated sz-paths that contain y,

where the summation is over all vertices x at distance i − 1 from s such that N(x) ∩ N(z) = {y}.
We conclude the proof by observing that every isolated sz-path that contains y also contains some vertex x at distance

i − 1 from s with N(x)∩ N(z) = {y}, such that removing z yields an isolated sy-path. Indeed, obviously y ∈ N(x)∩ N(z), and
if |N(x) ∩ N(z)| � 2, then the path is not isolated. Therefore, all isolated sz-paths that contain y are counted this way, and
thus we have equality. �
Theorem 19. Let G be a graph with s, t ∈ V (G). In polynomial time, the number of isolated st-paths can be computed.

Proof. Let d be the distance from s to t . As usual, the layers Li for i ∈ {0, . . . ,d} are defined with respect to s and t . The
algorithm works by computing the values isosz(y) for various choices of y and z, in increasing distance from s to z. First, for
every z ∈ L1, initialize isosz(s) = 1 (which is trivially correct). Then, for i = 2, . . . ,d, in increasing order of i, do the following.
For every z ∈ Li and every y ∈ Li−1, compute isosz(y) using Proposition 18. Note that the required values isosy(x) have all
been computed earlier. In the end, return

∑
y∈Ld−1

isost(y), which is the total number of isolated st-paths.
Now we analyze the complexity. Let n = |V (G)|. Note that the number of combinations of y and z for which isosz(y)

is computed is less than n2. For every such combination, evaluating the expression from Proposition 18 can be done in
polynomial time. �

The following example shows that this counting result is nontrivial: if we choose G ′′ to be just the main strand of the
instance G ′ constructed in Section 3.1 (based on a graph G on n vertices), then G ′′ contains 4n isolated paths, which is
exponential in the number of vertices of G ′′ (which is 14n + 2).

7. Discussion

In this paper we showed that SPR is PSPACE-complete, which is somewhat surprising since the problem of finding short-
est paths is easy. Nevertheless, the results in this paper otherwise confirm the typical behavior of reconfiguration problems:
for instances where we can decide SPR in polynomial time (chordal and claw-free graphs), the diameter is polynomially
bounded – in this case, even linearly bounded. In addition, for these graph classes it can be decided efficiently whether the
solution graph SP(G, s, t) is connected. The main question that is left open here is: What is the complexity of deciding whether
SP(G, s, t) is connected, for general graphs G? Note that for the SPR instances G ′ , Pα , Pβ constructed in Section 3, SP(G ′, s, t) is
always disconnected (unless the given 4-Color Path instance consists of an edgeless graph G): there exist shortest st-paths
that correspond to colorings, and shortest st-paths that do not. The proof of Lemma 2 shows that these lie in different
components of SP(G ′, s, t).

We showed that for chordal graphs G , we could even find shortest rerouting sequences in polynomial time. Is this
possible for claw-free graphs as well? To be precise, for two shortest st-paths P and Q in a claw-free graph G and k ∈ N, can
it be decided in polynomial time whether a rerouting sequence from P to Q of length at most k exists, or is this problem
NP-complete? Recall that for general graphs, the NP-hardness of finding a shortest rerouting sequence was proved in [16].
By our linear diameter result, this (decision) problem lies in NP for claw-free graphs. Finally, it is interesting to search for
other graph classes for which SPR can be solved in polynomial time. Recently this was shown for planar graphs [3]. Graphs
of bounded treewidth form another prime candidate.
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