Flow Whitelisting in SCADA Networks

Rafacl Ramos Regis Barbosa*and Aiko Pras'

Design and Analysis of Communications Systems, University of Twente, The
Netherlands

Ramin Sadre?

Distributed and Embedded Systems, Aalborg University, Denmark

Abstract

Supervisory Control And Data Acquisition (SCADA) networks are
commonly deployed to aid the operation of large industrial facilities.
Modern SCADA networks are becoming more vulnerable to network
attacks, due to the now common use of standard communication pro-
tocols and increased interconnection to corporate networks and the
Internet. In this work, we propose an approach to improve the se-
curity of these networks based on flow whitelisting. A flow whitelist
describes the legitimate traffic solely using four properties of network
packets: the client address, the server address, the server-side port,
and the transport protocol.

The proposed approach consists in learning a flow whitelist by cap-
turing network traffic and aggregating it into flows for a given period
of time. After this learning phase is complete, any non-whitelisted
connection observed generates an alarm. The evaluation of the ap-
proach focuses on two important whitelist characteristics: size and
stability. We demonstrate the applicability of the approach using real-
world traffic traces, captured in two water treatment plants and a gas
and electric utility.

*r.barbosa@utwente.nl
fa.pras@utwente.nl
frsadre@cs.aau.dk

1 Introduction

Supervisory Control And Data Acquisition (SCADA) networks are commonly
deployed to aid the operation of large industrial facilities, such as water treat-
ment plants and electric utilities. In the past, these networks were completely
isolated and relied on purpose-specific hardware and software, but now they
are becoming increasingly interconnected and are based on commodity hard-
ware, communicating through standard network protocols (such as TCP/IP).
While this new scenario reduces costs and improves efficiency, the side effect
is that these networks are now exposed to a much wider range of possible
attacks.

In this paper, we propose a flow whitelisting approach to reduce the num-
ber of attack vectors in SCADA networks that use TCP and UDP as their
primary transport protocol. We define a flow as a (bidirectional) sequence
of packets with identical client address, server address, server-side port, and
transport protocol. Flow whitelists represent all legitimate traffic solely based
on the above four properties of network packets.

Flow whitelisting presents several advantages over deep packet inspec-
tion or host level intrusion detection systems [I}, 2, [3]. By not depending on
the packet payload, flow whitelisting should be able to handle proprietary
protocols. Furthermore, it operates at the network level, that is, it is not
necessary to modify the hosts. This should overcome a common resistance
of SCADA operators in making changes in their environment. It should be
noted that, although flow-level whitelists are not commonly used in tradi-
tional IP networks, as the number of legitimate connections is too large to
be manageable, they have been proposed to some specific domains, such as
reducing SPAM [4], avoiding phishing [5], guaranteeing access to important
customers during DDoS attacks [6], and preventing various attacks in VoIP
infrastructures [7].

The main motivation for the use of whitelists is that most of SCADA
network traffic is generated by automated processes, like the periodic polling
of field devices. Besides, these systems are closed with very limited external
access, if any. Finally, changes should be rare, that is, hosts and services
are not excepted to be frequently added to or removed from the network. In
fact, the idea of whitelisting can be commonly found in recommendations for
SCADA security. For instance, the Norwegian Oil and Gas Association sug-
gests that "all access requests shall be denied unless explicitly granted" [§].

The American National Institute of Standards and Technology (NIST) rec-
ommends to "block all communications with the exception of specifically
enabled communications" [9]. However, to the best of our knowledge, the
viability of whitelists was never studied in real-world SCADA environments.
In previous work [10], we showed that the connection matrix is remarkably
stable in SCADA networks, suggesting that whitelists might be feasible in
these environments.

The goal of this paper is to present an approach for flow whitelisting in
SCADA networks and to study its capability to assist the network admin-
istrator in detecting illegitimate network traffic. To be viable the whitelist
must present two characteristics. First, its size must be manageable. A very
large list with millions of entries, as it would occur in the Internet, would
make the approach hard to implement and to manage. Second, the whitelist
must be stable. If the list is unstable, i.e., it changes frequently, it either
requires continuous updating by the network administrator or it generates a
large number of false alerts. We demonstrate the feasibility of our approach
using real-world traffic measurements captured in critical infrastructures: two
water treatment facilities and one electric and gas utility.

The remainder of this paper is organized as follows. In Section [2| we de-
scribe our approach to flow whitelists. The experimental results obtained by
applying the approach to real-world traffic traces are presented in Section [3]
Section [4] discusses different aspects toward a real-world deployment of the
approach. Finally, in Section [5| we present our conclusions.

2 The Flow Whitelisting Approach

Our approach to flow whitelisting is outlined in Figure [First, the traffic
in the SCADA network is captured, aggregated to connections, and finally
aggregated to flows. These steps are described in Section [2.1] In the learning
phase (see Section , the flows observed in a certain period of time are used
to create an initial flow whitelist. A flow whitelist is a list of entries of the
form (client IP address, server IP address, server port, IP protocol). Once
the whitelist is generated, connections are analyzed in the detection phase
(see Section [2.3)). All network traffic matching a whitelist entry is considered
legitimate. Every connection not matching an entry generates an alarm.

----p Learning <—

— Flows Whitelist

\—» Detection - Alarms —»

Figure 1: Outline of the flow whitelisting approach

Packets i Connections
Connec_:tlon FIov_v
Creation Creation

2.1 Connection and Flow Creation

Since our approach relies on information from the IP packet header, packet
headers have to be captured in the (sub)networks to be monitored by the
whitelist. In this paper, we consider only TCP and UDP packets. The con-
nection creation consists in aggregating the captured packets to connections.
We define a connection as all packets with the same source/destination IP
address, source/destination port and IP protocol, regardless of the direction.
The end of a connection is determined either using the TCP state machine or
an inactivity timeout of 300s. In our experiments (see Section [3)), we perform
this task with the open source tool argud]

The flow creation step identifies the client and server sides of the connec-
tions and further aggregates the connections according to our 4-tuple flow
definition given in Section [1, We sequentially apply four rules to identify the
server side:

e Rule 1 applies to all TCP connections for which we observe the 3-way
handshake. The server is set to be the host which received the SYN
packet or sent the SYN/ACK packet.

e Rule 2 is applied if a well-known port (bellow 1024) is observed: the
host using such port is set as the servelﬂ

Thttp://www.qosient.com /argus/

2In the case of Active FTP, where the originator of a data connection is the server, we
set the source port (20) as a service port. In the case of protocols which use the same
(well-known) port on both hosts, e.g. NTP, we either use rule 1 or 4 for classification.

e Rule 3 is a heuristic. If the same protocol and port are re-used by a host
in multiple connections, this host is set as the server and we use this
protocol /port combination to identify the service. We rely on the fact
that client ports normally vary with each connection, and are less likely
to be repeated. This rule makes it necessary to keep every connection
not classified by rules 1 or 2 in memory until a second connection
with a repeated host address, protocol and port is observed, potentially
indefinitely delaying the analysis. For an online implementation, we
would recommend the use of a timeout, after which the connection
should be classified by rule 4. In this paper, we have implemented an
offline analysis with an infinite timeout.

e Finally, for lows which do not match any of the previous rules, rule 4
sets the server to be the destination of the first packet observed in the
connection.

Note that our rules implicitly assume that every transport port and IP
protocol pair used by a server uniquely identifies a service in the SCADA
network. This definition is particularly problematic with network services
that use Dynamic Port Allocation (DPA), such Microsoft’s Active Directory.
In this service, high ports (above 1024) are dynamic allocated for Remote
Procedure Calls [II]. We acknowledge this limitation, and discuss its effects
when presenting our experimental results in Section

2.2 The Learning Phase

Ideally, the network administrator knows all services deployed in the network.
Therefore, the flow whitelist could be constructed from this knowledge. In
practice, however, complete information is rarely available, partly due to the
involved proprietary protocols.

The goal of the learning phase is to automatically create an initial whitelist
from a given period of traffic, the learning time. This whitelist contains the
entries for all flows observed during the learning period. We make two as-
sumptions: (i) all flows in the learning period are legitimate and (ii) most
legitimate flows can be observed in the learning period. We argue that the
first assumption is valid, as anomalous or malicious events are much rarer
in SCADA networks than in the Internet. In fact, no attacks were reported
during the capture of our datasets. The second assumption is based on the
expectation that most of the traffic in SCADA networks is automated, thus

flows should be repeated fairly often. We discuss how to set the duration of
the learning phase in Section [3.3]

Note that we do not expect to see all legitimate flows in the learning
phase. For example, manual changes in the configuration of PLCs could,
depending on the setup, only happen rarely, thus flows related to this activity
will probably not be present in the whitelist. Hence, the whitelist can be
extended by the network administrator during the detection phase.

2.3 The Detection Phase

The whitelist created by the learning phase is used in the detection phase to
identify illegitimate flows. If the flow is whitelisted, then nothing happens,
otherwise an alarm is raised. In a real-world deployment, an administrator
would have either to add the flow that caused the alarm to the whitelist
(treating the alarm as false positive) or to block it (true positive). Note
that, differently to traditional IT networks, where hosts are commonly put
in quarantine in case of malicious activities, an automatic blocking is not
advised for SCADA environments, as blocking legitimate traffic could have
dire consequences, such as a blackout. This topic will be discussed further in

Section [4].

3 Experimental Results

In this section, we present the four tests used in our analysis to evaluate the
viability of flow whitelists in SCADA networks. In the first test, discussed
in Section we verify whether the size of the whitelist is manageable by
comparing the size of the complete whitelist with the number of hosts and
communicating pairs in a network.

Our discussion over the stability of the whitelists is divided in three parts.
In Section [3.3] we determine the ideal learning time to be used in the learning
phase of our approach. Then, in Section [3.4] we present the classification
method used to discuss the nature of the alarms present in our datasets.
Finally, in Section [3.5, we apply the classification method to provide an
overview of the distribution of the number of alarms over the classes.

In our experiments, we need to simulate the administrator’s intervention
discussed in the detection phase (see Section . We do this by always
adding the flow which caused the alarm back to the whitelist, and at the

same time storing the alarm for post processing. This means that an alarm
is never repeated, which allows us to focus our analysis on the nature of
alarms, rather their absolute number.

3.1 Datasets

In this paper we use network packet traces collected at three different SCADA
environments: two water treatment facilities and one electric and gas utility,
referred to as waterl, water?2 and electric-gas. At one of the water treat-
ment facilities two data collections were performed simultaneously, one in
the field subnetwork, consisting of programmable logic controllers (PLCs),
Remote Terminal Units (RTUs) and field devices; and one in the control sub-
network, consisting of servers with different functions (e.g., polling of PLCs,
keeping historical data and performing access control), and Human Machine
Interfaces (HMI), i.e., operator workstations. In the other locations, a single
collection was performed, containing all data of these two logical subnet-
works. All SCADA datasets consist in full packet tcpdump/libpcapﬂ traces
and we treat each collection as a separate dataset.

For comparison, we use two additional traditional I'T networks datasets.
One is a publicly available tepdump /libpcap trace captured at an educational
organization: “Location 6” (referred to as loc6) from [12]. We use only a
portion of the available data, approximately the first 7.5 days of the trace.
The last dataset consists of 15 days of NetFlouf] records collected at an
internal router at a university campus, referred to as uni. An overview of the
datasets is presented in Table [T}

Note that we cannot apply the flow creation step described in Section
to the uni dataset. NetFlow records do not contain enough information
to identify which host initiated a TCP connection according to the 3-way
handshake, which it is necessary for the applicability of rule 1. Instead,
we use the techniques described in [I3] to aggregate the NetFlow records
to connections. Therefore, the client side (termed originator in that work),
and, as a consequence, the server side and the service port of a connection
are determined by these techniques.

3
4

www.tcpdump.org
www.cisco.com/go/netflow

Table 1: Datasets overview

Name Hosts | Duration | Packets | Bytes | Conn.
waterl 45 13 days 591M | 96GB 76K
water2-control 14 10 days 26M 4GB 131K
water2-field 31 10 days 67M | 24GB 215K
electric-gas 388 86 days 2G | 511GB | 179M
loc6 93 7.5 days 53M | 53GB 264K
uni 22685 15 days 161G | 126TB 1G

3.2 Whitelist Size

The first characteristic we study is whether the whitelist size is manageable.
In other words, we verify if the connection matrix is sparse, i.e., the number
of acceptable flows should be small in comparison to the number of possible
flows.

We test this characteristic by setting the learning time to the full duration
of each trace and count the number of flows observed. This allows us to
estimate the size of a trace’s complete whitelist, assuming no attacks are
present in the dataset. While no attacks were reported during the capture
of our SCADA datasets, malicious activities such as network scans are so
common in traditional IT networks that they are most probably present in
the loc6 and uni datasets. We attempt to reduce this bias by only considering
flows for which traffic is observed in both directions. We argue that this
greatly reduces the number of observed flows caused by network scans and
other types of network anomalies.

Table [2| shows the results. The column Internal Hosts gives the number
of observed hosts located inside the monitored networks. In the column Host
pairs, the number of communicating host pairs and in the column Whitelist,
we show the size of the whitelist. In order to make the different traces
comparable, we express these metrics both as absolute values and as a ratio
to the number of internal hosts (in parenthesis).

For most cases, the whitelist size for the SCADA datasets is in the same
order of magnitude as the number of internal hosts, suggesting that flow
whitelisting might be feasible in these environments. In comparison, the
traditional IT counterparts present a whitelist orders of magnitude larger
than the number of internal hosts, illustrating why the approach does not
scale in these environments. Due to the excessively large size of the whitelist

for the traditional I'T datasets, we do not consider them in the tests performed
in the remainder of this section.

Another observation is that the difference between the host pair and the
whitelist ratios is not very large, meaning that in average we have one or two
services per server. This means that a whitelist without the service informa-
tion, which is less restrictive and, thus, considerably less secure, would not
greatly reduce the size of the whitelist.

The only exception to the results presented here is the dataset water2-
control, in which the whitelist size is one order of magnitude greater than the
number of communicating host pairs. However, we show in Section that
this difference is mostly caused by a traffic anomaly.

Table 2: Whitelist size ratios

Dataset Internal Hosts Host Pairs Whitelist
waterl 51 58 (1.1) 81 (1.6)
water2-control 22 40 (1.8) 542 (24.6)
water2-field 14 20 (1.4) 23 (1.6)
electric-gas 388 542 (1.4) 1188(3.1)
loc6 93 23322 (250.8) 26759 (287.7)
uni 22 685 | 56425836 (2487.4) | 141744206 (6248.4)

3.3 Training Set Size

In the following we study the influence of the learning phase duration on the
size of the learned whitelist. Figure [2| shows the size of the learned whitelist
as the percentage of the total number of flows as function of the learning
time. For the datasets water! and water2-field, over 50% of the flows are
observed within the first hour of traffic, with a few other additions during
the first day. This percentage is much lower for datasets water2-control and
electric-gas, around 10% and 15%, respectively. The water2-control dataset
shows a significant jump in the list size after around 7 days. The whitelist for
the electric-gas dataset grows steadily from day 10 to day 40. The reasons
for this behavior are explained in the next section.

Despite this difference, one characteristic is shared by all SCADA datasets:
no additions are made to the whitelist in the second day of traffic. In fact,
almost no addition is made up to the third day in the water datasets, and

a even longer period in the electric-gas dataset. Due to this observation, we
set the learning time to 1 day in the following experiments.

100 - 100

¥ 80 ¥ 80

'J I~ w

g g

3 60 3 60

K 2

e kel

g a0 ¢ 40

w [

2 20 2 20 -

e} [}

%1 2 3 4 5 6 7 8 9 10 1 12 13 14 % T 2 35 4 5 6 7 8 o 10 1I 12
Time since start of dataset (days) Time since start of dataset (days)
(a) waterl (b) water2-control
100 B 100,

g 1 2 —

F 80 / F 80 /

2 60 T 2 60 e

° ®

g a0 g 40

v [

3 20 8 20

S}]

%1 2 3 4 5 6 7 8 9 10 11 12 %1 2 3 4 5 6 7 8 9 10 11 12

Time since start of dataset (days) Time since start of dataset (days)
(c) water2-field (d) electric-gas

Figure 2: Number of learned flows over time

3.4 Nature of Alarms

In this section, we present our post-processing analysis of the alarms. Its
goal is to determine the sources of instability in the whitelists, that is, the
nature of the flows not observed during the learning phase.

During our analysis we identified four main alarm classes:

o Dynamic Port Allocation Anomalies: As discussed in Section 2.1 our
service definition assumes an one-to-one mapping with transport ports,
which is problematic in cases of DPA. We did not attempt to uncover
all services using dynamic ports, but we identified anomalies which are
most likely triggered by it. The datasets water2-control and electric-
gas present moments in which several TCP connections are made by
the same hosts in short sequence, with transport port numbers mono-
tonically increasing on both client and server side. Table [3| shows an
excerpt of such moment.

10

e Manual Activity: This class consists in human triggered flows. All
flows which used the following services, identified by a protocol and
port number, fall in this class: telnet (TCP-22), ssh (TCP-23), http
(TCP-80), https (TCP-443), shell (TCP-514), kshell (TCP-544), rdp
(TCP-3389), vnc (TCP-5800 and TCP-5900) and z11 (TCP 6000 to
TCP 6007). In addition, for datasets water! and water2, we have a list
of operator workstations. If the client side of a flow is on this list, such
flow is also classified as manual.

e New Host: This class contains all flows for which at least one host
(either server or client) did not communicate during the training period
and, obviously, can not be present on the whitelist.

o Other: A catchall class for all flows that do not fit any of the other
classes.

We map each flow to a single class, and membership to a class is tested
in the same order presented here. For instance, consider an alarm for a flow
where the client is not present in the whitelist and where the service is ssh. In
this case, the flow is classified as manual activity, as this class has precedence
over the new host class.

When analysing the electric-gas dataset, we observed two events that
deserve to be studied separately. In SCADA networks, it is very common for
most functions in the network to be replicated, including duplicating servers,
in order to increase reliability. The first event consists in a single redundant
host taking over tasks of one of the main servers in the network, the SCADA
server responsible for polling the field devices.

Just before the change occurs, we observe telnet traffic to some of the
PLCs, issuing a reboot command. We do not observe telnet to all PLCs,

Table 3: Dynamic port example

StartTime Proto | Sport | Dport | Pkts | State
09:26:50.944328 | tcp 3714 1178 16 FIN
09:26:50.960961 | tcp 3715 1178 2 RST
09:26:50.976884 | tcp 3716 1180 16 FIN
09:26:50.990740 | tcp 3717 1180 2 RST
09:26:51.007886 | tcp 3718 1183 16 FIN
09:26:51.021606 | tcp 3719 1183 2 RST

11

however, as all changes occur in a relatively small time interval, we presume
they are related. Besides the flows involving the PLCs, several other long-
lived flows present the same behavior, for example, some ssh flows are also
“switched” to the redundant host. According to the operators, changes like
this one are routinely performed in order to verify if the redundant hosts
work properly.

In our analysis, we adopt the following procedure to identify flows be-
longing to this event. If one of the hosts in the flow is the SCADA server,
we look for another flow with a similar key, where only the SCADA server
address is changed to its backup or vice-versa.

The second event consists in the relocation of many hosts in the network,
mostly PLCs. At times, a continuous range of IP addresses have their address
changed to (logically) separated subnetworks. For example, all hosts in the
IP address range X.Y.Z.61 to X.Y.Z.71 have their addresses changed to the
range X.Y.A.61 to X.Y.A.71. We observe telnet commands being issued to
perform the address change, but not to all hosts. Again, the small time
interval between the changes suggests that they are related. According to
the operators, a large subnetwork was split in several smaller ones. After the
change, the logical address better represents the geographical location of the
hosts.

We identify flows belonging to this event simply by verifying if either host
in the flow (client or server) is part of one of the newly created networks. Its
important to note that we do not classify the telnet access to these hosts lead-
ing to these events as part of them. telnet connections are always classified
as manual activity.

3.5 Frequency of Alarms

We apply our classification method to all SCADA datasets to provide an
overview of how frequent each class of alarm is. As discussed in Section [3.3]
the learning time is set to be the first day of the dataset. The results of
the classification are presented in Table 4l This table presents the absolute
number of alarms and approximate percentages for each class. The results
for the electric-gas dataset are broken down in the two events discussed in
the previous section.

In the water! dataset, the new host alarms consist in a few short snmp
connections, likely due to testing; one ntp connection that seems to repeat
once a week; and one real anomaly: several single packet TCP connections

12

Table 4: Alarm breakdown

Dataset Dyn. Ports Manual | New Host Other

waterl 0 14 (@7%) | 15 (50%) 1 3%)

water2-control 437 (91%) 16 (3%) 6 (1%) 19 (4%)

water2-field 0 5 (45%) 6 (55%)

electric-gas 358 (35%) | 269 (26%) | 274 (26%) | 136 (13%)
Redundant 0 13 (5%) 16 (6%) | 75 (56%)
Relocation 0 14 (5%) | 148 (54%) 1 (0%)
Remaining | 358 (100%) | 242 (90%) | 110 (40%) | 60 (44%)

attempts at port 1010. The single other flow seems to be caused by DPA; a
few moments before it starts, a flow involving the same hosts, but different
server port, ends. Finally, a few http(s) and 211 connections and a connection
originated from a operator’s workstation compose the manual activity alarm
class.

The leading cause of alarms in the water2-control dataset is a DPA
anomaly, being responsible for around 91% of the alarms. This anomaly
is responsible for the majority of the flows which compose the jump present
at Figure[2b] In fact, if we remove the flows generated by this anomaly, over
60% of the flows would be present in the whitelist (i.e., be observed in the
training period), much like the other water datasets. In addition, the ratio
between the size of the whitelist and the number of internal hosts would be
considerably smaller, 4.7 instead of 24.6, thus in the same order of magnitude
as the other SCADA datasets.

In the water2-control and water2-field datasets, most new and other
alarms involve a server which, according to the network administrator, re-
lates to user authentication and thus, probably are generated due to manual
activity. An unexpected behavior is that some connections are made from
this authentication server, which is in the control network, directly to PLCs,
which are in the field network. According to the network administrator, this
type of connection is not allowed. All connections from the control network
to the field should be done through a specific server. The remaining alarms
involve hosts foreign to the control and field networks where the data collec-
tion was performed. It is not clear if these connections should be allowed.

In comparison to the other datasets, the electric-gas dataset contains a
considerably larger number of alarms: 1037 of the flows are not observed in

13

the training period. Like water2-control, the largest class is DPA anomalies,
accounting for 35% of the total. The redundant and relocation events are
responsible for over half of the other and new alarms, respectively.

Figure [3, shows a time series for the alarms observed daily, broken down
per alarm class. We show only the most active period. DPA connection
bursts happen at 4 distinct times (one not shown), accounting for the largest
peaks. The redundant event happens on day 15, and a portion of the manual
alarms present on the same day represent the telnet connections used to
reboot the RTUs. Interestingly, a larger peak classified as redundant appears
before, on day 11. All flows in this peak represent single packet connections,
sent by the redundant host to several RTUs. This was probably a test or
caused by a configuration mistake.

Peaks of manual activity happen on days 20, 25 and 29. On each of these
days a large portion of the address space is accessed, for various reasons.
For instance, connections are configuring hosts for the first time, some which
appear later as new, around days 35 and 40.

Most of the hosts are relocated around day 55 and 61. Note that no peak
of manual activity happens around theses days. The telnet connections used
to change the hosts’ addresses were previously accounted for in the peaks of
manual activity.

These peaks account for the majority of alarms in the dataset. The re-
maining alarms consist mostly of some manual ssh, x11 and http connections;
a few samba related ports (e.g., TCP/UDP 137-139 and 445); and several
high port flows which might be caused by DPA.

200

I other
EE new
«» 150 BN manual
g B redundant
& mEm relocation
g dynamic
5 100
[
Q
g
2
sof I
qO 15 20 25 30 35 40 45 50 55 60 65

Time since start of dataset (days)

Figure 3: Time series for alarms in electric-gas dataset

14

4 Discussion

In this section we discuss some of the practical issues network administrators
will face when implementing flow whitelists in real-world environments.

Dynamic port allocation (DPA): By far, the largest class of alarms iden-
tified in our analysis is due to DPA anomalies, and we only identified a portion
of the port and protocol pairs used by these services. In practice, there are
more connections using DPA in our datasets. For a flow level whitelisting
approach to work with this type of service, it is necessary to whitelist the
whole range of transport ports that might be used by these service. This is
not an ideal solution, as it makes the whitelist more permissive.

One of the main advantages that security experts have in protecting
SCADA environments is that traffic patterns are rather predictable, when
comparing with traditional I'T environments. DPA reduces this predictabil-
ity. We argue that SCADA systems should be designed without the use ser-
vices which make use of DPA or, at least, these services should be restricted
to a non-critical segment of the network.

Dealing with real-world attack scenarios: Our datasets contained no
attack data, so we could not test the efficacy of whitelisting against realistic
attack scenarios. We use a list of real-world attack types presented in a
previous work [I4] to motivate how these attacks could be observed. We
consider four types of attacks.

The first type is formed by information gathering attacks, such as network
scans. These are normally performed by injecting several requests into the
network, with the objective of discovering with services and/or hosts are
available. At the flow level, these attacks not much different from the DPA
anomalies identified in this work. Therefore, they should be easily identified
by our approach, as non-whitelisted connections are likely to be made. The
other three types of attacks are: denial of service attacks, which prevent a
legitimate user to access a service or reduce its performance; network attacks
used to manipulate the network protocols; and buffer overflow attacks, which
attempt to gain control over a process or crash it by overflowing its buffer.
These would only be observed if attempted from a host which is not allowed to
access a given server/service or if they targeted a server/service not existent
in the network.

15

In general, an attack will only remain undetected in two situations. Either
the whitelist is incorrectly constructed, i.e., it contains entries representing il-
legitimate traffic, or the attacker misuses whitelisted traffic, e.g., an operator
machine, normally used to access a PLC, sets an invalid parameter. In the
later case, the connection itself is legitimate, but its contents are not. Note
that our approach does not prevent an attacker from spoofing an IP address
and attempting to masquerade a legitimate flow. Protection mechanisms
against such attacks are discussed in [I5].

Blocking or Flagging: In a traditional IT environment is a common prac-
tice to take a host offline in case it is suspected to be under attack. This
is done to limit the impact of the attack, and prevent a possible spread.
However, taking a SCADA host offline might have dire consequences, as a
critical process might depend on it.

The same reasoning can be applied to blocking traffic, the cost of false
positives might be too great. Whitelists, as any other systems can suffer from
configuration problems. In our analysis, we observed a number of alarms
due to rare activities, such as manual access to PLCs and hosts switching
to backup servers (or being accessed by backup clients), which might be
overlooked while building an whitelist. We recommend that, when whitelists
are first deployed in a real world scenario, connections that are not whitelisted
should only be flagged (raise an alarm). The decision of blocking the traffic
or add it to the whitelist is left to the network administrators. Only after
they are confident that the configuration mistakes are solved, they should
consider using the whitelist to automatically block traffic.

Limitation of the learning step: Many alarms are the effect of a limita-
tion of the technique used for learning the initial whitelist. These represent
connections that do not happen regularly, and it would be impractical to
extend the learning time in order to include them. The larger the learning
time, the larger is the chance of including an anomalous flow to the whitelist.

In addition, some alarms are caused by the presence of new hosts, not
observed in the learning step. Although changes in the topology are not com-
mon, they should be taken into consideration when deploying our approach.
For every change in the network, it is necessary to update the whitelist
accordingly, either manually or by triggering a new learning step. Note how-
ever, that this problem is not exclusive to our approach. Most, if not all,

16

anomaly-based intrusion detection systems would require a similar update
after a change in the network, as the “normal” behavior has changed.

The limitation of the learning step shows that the network administra-
tor’s (and/or SCADA vendor’s) knowledge is necessary to build a complete
flow whitelist. However, relying only on this knowledge can also be danger-
ous, as mistakes are likely to happen. For instance, the addition of flows
representing backup servers connections or infrequent ssh connections might
be overlooked. Presenting a list of flows learned from network measurements
as proposed in the learning phase, could help administrators in identifying
acceptable flows, that might otherwise be missed.

5 Conclusions

In this work, we present an approach for flow whitelisting in SCADA net-
works. Our study shows that it is a practical solution to reduce the number
of attacks that a SCADA network is exposed to. The size of the whitelist is
manageable, considering the number of internal hosts. Besides, the whitelists
are fairly stable. In most cases, over 50% of the acceptable flows can observed
within one day of measurement.

Services using dynamic port allocation are the main cause of alarms.
These alarms can be eliminated by adding to the whitelist the complete range
of ports that can be allocated by these services, or by removing them from
critical segments of the network. Most of the remaining alarms are caused
by a limitation the approach used to construct the whitelists, which, in real-
world implementations, would be overcome by employing the knowledge of
network administrators and SCADA vendors when creating them.

In future work, we plan to develop an user interface to aid the creation
of the whitelists and facilitate its manipulation by providing more detailed
information about alarms. In addition, we want to investigate how to improve
security by identifying intrusion attempts that (mis)use whitelisted flows.

References

[1] S. Cheung, K. Skinner, B. Dutertre, M. Fong, U. Lindqvist, and
A. Valdes, “Using Model-Based Intrusion Detection for SCADA

17

2|

3]

4]

[5]

(6]

17l

8]

9]

[10]

Networks,” in Proceedings of the SCADA Security Scientific Symposium,
2007, pp. 1-12.

Digital Bond, “Quickdraw SCADA IDS.” [Online|. Available: http:
/ /www.digitalbond.com /tools/quickdraw /

D. Hadziosmanovi¢, D. Bolzoni, and P. H. Hartel, “A Log Mining
Approach for Process Monitoring in SCADA,” International Journal of
Information Security, vol. 11, 2012.

Y. Cao, W. Han, and Y. Le, “Anti-Phishing Based on Automated
Individual White-List,” Proceedings of the 4th ACM workshop on Digital
identity management - DIM 08, p. 51, 2008.

D. Erickson, M. Casado, and N. McKeown, “The Effectiveness of
Whitelisting: a User-Study,” in The Fifth Conference on Email and
Anti-Spam - CEAS “08, Mountain View, California, USA, August 2008.

M. Yoon, “Using Whitelisting to Mitigate DDoS Attacks on Critical
Internet Sites,” Communications Magazine, IEEE, pp. 110-115, July
2010.

E. Y. Chen and M. Itoh, “A Whitelist Approach to Protect SIP Servers
from Flooding Attacks,” 2010 IEEFE International Workshop Technical
Commuttee on Communications Quality and Reliability - CQR 10, pp.
1-6, Jun. 2010.

Norwegian Oil and Gas Association, “104 - Recommended Guidelines
for Information Security Baseline Requirements for Process Control ,
Safety and Support ICT Systems,” 2009.

K. A. Stouffer, J. A. Falco, and K. A. Scarfone, “NIST SP 800-82. Guide
to Industrial Control Systems (ICS) Security: Supervisory Control
and Data Acquisition (SCADA) systems, Distributed Control Systems
(DCS), and other control system configurations such as Programmable
Logic Controllers (PLC),” Gaithersburg, MD, United States, 2011.

R. R. R. Barbosa, R. Sadre, and A. Pras, “Difficulties in Modeling
SCADA Traffic: a Comparative Analysis,” in Proceedings of the 13th
international conference on Passive and Active Measurement - PAM
’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 126-135.

18

http://www.digitalbond.com/tools/quickdraw/
http://www.digitalbond.com/tools/quickdraw/

[11]

[12]

[13]

[14]

[15]

Microsoft, “Service Overview and Network Port Requirements for
Windows.” [Online|. Available: http://support.microsoft.com/kb/
832017

R. Barbosa, R. Sadre, A. Pras, and R. Meent, “Simpleweb /University
of Twente Traffic Traces Data Repository,” pp. 1-9, 2010. [Online].
Available: http://doc.utwente.nl/71273/

R. Sommer and A. Feldmann, “NetFlow: Information Loss or Win?”
Universitat des Saarlandes, Saarbriicken, Germany, Tech. Rep., 2002.

R. R. R. Barbosa, R. Sadre, and A. Pras, “Towards Periodicity Based
Anomaly Detection in SCADA Networks,” in IEEE 17th Conference on
Emerging Technologies € Factory Automation, ETFA 2012, Krakow,
Poland, September 2012.

C. L. Abad and R. I. Bonilla, “An Analysis on the Schemes
for Detecting and Preventing ARP Cache Poisoning Attacks,” in
27th International Conference on Distributed Computing Systems
Workshops (ICDCSW’07). TEEE, 2007, pp. 60-60. [Online|. Available:
http:/ /ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4279062http:

/ /ieeexplore.ieee.org/Ipdocs/epic03 /wrapper.htm?arnumber=4279062

19

http://support.microsoft.com/kb/832017
http://support.microsoft.com/kb/832017
http://doc.utwente.nl/71273/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4279062 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4279062
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4279062 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4279062

	Introduction
	The Flow Whitelisting Approach
	Connection and Flow Creation
	The Learning Phase
	The Detection Phase

	Experimental Results
	Datasets
	Whitelist Size
	Training Set Size
	Nature of Alarms
	Frequency of Alarms

	Discussion
	Conclusions

