
Softw Syst Model
DOI 10.1007/s10270-013-0321-0

SPECIAL SECTION PAPER

Procedure-modular specification and verification of temporal
safety properties

Siavash Soleimanifard · Dilian Gurov ·
Marieke Huisman

Received: 15 March 2012 / Revised: 15 January 2013 / Accepted: 29 January 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract This paper describes ProMoVer, a tool for fully
automated procedure-modular verification of Java programs
equipped with method-local and global assertions that spec-
ify safety properties of sequences of method invocations.
Modularity at the procedure-level is a natural instantiation
of the modular verification paradigm, where correctness of
global properties is relativized on the local properties of
the methods rather than on their implementations. Here, it
is based on the construction of maximal models for a pro-
gram model that abstracts away from program data. This
approach allows global properties to be verified in the pres-
ence of code evolution, multiple method implementations
(as arising from software product lines), or even unknown
method implementations (as in mobile code for open plat-
forms). ProMoVer automates a typical verification scenario
for a previously developed tool set for compositional verifi-
cation of control flow safety properties, and provides appro-
priate pre- and post-processing. Both linear-time temporal
logic and finite automata are supported as formalisms for
expressing local and global safety properties, allowing the
user to choose a suitable format for the property at hand.
Modularity is exploited by a mechanism for proof reuse that

Communicated by Dr. Gerardo Schneider, Gilles Barthe,
and Alberto Pardo.

Soleimanifard’s work is funded by the ContraST project of the
Swedish Research Council VR, and Gurov’s work by the EU FET
project FP7-ICT-2009-3 HATS. Huisman’s work is partially funded by
ERC grant 258405 for the VerCors project.

S. Soleimanifard (B) · D. Gurov
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: siavashs@csc.kth.se

M. Huisman
University of Twente, Enschede, The Netherlands

detects and minimizes the verification tasks resulting from
changes in the code and the specifications. The verification
task is relatively light-weight due to support for abstraction
from private methods and automatic extraction of candidate
specifications from method implementations. We evaluate
the tool on a number of applications from the domains of
Java Card and web-based application.

Keywords Temporal logic · Model checking ·
Maximal models

1 Introduction

In modern computing systems, code changes frequently.
Modules (or components) evolve rapidly or exist in multiple
versions customized for various users, and in mobile con-
texts, a system may even automatically reconfigure itself. As
a result, systems are no longer developed as monolithic appli-
cations; instead they are composed of ready-made off-the-
shelf components, and each component may be dynamically
replaced by a new one that provides improved or additional
functionality. This static and dynamic variability makes it
more important to provide formal correctness guarantees for
the behaviour of such systems, but at the same time also more
difficult. Modularity of verification is a key to provide such
guarantees in the presence of variability.

In modular verification, correctness of the software com-
ponents is specified and verified independently (locally) for
each module, while correctness of the whole system is spec-
ified through a global property, the correctness of which is
verified relative to the local specifications rather than rela-
tive to the actual implementations of the modules. It is this
relativization that enables verification of global properties in
the presence of static and dynamic variability. In particular,

123

S. Soleimanifard et al.

it allows an independent evolution of the implementations of
individual modules, only requiring the re-establishment of
their local correctness.

Hoare logic provides a popular framework for modular
specification and verification of software, where it is nat-
ural to take the individual procedures as modules, in order to
achieve scalability, see, e.g., [22]. While Hoare logic allows
the local effect of invoking a given procedure to be specified,
temporal logic is better suited for capturing its interaction
with the environment, such as the allowed sequences of proce-
dure invocations. This paper shows that procedure-modular
verification is also appropriate for control flow safety tempo-
ral logic: for each procedure, the local property specifies its
legal call sequences, while the system’s global property spec-
ifies the allowed interactions of the system as a whole. Thus,
temporal specifications provide a meaningful abstraction for
procedures.

Control flow safety properties can be expressed in vari-
ous formalisms, such as automata-based or process-algebraic
notations, as well as in temporal logics such as Linear-time
Temporal Logic (LTL) [30] or the safety fragment of the
modalμ-calculus [19]. The approach that is described in this
paper supports two of those formalisms, namely LTL and a
variant of finite automata termed here safety automata. This
is convenient, in particular, when writing properties of dif-
ferent nature and at different levels of abstraction and com-
ponent granularity. Global specifications, for instance, are
usually partial in nature, expressing certain critical require-
ments on the behaviour of the whole program. In contrast,
local specifications should be as complete as possible, so that
all interesting global properties are entailed. So, candidate
local specifications extracted from an existing implemen-
tation would be more naturally represented with automata,
while an abstract, global temporal restriction may be more
naturally phrased in LTL. On the other hand, expressive-
ness of specification provides as usual convenience at the
expense of algorithmic efficiency. Certain algorithmic prob-
lems, such as model checking and maximal flow graph con-
struction (see below), are more efficiently solved if procedure
calls are treated atomically, essentially reducing the context-
free infinite-state behaviour of the program to its finite-state
textual structure. The resulting restricted properties turn out
to be adequate for specifying local properties of individual
procedures (without self-calls), but are in general too inex-
pressive for higher levels of component granularity and, in
particular, for specifying global properties.

To support our approach, we have developed a fully auto-
mated verification tool, ProMoVer, which can be tried via
a web-based interface [28]. It takes as input a Java program
annotated with global and method-local correctness asser-
tions written in temporal logic and it automatically invokes a
number of tools from cvpp, a previously developed tool set
for compositional verification [17], to perform the individual

local and global correctness checks. Internally, cvpp uses the
safety fragment of the modal μ-calculus as a property spec-
ification language, but ProMoVer also allows the user to
write specifications in LTL, or as so-called safety automata,
which are a variant of Schneider’s security automata [27].

Essentially, ProMoVer is a wrapper that performs a
standard verification scenario in the general tool set, to
demonstrate that procedure-modular verification of temporal
safety properties can be automated completely using anno-
tated programs as a single input. Importantly, ProMoVer
only requires the public procedures to be annotated; the pri-
vate ones are being considered merely as an implementation
means. In addition, ProMoVer provides a facility to extract
a method’s legal call sequences by means of static analy-
sis, given a concrete procedure implementation. A user thus
does not have to write annotations explicitly; it suffices to
inspect the extracted specifications and remove superfluous
constraints that might hinder possible evolution of the code.
Specifications can be extracted both in LTL and as safety
automata, so a user can choose the formalism that is more
appropriate for the problem at hand, or that he or she is most
comfortable with. Finally, ProMoVer also practically sup-
ports modularity by providing proof storage and reuse: only
the properties that are affected by a change (either in imple-
mentation or in specification) are reverified, all other results
are reused.

We show validity of the approach on a number of Java
programs from two application domains. Firstly, we perform
experiments on some typical Java Card e-commerce appli-
cations. Such security-relevant applications are an important
target for formal verification techniques. Here, we verify the
absence of calls to non-atomic methods within transactions.
Such properties, specifying legal call sequences for security-
related methods, are an important class of platform-specific
security properties. Secondly, we use an under-development
web application to illustrate the verification of an open sys-
tem in the presence of code evolution. Here, we verify that
only a single connection to a database is created for each
incoming request, and that it is properly closed. Properties of
this type, specifying safe and efficient usage of a resource, are
application-specific properties that are of major importance
in the ICT business. The ProMoVer web interface allows the
user to verify both platform- and application-specific prop-
erties, for which ready-made formalizations are provided.

To allow efficient algorithmic modular verification, the
tool set currently abstracts away from all data, thus con-
sidering safety properties of the control flow; in particu-
lar, method calls in Java programs are over-approximated
by non-deterministic choice on possible method implemen-
tations that the virtual call resolution might resolve to. This
rather severe restriction on the program model facilitates the
maximal model construction that is at the core of our modu-
lar verification technique (see [13] for a proof of soundness

123

Procedure-modular specification and verification of temporal safety properties

and completeness for this program model). Still, many use-
ful properties can be expressed at this level of abstraction.
Besides the platform-specific and application-specific secu-
rity properties discussed above, we can, for example, express
properties such as: (i) a method that changes sensitive data is
only called from within a dedicated authentication method,
i.e., unauthorized access is not possible; or (ii) in a voting sys-
tem, candidate selection has to be finished, before the vote
can be confirmed.

Extending the technique with data, either over finite
domains or over pointer structures, will allow for a wider
range of properties and possible applications, but requires
a non-trivial generalization of the maximal model construc-
tion, and needs to be combined with abstraction techniques
to control the complexity of verification and of model extrac-
tion from a program. We are currently investigating this.

The work in this paper is closely related to the devel-
opment of cvpp [17]. As already pointed out, ProMoVer
is essentially a wrapper that automates a typical verifica-
tion scenario for cvpp, where modularity is applied at the
procedure-level. In addition, ProMoVer provides support
for different property specification languages, proof reuse,
specification extraction, a collection of ready-formalized
properties, and a translation between the different intermedi-
ate formats and formalisms. Results on a previous version of
ProMoVer are reported in [29]. The present paper extends
this earlier work by introducing an automata-based specifi-
cation language and its modular verification principle. The
use of the additional specification language is evaluated on
a number of case studies, and is compared with the verifica-
tions based on the original LTL specifications. Furthermore,
this paper presents an evaluation of ProMoVer on a signif-
icantly larger case study, representing an open system in the
presence of code evolution.

Limitations ProMoVer currently handles procedure
-modular verification of control flow properties for sequen-
tial programs. The restriction to modularity at procedure level
is meaningful (as we argue above) but not fundamental, and
will be relaxed in future versions. As mentioned above, we
are working on extending the method with data. The under-
lying theory for modeling multi-threaded programs has been
developed earlier (see [16]), but the model checking prob-
lem is not decidable in general and has to be approximated
suitably.

From a more practical point of view, the two main limita-
tions are performance and the effort needed to write specifi-
cations. With respect to the first limitation, known theoretical
bottlenecks are the maximal model construction and model
checking of global properties (both exponential in the size of
the formula), as well as the efficient extraction of precise pro-
gram models (in particular, concerning virtual call resolution
and exception propagation). The support for proof reuse is

our main means of addressing these bottlenecks. Notice also
that the use of safety automata for specifying local properties
eliminates the need to construct maximal models, since the
automata themselves play the role of maximal models. As
to the second limitation, to reduce the effort needed to write
specifications, ProMoVer provides a library of common
platform-specific global properties, and a facility for extract-
ing specifications from a given implementation, as explained
above.

Related work A non-compositional verification method based
on a program model closely related to ours is presented by
Alur et al. [3]. It proposes a temporal logic CaRet for nested
calls and returns (generalized to a logic for nested words
in [1]) that can be used to specify regular properties of local
paths within a procedure that skips over calls to other pro-
cedures. esp is another example of a successful system for
non-compositional verification of temporal safety properties,
applied to C programs [8]. It combines a number of scalable
program analyses to achieve precise tracking (simulation)
of a given property on multiple stateful values (such as file
handles), identified through user-defined source code pat-
terns. Maven is a modular verification tool addressing tem-
poral properties of procedural languages, but in the context
of aspects [11]. Recent work by Alur and Chauhuri proposes
a unification of Hoare-style and Manna-Pnueli-style tempo-
ral reasoning for procedural programs, presenting proof rules
for procedure-modular temporal reasoning [2].

Overview The rest of this paper is organized as follows.
Section 2 presents the use of ProMoVer from a user’s
point-of-view. Section 3 describes the underlying program
model and Sect. 4 explains the property specification lan-
guages and compositional verification method based on con-
structing maximal models. Then, Sect. 5 describes the Pro-
MoVer tool, while Sect. 6 describes several realistic case
studies using the tool. Finally, the last section draws conclu-
sions and suggests directions for future research.

2 ProMoVer: a user’s view

We start by illustrating how ProMoVer is used on a small
example. Both local method and global program properties
are provided as assertions in the form of program annota-
tions. We use a JML-like syntax for annotations (cf. [21]).
ProMoVer is procedure-modular in the sense that cor-
rectness of the global program property is relativized on
the local specifications of the individual methods. Thus,
the overall verification task divides into two independent
subtasks:

123

S. Soleimanifard et al.

(i) A check that each method implementation satisfies its
local specification, and

(ii) A check that the composition of local specifications
entails the global property.

Notice that the second subtask only relies on the local
specifications and does not require the implementations of
the individual methods. Thus, changing a method imple-
mentation does not require the global property to be reveri-
fied, only the local specification. If the second subtask fails,
ProMoVer translates the counterexample provided by the
underlying tools into the form of a program behavior that is
allowed by the local specifications, but violates the global
one.1

In addition to the properties, the technique also requires
global and local interfaces. A global interface consists of a
list of the methods provided (i.e., implemented) and required
(i.e., used) by the program. The local interface of method m
contains a list of the methods required by the method (as the
provided method is obvious). ProMoVer can extract both
global and local interfaces from method implementations.

Example 1 Consider the annotated Java program in Fig. 1.
It consists of two methods, even and odd. The program
is annotated with a global control flow safety property
expressed in LTL, and every method is annotated with a local
property and an interface specifying the required methods.
The local property of method even is expressed in LTL,
while methododd is specified with a safety automaton. Here,
we only give an intuitive description of the properties speci-
fied in the example; formal definitions of the temporal logic
LTL and safety automata are given in Sect. 4.

The global property expresses that “in every program exe-
cution starting in method even, the first call is not to method
even itself”.

The local property of method even expresses that
“method even can only call method odd, and after return-
ing from the call, no other method can be called”. The local
property of method odd is analogous but is expressed as a
safety automaton (ASCII notation in Fig. 1, and visualized
in Fig. 3 on page 12).

As mentioned above, the interfaces and local method spec-
ifications can be extracted from the method implementations
automatically by ProMoVer (see Sect. 5).

As explained above, the annotated program is correct if
(i) methods even and odd meet their respective local spec-
ifications, and (ii) the composition of all local specifications
entails the global one. In fact, the annotated program is cor-
rect and our tool, therefore, returns an affirmative result.

Example 2 If we change the global property of the previous
example to “in every program execution starting in method

1 Unfortunately, not all tools that we use provide counterexamples.

even, no call to method odd is made”, the tool detects this
and rechecks the global property for the already computed
composition of local specifications. The local specifications
do not have to be reverified. The verification of the global
property fails. As a counterexample, ProMoVer returns the
following program execution that is allowed by the local
specifications, but violates the global one:

(even,ε)
even call odd−−−−−−−−−→(odd,even)

odd ret even−−−−−−−−→(even, ε)

This counterexample, adapted for user understandability by
replacing program points with the names of the methods they
belong to (cf. Definition 4), should be understood as follows:
from method even, method odd is called, and then method
odd returns, and control is given back to even. This vio-
lates the desired global property, because odd is called from
even.

3 Program model

In this and the following section, we briefly present the for-
mal framework underlying the ProMoVer tool that sup-
ports procedure-modular verification as illustrated above. It
is heavily based on our earlier work on compositional verifi-
cation [12,13]. Here, we define our program model.

3.1 Models and simulation

First, we formally define the abstract structure on which our
program model and its operational semantics are based.

Definition 1 (Model) A model is a (Kripke) structure M =
(S, L ,→, A, λ) where S is a set of states, L a set of labels,
→⊆ S× L ×S a labeled transition relation, A a set of atomic
propositions, and λ : S → P(A) a valuation, assigning to
each state s the set of atomic propositions that hold in s.
An initialized model is a pair (M, E) with M a model and
E ⊆ S a set of initial states.

The definition of simulation on models is standard.

Definition 2 (Simulation) A simulation on model M is a
binary relation R on S such that whenever (s, t) ∈ R then
λ(s) = λ(t), and whenever s

a−→s′ then there is some t ′ ∈ S
such that t

a−→t ′ and (s′, t ′) ∈ R. We say that t simulates s,
written s � t , if there is a simulation R such that (s, t) ∈ R.

Simulation on two models M1 and M2 is defined as sim-
ulation on their disjoint union M1 � M2. The transitions of
M1 �M2 are defined by ini (s)

a−→ini (s′) if s
a−→s′ in Mi and

its valuation by λ(ini (S)) = λi (S), where ini (for i ∈ {1, 2})
injects Si into S1 � S2. Simulation is extended to initial-
ized models (M1, E1) by defining (M1, E1) � (M2, E2)

if there is a simulation R on M1 � M2 such that for each
s ∈ E1 there is some t ∈ E2 with (in1(s), in2(t)) ∈ R.

123

Procedure-modular specification and verification of temporal safety properties

Fig. 1 A simple annotated Java program

3.2 Flow graphs

Our program model is based on the notion of flow graph,
abstracting away from all data in the original program. It
is essentially a collection of method graphs, one for each
method of the program. Let Meth be a countably infinite
set of methods names. A method graph is an instance of the
general notion of initialized model.

Definition 3 (Method graph) A method graph for method
m ∈ Meth over a set M ⊆ Meth of method names is an
initialized model (Mm, Em) where Mm = (Vm, Lm,→m,

Am, λm) is a finite model and Em ⊆ Vm is a non-empty
set of entry nodes of m. Vm is the set of control nodes of
m, Lm = M ∪ {ε}, Am = {m, r}, and λm : Vm → P(Am)

so that m ∈ λm(v) for all v ∈ Vm (i.e., each node is tagged
with its method name). The nodes v ∈ Vm with r ∈ λm(v)

are return points.

Notice that methods can have multiple entry nodes. Flow
graphs that are extracted from program source have single
entry points, but the maximal models that we generate for
compositional verification may have several.

Every flow graph G is equipped with an interface I =
(I +, I −), denoted G : I , where I +, I − ⊆ Meth are the pro-

Fig. 2 Flow graph of EvenOdd

vided and externally required methods, respectively. These
are needed to construct maximal flow graphs (see Sect. 4.2).

A flow graph is closed if its interface does not require any
methods, and it is open otherwise. Flow graph composition
is defined as the disjoint union � of their method graphs.

Example 3 Figure 2 shows the flow graph of the program
from Fig. 1. Its interface is ({even,odd},∅), thus the
flow graph is closed. It consists of two method graphs, for

123

S. Soleimanifard et al.

method even and method odd, respectively. Entry nodes
are depicted as usual by incoming edges without source.

The operational semantics of flow graphs, referred to here
as flow graph behavior, is also defined as an instance of an
initialized model. We use transition label τ for internal trans-
fer of control, m1 call m2 for the invocation of method m2

by method m1 when method m2 is provided by the program,
m2 ret m1 the corresponding return from the call, and label
m1 caret m2 for the (atomic) invocation of and return from
an external method m2 by method m1.

Definition 4 (Behavior) Let G = (M, E) : (I +, I −) be
a flow graph such that M = (V, L ,→, A, λ). The behav-
ior of G is defined as initialized model b(G) = (Mb, Eb),
where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = V ×V ∗,
i.e., states (or configurations) are pairs of control points v
and stacks σ, Lb = {m1 k m2 | k ∈ {call, ret},m1,m2 ∈
I +} ∪ {m1 caret m2 | m1 ∈ I + ∧ m2 ∈ I −} ∪ {τ }, Ab =
A, λb((v, σ)) = λ(v), and →b⊆ Sb × Lb × Sb is defined by
the rules:

[transfer] (v, σ)
τ−→(v′, σ)

if m ∈ I +, v ε−→mv
′, v |� ¬r

[call] (v1, σ)
m1 call m2−−−−−−→(v2, v

′
1 · σ)

if m1,m2 ∈ I +, v1
m2−→m1v

′
1, v1 |� ¬r, v2 |� m2, v2 ∈ E

[ret] (v2, v1 · σ) m2 ret m1−−−−−−→(v1, σ)

if m1,m2 ∈ I +, v2 |� m2 ∧ r, v1 |� m1

[caret] (v1, σ)
m1 caret m2−−−−−−−→(v′

1, σ)

if m1 ∈ I +,m2 ∈ I −, v1, v1
m2−→m1v

′
1, v

′
1 |� m1, v1 |� ¬r

The set of initial configurations is defined by Eb = E ×
{ε}, where ε denotes the empty sequence over V .

Notice that return transitions always hand back control to
the caller of the method. Calls to external methods are mod-
eled with caret transitions that jump immediately from the
external method invocation to the corresponding return, with-
out considering the intermediate behavior. This treatment of
method calls is inspired by the temporal logic CaRet [1]
mentioned in the introduction, and is convenient for specify-
ing the local behavior of flow graphs. When writing global
specifications, however, one has to be aware that in this way
possible callbacks from external methods are not captured.

Example 4 Consider the flow graph from Example 3. An
example run through its (branching, infinite-state) behavior,
from an initial to a final state, is:

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call odd−−−−−−−−−→(v5, v3)

τ−→(v6, v3)

τ−→(v8, v3)
odd ret even−−−−−−−−→(v3, ε)

Now, consider just the method graph of method even as
an open flow graph, having interface ({even}, {odd}). The

local contribution of method even to the above global
behavior is the following run:

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even caret odd−−−−−−−−−−→(v3, ε)

Pushdown systems (PDS) and Context Free Processes
(CFP) are alternative formalisms to express flow graph
behavior (see, e.g., [5]). We exploit this using PDS model
checking (concretely the tool Moped [18]) and an own CFP
model checker for verifying program behavior against tem-
poral formulas [10].

4 Property specification and compositional verification

In this section, we define the two main specification lan-
guages ProMoVer uses, namely LTL and Safety Automata,
and introduce our compositional verification principles for
both specification languages.

4.1 Property specification

Safety properties can be expressed in a variety of formalisms.
In this paper, we use two property specification languages:
safety LTL which is the safety-fragment of Linear Temporal
Logic (LTL) [23] that uses only the weak until-operator, and
Safety Automata which are based on Schneider’s Security
Automata [27], but where states are additionally tagged with
atomic propositions. Both specification languages demand
a different treatment regarding verification. This subsection
defines the syntax and semantics of the two specification
languages, while the following one explains compositional
verification for each case.

4.1.1 Linear-time temporal logic

One of the standard logics to express safety and liveness
temporal properties is LTL. In our work, we focus on safety
properties and, therefore, we only use the safety fragment
of LTL based on the weak version of until. The fragment is
parameterized on a set of atomic propositions A as induced
by a given flow graph G, augmented with a special atomic
proposition entry that holds at the entry nodes of G.

Definition 5 (Safety LTL) The formulae of Safety LTL are
inductively defined by:

φ : :=p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

where p ranges over A ∪ {entry}. For convenience, we
sometimes use p ⇒ φ to abbreviate ¬p ∨ φ.

Satisfaction on states (Mb, s) |� φ for LTL formulae is
defined in the standard fashion [30]: formula X φ holds of
state s in model Mb if φ holds in the next state of every run

123

Procedure-modular specification and verification of temporal safety properties

starting in s; G φ holds if for every run starting in s, φ holds
in all states of the run; and φ W ψ holds in s if for every run
starting in s, either φ holds in all states of the run, orψ holds
in some state and φ holds in all previous states.

Example 5 Consider the global property of class EvenOdd
in Fig. 1 (where !, &&, ||, and -> are ASCII notations
for ¬,∧,∨, and ⇒, respectively) and its intuitive meaning
discussed in Example 1. Flow graph extraction and construc-
tion ensure that entry nodes are only accessible via calls;
hence, if control starts and remains in method even, execu-
tion can be at an entry node only as the result of a self-call.
The formula thus states that “if program execution starts in
method even, method even is not called until method odd
is reached”, which coincides with the interpretation given in
Example 1.

Internally, the verification machinery for local LTL formu-
lae is based on the safety fragment of the modal μ-calculus
(that is, excluding diamond modalities and least fixed point
recursion). Safety LTL is somewhat less expressive than the
latter and can be uniformly encoded in it [7]. This translation
is implemented as part of ProMoVer. As a technical detail,
the additional atomic proposition entry that can appear in
LTL formulae is removed during the translation.

4.1.2 Safety automata

Alternatively, safety properties can be specified by means of
safety automata, which are closely related to the notion of
security automata [27].

Definition 6 (Safety automaton) A safety automaton A is
an instance of an initialized model, where the set of labels
is Lb = {m1 k m2 | k ∈ {call, ret},m1,m2 ∈ I +} ∪
{m1 caret m2 | m1 ∈ I + ∧ m2 ∈ I −} ∪ {τ } and the set
of atomic propositions is A.

Notice that since a safety automaton is an instance of the
general notion of initialized model, the composition of two
safety automata A1 and A2 is defined as their disjoint union
A1 � A2.

If a safety automaton A is used for specifying a method
specification, then it can be translated in a straightforward
manner into a flow graph FG(A) that simulates exactly those
flow graphs that are simulated by A. Safety automaton A
simulates a flow graphG ifG � FG(A) as initialized models,
as defined in Definition 2 (extended to initialized models).

The language of safety automata is equally expressive as
μ-calculus and thus safety automata can be translated into
μ-calculus formulae.

Example 6 Consider the local specification of method odd
in Example 1, expressing “method odd can only call method
even, and after returning from the call, no other method can

Fig. 3 Safety automaton for the local specification of method odd

Fig. 4 Compact safety automaton for the local specification of method
odd

be called”. Figure 3 contains a graphical representation of
this property.

The textual ASCII representation of the safety automaton
is shown in Fig. 1. In the ASCII representation, thenodekey-
word defines a state of the automaton, followed by a list of
comma-separated atomic propositions that hold in the state,
while the edge keyword defines a transition of the automa-
ton by starting state, target state, and the transition label,
respectively. The atomic propositions entry and ret spec-
ify entry and return states, respectively, while label tau is
the ASCII representation of τ .

Syntactic sugar Safety automata as defined above can
become rather large in case of large interfaces. There are
a variety of conventions one can use to facilitate a less ver-
bose and more compact representation of an automaton. At
present, we support negated labels to abbreviate that a par-
ticular action cannot be present on a transition between two
states; for example, a label ¬(a call b) on a transition from
an automaton state s1 to state s2 means that all labels from
the label set L are present on the transition except for label
a call b. As another useful shorthand, it is often convenient
to be able to express that the atomic proposition r may have
any value in a particular state; for this, we provide the “wild-
card” atomic proposition r∗. Automata described with the
above shorthands are easily translated into ordinary safety
automata.

Example 7 The safety automaton from Fig. 3 can be rep-
resented more compactly by the automaton illustrated in
Fig. 4. The latter automaton can be transformed (back) to
the automaton of Fig. 3 by duplicating state s1 to states s1
and s2, tagging only state s2 with r , and eliminating all
outgoing edges from state s2.

123

S. Soleimanifard et al.

4.2 Compositional verification

Next, we describe the compositional verification principles
for the two specification languages. First, we describe com-
positional verification based on the construction of maxi-
mal flow graphs from the component’s local specifications,
when the latter are expressed in temporal logic: safety LTL,
safety μ-calculus, or as modal equation systems (as defined
by Larsen [20]). A modal equation system � is a finite set
of defining equations of the shape X = φX , where X is a
propositional variable and φX is a formula of propositional
modal logic without diamond modalities (recall that a modal
formula [l]φ holds in a state s of a model if φ holds in all
states accessible from s via transitions labeled with l). The
defined variables X are pairwise distinct and bound in �,
while all other variables are free. Its meaning is defined as
its greatest solution. Modal equation systems are equivalent
to the safety μ-calculus. In fact, we use this presentation of
temporal properties in our maximal model construction and
when automatically extracting local temporal specifications
from method implementations (see Sect. 5).

The second part of this section discusses composi-
tional verification when properties are expressed as safety
automata.

4.2.1 Compositional verification for safety LTL

Our method for algorithmic compositional verification for
LTL specifications is based on the construction of maximal
flow graphs from component properties. For a given prop-
erty ψ and interface I , consider the set of all flow graphs
with interface I satisfying ψ . A maximal flow graph for ψ
and I , denoted Max(ψ, I), satisfies exactly those proper-
ties that hold for all members of the set. Thus, the maximal
flow graph can be used as a representative of the set for the
purpose of property verification. For details, the reader is
referred to [13].

For a system with k components, our principle of com-
positional verification based on maximal flow graphs can be
presented as a proof rule with k + 1 premises.

G1 |� ψ1 · · · Gk |� ψk

⊎
i=1,...,k

Max(ψi , Ii) |� φ

⊎
i=1,...,k

Gi |� φ
(1)

The rule states that the composition of components G1 :
I1, . . . ,Gk : Ik satisfies a global property φ if there are local
properties ψi such that (i) each component Gi satisfies its
local property ψi , and (ii) the composition of the k maximal
flow graphs Max(ψi , Ii) satisfies φ. This principle is proved
sound and complete in [13]. In the context of ProMoVer,
we consider individual program methods as components. If
we instantiate the above compositional verification principle
to procedure-modular verification, we obtain the verification

tasks stated informally in Sect. 2 (where M is the set of pro-
gram methods, with k = |M |, and ψi and Ci are the specifi-
cation and the implementation of method mi , respectively):

(i) Checking Ci |� ψi for i = 1, . . . , k: For each method
mi ∈ M , (a) extract the method graph Gi from Ci , and
(b) model check Gi against ψi . For the latter, we exploit
the fact that flow graphs are Kripke structures, and apply
standard finite-state model checking.

(ii) Checking
⊎

i=1,...,k Max(ψi , Ii) |� φ: (a) Construct
maximal flow graphs Max(ψi , Ii) for all method specifi-
cationsψi and interfaces Ii , then (b) compose the graphs,
resulting in flow graph GMax , and finally (c) model check
GMax against global property φ. For the latter, represent
the behavior of GMax as a PDS and use a standard PDS
model checker.

4.2.2 Compositional verification for safety automata

When all specifications are specified by safety automata, we
check (i) whether the safety automaton of each method sim-
ulates its method graph, and (i i) whether the composition
of the flow graphs of all local automata is simulated by the
global automaton. Notice that in (i i) the flow graphs of the
local safety automata serve as “maximal” flow graphs. This is
due to that fact that, by definition, the safety automaton spec-
ification of a method simulates exactly those method graphs
that satisfy the specification. Thus, the general compositional
verification principle in this case for a system with k methods
can be presented as the following proof rule.

G1 � A1 · · · Gk � Ak

⊎
i=1,...,k

FG(Ai) � A
⊎

i=1,...,k
Gi � A

(2)

The principle states that the composition of method graphs
G1 : I1, . . . ,Gk : Ik satisfies a global property expressed by
a safety automaton A if there are local properties expressed
by safety automata Ai such that (i) each method graph Gi is
simulated by its local property Ai , and (ii) the composition
of the k flow graphs of the local safety automata Ai is sim-
ulated by A. Soundness and completeness of this principle
is established similarly as soundness and completeness of
Principle 1 (in [13]).

In ProMoVer, for safety automata specifications, the ver-
ification tasks stated informally in Sect. 2, are achieved based
on Principle 2 by:

(i) Checking Ci � Ai for i = 1, . . . , k: For each method
mi ∈ M , (a) extract the method graph Gi from Ci , and
(b) check that Gi is simulated by Ai . For the latter, we
exploit the fact that flow graphs and safety automata

123

Procedure-modular specification and verification of temporal safety properties

Fig. 5 Overview of ProMoVer and its underlying tool set

are initialized models, and check for simulation accord-
ingly.

(ii) Checking
⊎

i=1,...,k FG(Ai) � A: (a) compose the
flow graphs of the safety automata specifications of all
methods, resulting in safety automaton FGcomp, and
then (b) model check FGcomp against global automa-
ton A. For the latter, represent the behavior of FGcomp

as a context free process, and use a CFP model checker
(on the temporal formula translation of the automaton).

The two principles can be combined freely, so that local
specifications and global properties can be written in either
formalism. In task (i), if method m is specified in LTL,
the flow graph extracted from method m is model checked
against the specification, while if method m is specified with a
safety automaton, simulation of the flow graph by the safety
automaton is checked instead. In task (i i), maximal flow
graphs are constructed for all methods with LTL specifica-
tions, and are then composed with the flow graphs of all
safety automata specifications. Finally, if the global property
is specified in LTL, the composition result is model checked
against the property, while if the global property is speci-
fied by a safety automaton, the composition result is model
checked against the automaton instead.

Example 8 Consider again the annotated Java program from
Example 1. In the example, the global property and the
local specification of method even are specified in LTL,
while the local specification of method odd is given as
a safety automaton. ProMoVer first extracts the method
graphs of methods even and odd, denoted Geven and Godd ,
respectively. Next, ProMoVer checks Geven |� ψeven and
Godd � Aodd . Independently, it constructs the maximal

flow graph of methodeven denoted Max(ψeven, Ieven) and
composes it with the flow graph of the safety automaton
of method odd denoted FGodd to obtain the flow graph
FGeven−odd = Max(ψeven, Ieven)� FGodd . Finally, Pro-
MoVer translates FGeven−odd to a PDS and model checks
the latter against the global LTL property.

5 The PROMOVER tool

Next we describe the internals of ProMoVer. As mentioned
above, ProMoVer essentially is a wrapper for cvpp [17],
with extra features such as specification extraction, private
method abstraction, a property specification library and sup-
port for proof reuse. All features are implemented in Python.
ProMoVer can be tested via a web interface [28].

CVPP wrapper Figure 5 shows schematically how Pro-
MoVer combines the individual cvpp tools. An annotated
Java program, as exemplified in Sect. 2, is given as input. The
pre-processor parses the annotations, using the Java Doclet
API [9], and then passes properties and interfaces on to the
different cvpp tools.

Task (i) first invokes the Analyzer tool described in [4]
to extract the method graphs of the program. This tool builds
on Sawja [15] to extract flow graphs from Java bytecode.
Then, our Graph tool is used. This implements several algo-
rithms on flow graphs and safety automata, including compo-
sition � and translations of flow graphs and safety automata
into different formats.

Here the Graph tool is used to translate the flow graph
of each method into a CCS model. These are then checked
against the respective local method specifications using the

123

S. Soleimanifard et al.

Concurrency Workbench (cwb) [6]. If the specification is
specified by LTL then it is translated to a μ-calculus formula
and cwb is used to model check the CCS model against the
formula. In case, the specification is given in safety automa-
ton, it is also translated into a CCS model, and language
inclusion is checked by cwb.

Task (i i) first constructs a maximal flow graph for every
method specified with LTL using the Maximal Model tool,
and for methods specified with safety automata translates the
specifications to flow graphs by the Graph tool. Then, the
Graph tool composes the generated flow graphs and converts
the result into a PDS (for a global property expressed with
LTL) or CFP (for a global property expressed as a safety
automaton). Finally, Moped [18] is used to model check the
PDS against the LTL global property or CFP MC [10] is used
to model check the CFP against the μ-calculus translation of
the global safety automaton. The latter is a model checker
implemented as part of the toolset.

The post-processor collects all model checking results
and converts these into a user-understandable format. It only
returns a positive result if all collected model checking tasks
succeed. If one of the local model checking tasks fails, the
name of the method that violates its specification is returned.
If the global model checking task fails, for LTL global prop-
erties, a counterexample is provided by Moped and trans-
lated into a program execution and returned, however, for
safety automata global properties, CFP MC does not pro-
vide a counterexample and, therefore, no counterexample is
returned.
Specification extraction To reduce the effort needed to write
specifications, ProMoVer provides support to extract a
specification from a given method implementation, result-
ing in the (over-approximated) order of method invocations
for this method. The user might then want to remove some
superfluous dependencies, in order not to be overly restrictive
on possible evolution of the code.

ProMoVer extracts specifications in two different for-
mats: modal equation systems and safety automata. Modal
equation systems have the advantage that in cvpp they can
serve directly as input for the construction of maximal flow
graphs. On the other hand, the extracted safety automata
specifications bypass the expensive maximal flow graph con-
struction process, are often more intuitive, and can be modi-
fied graphically.

Consider again Fig. 1. Specification extraction for method
odd results in the following modal equation system (where
eps is ASCII notation for ε, and ff denotes false):
@local_eq_prop: (X0){ X0 = [even]X1 /\ [odd]ff /\ [eps]X0;

X1 = [odd]ff /\ [even]ff /\ [eps]X1; }

The formula (which refers to the denotation of X0 in the
greatest solution of the equation system) essentially specifies
that method even may be called at most once: initially X0
holds, and method even may be called or an internal step

Fig. 6 Extracted safety automaton

(labeled eps) may be made. After calling even, X1 should
hold and only internal steps are allowed.

Using the specification extractor to extract the safety
automaton specification for the same method results in the
safety automaton depicted in Fig. 3.

As a more involved example, consider the following
method m together with its specification, extracted as a modal
equation system:

@local_eq_prop:

(X0){ X0 = [m4]ff /\ [m1]X1 /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X0;

X1 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]X2 /\ [m]ff /\ [eps]X1;

X2 = [m4]X3 /\ [m1]ff /\ [m3]X4 /\ [m2]ff /\ [m]ff /\ [eps]X2;

X3 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X3;

X4 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X4;

}

public void m() { int i = m1(); int j = m2();

if (i < j) { m3(); } else { m4(); } }

The formula captures that first only m1 can be called, then
only m2, and then either m3 or m4, and no further calls can be
made. Suppose that the order of invokingm1 andm2 is imma-
terial for this program. In that case, a designer may choose
to change the equations defining X0 and X1 to allow the
two methods to be called in any order (whereas the defining
equations for X2 to X4 remain unchanged):

X0 = [m4]ff /\ [m1]X10 /\ [m3]ff /\ [m2]X11 /\ [m]ff /\ [eps]X0;

X10 = [m4]ff /\ [m1]ff /\ [m3]ff /\ [m2]X2 /\ [m]ff /\ [eps]X10;

X11 = [m4]ff /\ [m1]X2 /\ [m3]ff /\ [m2]ff /\ [m]ff /\ [eps]X11;

Using the specification extractor to extract the safety
automaton specification of method m above will result in the
following safety automaton, illustrated graphically in Fig. 6.

node s1 m,entry edge s1 s1 tau edge s1 s2 m caret m1
node s2 m edge s2 s2 tau edge s2 s3 m caret m2
node s3 m edge s3 s3 tau edge s3 s4 m caret m3
node s4 m,r* edge s4 s4 tau edge s3 s5 m caret m4
node s5 m,r* edge s5 s5 tau

As above, also the safety automaton can be relaxed for
the case that the order in which the methods m1 and m2 are
invoked is immaterial, as shown in Fig. 7.

node s1 m,entry edge s1 s1 tau edge s1 s2_1 m caret m1

node s2_1 m edge s2_1 s2_1 tau edge s2_1 s3 m caret m2

node s2_2 m edge s2_2 s2_2 tau edge s1 s2_2 m caret m2

node s3 m edge s3 s3 tau edge s2_2 s3 m caret m1

node s4 m,r* edge s4 s4 tau edge s3 s4 m caret m3

node s5 m,r* edge s5 s5 tau edge s3 s5 m caret m4

123

Procedure-modular specification and verification of temporal safety properties

Fig. 7 Relaxed safety automaton

Private method abstraction Since private methods are used
as a means of implementation for public methods, at the flow
graph level, all calls to private methods can be inlined into the
flow graph of the public methods. The resulting method flow
graphs, thus, only describe the public behavior, and users only
have to specify the public methods. For details, the reader is
referred to [13].

Property specification library ProMoVer’s web interface
provides a collection of pre-formalized global properties.
These describe platform-specific security properties, restrict-
ing calls to API methods. Currently, the library contains sev-
eral Java Card and voting system properties.

Proof storage and reuse All extracted method flow graphs
and constructed maximal flow graphs are stored when a pro-
gram is verified by ProMoVer. If later the implementation
of method m changes, a new method flow graph is extracted
and checked against m’s local specification. If m’s local spec-
ification φm changes, the existing flow graph of method m is
model checked against φm . In addition, a new maximal flow
graph for m is constructed from φm . This is composed with
the other maximal flow graphs (recovered from storage), and
the composed flow graph is model checked against the global
property.

6 Experimental results for PROMOVER

We use ProMoVer to verify standard control flow safety
properties on a number of applications from two applica-
tion domains where code evolution is important, namely Java
Card and web-based applications.

6.1 Experiments on Java Card applications

Java Card is one of the leading interoperable platforms
for smart cards. Many smart card applications are security-
critical.

As mentioned above, for platforms such as Java Card, col-
lections of control flow safety properties exist that programs

should adhere to in order to provide minimal security require-
ments. We focus on such a property of the Java Card trans-
action mechanism. This mechanism ensures that data remain
consistent upon power loss; however, careful use of it some-
times demands that certain methods are not used within a
transaction. We show how this global safety property can be
expressed in our setting, and be verified with ProMoVer for
several applications, where we apply specification extraction
to annotate the public methods of the applications.

As a side remark, control flow of Java Card programs
might be different from control flow of a standard Java appli-
cation, for example, the Java Card firewall can cause an object
field to raise an exception. Handling these differences cor-
rectly is an issue for the control flow graph extraction algo-
rithm. However, for the properties and case study discussed
here, this difference in control flow is not relevant, and we
do not discuss it further here.

The Java card transaction mechanism Smart cards have two
types of writable memory, persistent memory (EEPROM
or Flash) and transient memory (RAM). Transient memory
needs constant power supply to store information, while per-
sistent memory can store data without power. Smart cards do
not have their own power supply; they depend on the external
source that comes from the card reader device. Therefore, a
problem known as card tear may occur: a power loss when
the card is suddenly disconnected from the card reader. If a
card tear occurs in the middle of updating data from transient
to persistent memory, the data stored in transient memory is
lost and may cause the smart card to be in an inconsistent
state.

To prevent this, the transaction mechanism is provided.
It can be used to ensure that several updates are executed
as a single atomic operation, i.e., either all updates are
performed or none. The mechanism is provided through
methods beginTransaction for beginning a transac-
tion, commitTransaction for ending a transaction with
performed updates, and abortTransaction for ending
a transaction with discarded updates [14]—all declared in
class JCSystem of the Java Card API.

However, the Java Card API also contains some non-
atomic methods that are better not used when a transaction
is in progress. Notably, the class javacard. frame-
work.Util that provides functionality to store and update
byte arrays contains methodsarrayCopyNonAtomic and
arrayFillNonAtomic. Careful use of the transaction
mechanism can require that these methods should not be used
within a transaction. We use ProMoVer to verify that appli-
cations comply with this Transaction Policy.

The Applications For this experiment, we use several pub-
lic examples of Java Card applications. All are realistic e-
commerce applications developed by Sun Microsystems to

123

S. Soleimanifard et al.

Table 1 Applications details

Application #LoC #Methods (public) #Calls (relevant)

AccountAccessor 190 9 (7) 38 (4)

TransitApplet 918 18 (5) 106 (5)

JavaPurse 884 19 (9) 190 (25)

demonstrate the use of the Java Card environment for devel-
oping e-commerce applications. AccountAccessor is an
application to keep track of account information. It is to be
used by a wireless device connected via a network service. It
contains methods to look up and modify the account balance.
TransitApplet implements the on-card part of a sys-
tem that connects to an authenticated terminal and provides
account information and operations to modify the account
balance. JavaPurse is a smart card electronic purse appli-
cation providing secure money transfers. It contains a balance
record denoting the user’s current and maximum credits, and
methods to initialize, perform and complete a secure transac-
tion. Further, it also contains methods to update information
related to a loyalty program, and to validate and update the
values of transactions, balance and PIN code.

Table 1 shows information about the size, number of meth-
ods (total and public), and number of method invocations
(total and relevant for the global property) of these applica-
tions.

Specification of the transaction policy As discussed above,
we want to ensure formally that the non-atomic methods
arrayCopyNonAtomic and arrayFillNonAtomic
are not invoked within a transaction. Hence, applications
have to adhere to the following global control flow safety
property:

In every program execution, after a transaction begins,
methods arrayCopyNonAtomic and
arrayFillNonAtomic are not called until the
transaction ends.

This safety property can be expressed formally with the fol-
lowing LTL formula:

G (beginTransaction

⇒ ((¬arrayCopyNonAtomic
∧¬arrayFillNonAtomic)
W commitTransaction))

The property could also have been specified, though more
verbosely, as a safety automaton.

Local method specifications To compare the efficiency of
verification for the different formalisms for writing local

Table 2 Verification results with LTL local specifications

Application PPT GE #NEF LMC MFC #NMF GMC TT

AccountAccessor 1.4 3.8 435 0.5 0.7 20 0.9 8.7

TransitApplet 1.4 4.7 897 0.5 0.9 30 0.9 13.2

JavaPurse 1.5 6.5 1543 0.5 13.0 48 1.1 22.5

Table 3 Verification results with safety automata local specifications

Application PPT GE #NEF LMC GMC TT

AccountAccessor 1.4 3.8 435 0.6 0.9 8.1

TransitApplet 1.4 4.7 897 4.0 0.9 12.2

JavaPurse 1.5 6.5 1543 4.8 1.0 14.8

specifications, we annotated the methods of each applica-
tion once in LTL and once with safety automata. For this we
used the assistance of the specification extraction facility of
ProMoVer.

The specification extractor is used to obtain local spec-
ifications for every public method, either as an equation
system or as a safety automaton. The extracted specifica-
tions describe the actual order of method invocations in
the code. We then inspect the specifications for immate-
rial orderings and remove these, with the intention that
local method specifications should only restrict unwanted
sequences of method calls made from within the specified
method.

Writing specifications abstractly allows for possible evo-
lution of the method implementations. Comparing the two
formalisms, it can be observed that using temporal logic
allows in general for more compact specifications, since only
explicitly prohibited method invocations have to be men-
tioned.

Verification results After annotating the applications with
global properties and local specifications, ProMoVer
extracts the flow graphs of the applications and partitions
these into the individual method graphs to verify adherence
to the local specifications. Further, for applications with local
specifications given in LTL, the maximal method graphs are
constructed from the specifications, and their composition
is verified w.r.t. the global property above. For applications
with local specifications given as safety automata, the cor-
responding flow graphs of the automata are composed and
verified w.r.t. the global property.

The statistics for these verifications are summarized
in Tables 2 and 3. The tables show: the time spent by
the pre-processor (PPT) and the graph extractor (GE)
(all times here and below are in seconds), the number
of nodes in the extracted flow graphs (#NEF), the time
spent for local model checking (LMC) and for constructing

123

Procedure-modular specification and verification of temporal safety properties

Table 4 Proof reuse results

Code change Local specification change

Application New TT % TT MFC New TT % TT

AccountAccessor 6.0 68 0.1 4.6 52

TransitApplet 7.2 54 0.1 5.0 37

JavaPurse 9.0 40 0.1 5.4 24

maximal flow graphs (MFC), the number of nodes in the
maximal flow graph composition (#NMF), the time spent for
global model checking (GMC), and the total time spent for
the whole verification task including conversions between
formats and post-processing (TT). All results are obtained
on a SUN SPARC machine. Notice that the pre-processing
time (PPT), the graph extraction time (GE), and the num-
ber of nodes in the extracted flow graphs (#NEF) are the
same for applications with local specifications given in LTL
and safety automata, but in the case of safety automata the
expensive process of maximal flow graph construction is
bypassed.

As can be observed from the tables, local model checking
takes longer for applications with local specifications given
as safety automata. This is due to the higher verbosity of
local specifications with automata, compared with temporal
logic formulae, as discussed above. However, the increased
local model checking time is compensated for by the transla-
tion from automata into method graphs, which just renames
transition labels and is thus much less expensive than the cor-
responding maximal model construction for temporal logic
specifications.

Proof reuse We also evaluate experimentally the advantages
of exploiting the proof storage and reuse mechanism. After
the first verification, when all method and maximal flow
graphs have been stored, we changed, for each application,
once the source code and once the local specification of a
public method, and used ProMoVer to re-verify the appli-
cations.

The changes in the source code imitate a typical code
evolution scenario, where a method’s body is changed, for
example, for the purpose of maintenance. The changes in
the local specifications are motivated by the scenario where
the (automatically extracted) specifications are weakened to
support code evolution.

The results of proof reuse are shown in Table 4. The table
shows: maximal flow graph construction time (MFC), the
time spent by ProMoVer to re-verify the program after the
change (new TT), and its percentage in relation with the orig-
inal verification time (%TT). The numbers indicate that proof
reuse can significantly reduce the verification time, especially
for larger applications.

6.2 Experiments on a web application

Web applications are client-server programs intended to be
used over the Internet. Typically, clients are web browsers and
servers are web servers. Such web applications are of major
importance in the ICT business and, therefore it is crucial to
check that they function correctly, without any unexpected
errors.

To minimize errors, various coding standards exist that
components of web applications should respect. Based on
these standards, we identify several requirements for data-
base connections and transactions of the Java Enterprise
platform that can be expressed as control flow safety proper-
ties. We show how ProMoVer is used to verify such control
flow database connection properties in the presence of code
evolution. Concretely, we verify the Single DataBase Con-
nection Policy for an incomplete and prototype version of the
Sail-Web application (both property and application are dis-
cussed in more detail below). First, we verify the incomplete
program with the specifications of the missing components.
Later, we import the missing code from the prototype into
the incomplete code and re-verify the program. By this, we
mimic the code evolution scenario discussed above and how
it is supported by ProMoVer.

Java enterprise platform (J2EE) J2EE is a popular platform
to develop Java web applications. It provides an API and
specification of the runtime environment to develop and run
typical enterprise applications. In J2EE, a web application
consists of a set of components running on a web server.
These components are typically used by the web server to
extend its capabilities for generating responses to clients’
requests.

A commonly used technology to develop such compo-
nents is Java Servlets. Technically, servlets are Java classes
that conform to the Java-Servlet API model. They may be
used by developers to provide web-pages containing dynamic
contents (e.g., HTML or XML) using the Java platform.
Servlets are typically invoked via the methods doPost and
doGet. The web server creates instances of the servlets at
boot time and maintains these objects throughout the execu-
tion. When a request arrives from a client, the web server
assigns a thread from a thread-pool to the request and for-
wards the request to the doPost or doGet methods of
the suitable servlet. The servlet computes a response for
the request and returns it back to the web server. Then, this
response is sent back to the client and the allocated thread is
returned back to the thread-pool.

Web servers use multi-threading to be able to respond to
simultaneous requests; however, each request is handled by
a single thread. Hence, control flow properties for processing
a single request can be analyzed in a non-concurrent setting.

123

S. Soleimanifard et al.

J2EE database connection Web applications often use data-
bases to manipulate data and store information. For exam-
ple, almost all web applications that provide support for user
accounts store user information (such as user name and pass-
word) in a database.

Typical examples of control flow properties for database
connections are the safe database transaction policy that
states that “a database transaction should be either commit-
ted or rolled-back if an exception is raised”, and the database
connection policy that states that “only a single database con-
nection should be created for each request and it should be
properly closed”. In the remainder of this section, we focus
on the second property. The first property can be expressed
and verified similarly to the Java Card transaction policy pre-
sented above and, therefore, we do not discuss its verification
here.

To understand why the database connection policy is
important, one should realize that each database system is
capable of handling a limited number of simultaneous con-
nections only. Therefore, if a single request opens more
than one connection to a database, it is using these lim-
ited resources inefficiently. Moreover, such a practice sig-
nificantly increases the likelihood of coding-errors caused
by not closing the open connections properly. Therefore, the
database connection policy demands that web applications
obtain only a single database connection per request and,
moreover, that this connection is closed before the assigned
thread is returned back to the pool.

Various strategies and frameworks exist that ensure that
the policy is respected, such as using filters or frameworks
like JBoss Seam and Spring. However, many web program-
mers do not use any of these facilities. Therefore, it is highly
desirable to have a tool that can check such properties of web
applications.

Formal specification of the single database connection pol-
icy If no special framework is used, Java applications typ-
ically communicate with a database via the Java Data-
Base Connectivity (JDBC) API. In this API, the methods
java.sql.DriverManager.getConnection and
java.sql.Connection.close are used to create and
close database connections, respectively. Therefore, in order
to check the database connection property explained above,
we check the absence of consecutive calls to the method
java.sql.DriverManager.getConnection
unless the method java.sql.Connection.close is
called in between.

More precisely, this means that applications should
respect the following global control flow safety property:

In every thread execution, after a connection to a data-
base is created, the method java.sql.DriverMa-
nager.getConnection is not called until the
connection is closed.

Table 5 Sail-Web application details

Sail-Web App. #LoC #Classes (servlets) #Public methods

Limited package 3,038 20 (16) 28

Extended package 10,844 32 (28) 94

This safety property can be formally expressed by the
following safety LTL formula:

G (p.DriverManager.getConnection

⇒ X (¬p.DriverManager.getConnection
W p.Connection.close))

where p abbreviates the java.sql package.

The sail-Web application For our experiments, we use the
Sail-Web (Scalable Architecture for Interactive Learning
on the Web) application, which is available in Google
Codes [25]. Sail-Web is an ongoing project that aims at devel-
oping a web-based content management system for interac-
tive learning. This application uses a MySql database through
the JDBC API to manipulate data. The application is divided
into two separate packages, here called limited and complete.
The complete package is an extended version of the limited
one, supporting several additional features.

Table 5 shows information about size, number of classes
(total and servlets), and number of public methods of the lim-
ited package and its extension with some features imported
from the complete one. The extended package includes 12
more classes, here called additional classes. These classes
extend the limited package by adding new features such as
file management, URL connection, and security utilities. We
begin our verification experiment with the code of the limited
package, with additional annotations specifying the control
flow of the methods of additional classes. This resembles
systems with unavailable code, e.g., mobile code. Then, to
imitate the code evolution scenario, we import the code of
the additional classes into the limited package (which forms
extended package) and re-verify the program.

Focusing on the database connection policy, private meth-
ods createConnection and shutdown of the servlets
are used to create and close database connections, respec-
tively. The code of these methods is shown in Fig. 8.

These two methods are invoked by the doGet and
doPost methods of servlets. As an example, the code of
method doGet of class VLEGetAnnotations is shown
in Fig. 9. Methods doGet and doPost of other servlets use
similar code to respond to the requests. Method getData
is a private method to process requests; it has a different
implementation in each servlet.

As explained above, the web server invokes the objects of
the servlets based on the input request. We have modeled the

123

Procedure-modular specification and verification of temporal safety properties

Fig. 8 The private methods to create and close database connections

Fig. 9 The code of method doGet of VLEGetAnnotations class

Table 6 Verification results of the Sail-Web application

Sail-Web App. PPT CG LMC MFC GMC TT

Limited package 43 19 – 8 1 71

Limited package
(with improvements)

2 19 – – 1 22

Extended package – – 32 – – 32

behaviour of the web server by implementing a method that
iteratively forwards random requests to random Servlets in a
loop. This method is called dispatch.

Verification results We used the specification extractor to
extract safety automata specifications of the methods of the
Sail-Web application. The extracted safety automata repre-
sent the actual order of method invocations in the program.
As mentioned above, we also annotated the specifications
of the methods of the additional classes into the application
and used these for verification of the global safety control
flow property expressing the database single connection pol-
icy. ProMoVer constructs maximal models of the annotated
specifications, combines these with the extracted specifica-
tions into a PDS and model checks the result against the
global property. The statistics for the verification are given
in the first row of Table 6. In the table, we show the time
spent by the pre-processor (PPT), graph extractor (GE), local
model checking (LMC), maximal flow graph construction
(MFC), global model checking (GMC), and the whole ver-
ification (TT). Notice that in this version of the program,
local model checking is not used because the local specifica-
tions are extracted from the code and need not be checked.
The verification result is “NO” and the following coun-

terexample execution in the form of a program behaviour
is returned.2

. . .

(dispatch, ε)
dispatch call VLEGetAnnotations.doGet−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(VLEGetAnnotations.doGet,dispatch)
VLEGetAnnotations.doGet caret getConnection−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(VLEGetAnnotations.doGet,dispatch)
VLEGetAnnotations.doGet call VLEGetAnnotations.getData−−−→

(VLEGetAnnotations.getData,VLEGetAnnotations.doGet . dispatch)
VLEGetAnnotations.getData ret VLEGetAnnotations.doGet−−−→exp

(VLEGetAnnotations.doGet,dispatch)
VLEGetAnnotations.doGet ret dispatch−−−−−−−−−−−−−−−−−−−−−−−−−−−→exp

(dispatch, ε)
dispatch call VLEPostAnnotations.doPost−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(VLEPostAnnotations.doPost,dispatch)
VLEPostAnnotations.doPost caret getConnection−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . .

where the exceptional transitions are labeled by exp.
The counterexample shows an execution starting in

method dispatch that results in two simultaneous con-
nections to the database. The reason is that after creat-
ing the first connection, if an unhandled runtime exception
(e.g., NullPointerException) is raised in method getData
of classVLEGetAnnotations, then the normal execution
path of the program changes. In the counterexample, the first
unhandled exception in method VLEGetAnnotations.
getData brings the program pointer back to method
VLEGetAnnotations.doGet, and then this method
propagates the exception to method dispatch. Usually
in these situations, the web server sends the stack trace
to the client and continues responding to other requests.

2 To simplify the presentation, the package names are removed from
the configurations.

123

S. Soleimanifard et al.

Fig. 10 The new implementation of method doGet of VLEGetAnnotations class

While the database connection remains open, the next request
arrives and opens a second connection by calling method
VLEPostAnnotations.doPost.

We eliminate the behaviour in the counterexample by
changing the doGet method of class VLEGetAnnota-
tions to the code shown in Fig. 10. In the new imple-
mentation of method doGet, we added a try-catch block
to catch any exception that may be raised during the execu-
tion of method getData and to close the connection to the
database.

We use ProMoVer to re-verify the new code. Pro-
MoVer detects the small change and, therefore, only
re-extracts the specification of method doGet of class
VLEGetAnnotations. It uses this new specification to
construct a new PDS and to perform the global model check-
ing. The statistics of the verification are shown in the second
row of Table 6. Again, the result of verification is “NO”.
The provided counterexample is analogous to the previous
one; this time, however, the first connection is obtained in
method VLEPostAnnotations.doPost and the sec-
ond one in VLEPostFlag.doPost. This shows that the
same problem of unhandled runtime exceptions exists in the
VLEPostAnnotations.doPost method, too. In fact,
we realized that the same problem exists in some other classes
as well. After changing all of them, we use ProMoVer
to verify the program, and finally the verification result is
“YES”.

Code evolution scenario As mentioned above, the Sail-Web
project is an ongoing project divided into two main packages.

One of the packages includes more features and utilities
that probably will be imported into the smaller package in
the future. We act proactively and import the missing fea-
tures and utilities, which we have specified before, into the
limited package and form the so-called extended package.
As mentioned above, this new part consists of 12 servlet
classes (called additional classes), which are implemented
by 66 public methods with 4,806 lines of Java code.

We now use ProMoVer to verify the code of the extended
package. The proof storage and reuse mechanism detect the
new code, and for each method of the additional classes,
check that its implementation matches the corresponding
specification. As shown in the third row of Table 6, the

verification takes 32 s. This time is spent for local model
checking only. The result shows that all new methods respect
their specifications. Therefore, the verification result is
“YES”.

7 Conclusion

This paper describes ProMoVer, a tool that supports auto-
matic procedure-modular verification of control flow safety
properties of sequences of method invocations. It essentially
implements a particular verification scenario for the cvpp tool
set that supports compositional verification of programs with
procedures [13]. ProMoVer takes as input a Java program
annotated with temporal correctness assertions. The asser-
tions can be written in different specification formalisms.
Currently, LTL and safety automata are supported.

Modularity is understood here as the relativization of
global program correctness properties on the correctness of
its components. This is seen as the key to program verifi-
cation in the presence of static and/or dynamic variability
due to code evolution, code customization for many users
such as in software product lines (as illustrated in [26]), or as
yet unknown or unavailable code such as mobile code. We
illustrate two important points: (i) temporal safety properties
provide a meaningful abstraction for individual methods; and
(ii) procedure-modular verification of temporal safety prop-
erties can be performed automatically. Different specification
formalisms can be used to specify those temporal safety prop-
erties. Moreover, ProMoVer implements a mechanism for
proof storage and reuse, so that only relevant parts have to be
reverified after a system change. This makes the verification
method advocated by ProMoVer suitable to be used in a
context where systems evolve frequently, as is the case, e.g.,
for mobile code. The modularity of the verification allows
an independent evolution of the implementations of the indi-
vidual methods, only requiring the re-establishment of their
local correctness.

We believe that writing properties at the procedure-level
is intuitive for a programmer. Still, to decrease the effort of
annotating programs, we provide support for specification
extraction in the case of post-hoc specification of already
implemented methods, an inlining-based private method

123

Procedure-modular specification and verification of temporal safety properties

abstraction that requires only public methods to be specified,
and a library of standard global safety properties.

Experiments with realistic Java Card and web-based appli-
cations show that useful safety properties of such programs
can be conveniently expressed in a light-weight notation and
verified automatically with ProMoVer.

Moreover, proof storage and reuse provide appropriate
support for the modular nature of the verification work:
local changes in the specification or code require only local
re-verification, with significant reduction in verification time.

The addition of safety automata as a specification for-
malisms has proven to be convenient, and moreover, it also
results in more efficient maximal flow graph construction.
Still, some issues remain to be resolved to increase the util-
ity of ProMoVer. In the future, we plan to also experiment
with other temporal logics and notations, or to use patterns
to abbreviate common specification idioms. The tool set will
be extended with further translations into the underlying uni-
form logic, which is currently the safety fragment of the
modal μ-calculus.

Many important safety properties require program data to
be taken into account. As a first step towards handling data,
work has begun on extending our verification framework and
tool set to Boolean programs. We are also currently investi-
gating how to generalize our method for the program model
of Rot et al. that models object references in the presence of
unbounded object creation [24].

Acknowledgments We are indebted to Wojciech Mostowski, Erik
Poll and Roberto Guanciale for their help in finding suitable case studies,
to Afshin Amighi and Pedro de Carvalho Gomes for helping with the
implementation of cvpp and ProMoVer, and to Stefan Schwoon for
adapting the input language of Moped to our needs.

References

1. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N.,
Libkin, L.: First-order and temporal logics for nested words. In:
Logic in Computer Science (LICS ’07), pp. 151–160. IEEE Com-
puter Society, Washington, DC (2007)

2. Alur, R., Chaudhuri, S.: Temporal reasoning for procedural pro-
grams. In: Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI ’10), vol. 5944 of LNCS, pp. 45–60. Springer, Berlin
(2010)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic for nested
calls and returns. In: Tools and Algorithms for the Analysis and
Construction of Software (TACAS ’04), vol. 2998 of LNCS, pp.
467–481. Springer, Berlin (2004)

4. Amighi, A., de Carvalho Gomes, P., Gurov, D., Huisman, M.:
Sound control-flow graph extraction for Java programs with excep-
tions. In: Software Engineering and Formal Methods (SEFM ’12),
vol. 7504 of LNCS, pp. 33–47 (2012)

5. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infi-
nite structures. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Hand-
book of Process Algebra, pp. 545–623. North Holland, Amsterdam
(2000)

6. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verifi-
cation tool for finite state systems. In: International Symposium
on Protocol Specification, Testing and Verification, pp. 287–302.
North-Holland Publishing Co., Amsterdam (1990)

7. Dam, M.: CTL* and ECTL* as fragments of the modalμ-calculus.
In :Colloquium on Trees in Algebra and Programming, (CAAP
’92), vol. 581 of LNCS, pp. 145–164. Springer, Berlin (1992)

8. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program ver-
ification in polynomial time. In: Programming Language Design
and Implementation (PLDI ’02), pp. 57–68. ACM (2002)

9. Doclet overview. http://java.sun.com/j2se/1.3/docs/tooldocs/
javadoc/overview.html

10. Gawell, N.: Automatic verification of applet interaction properties.
Master’s thesis, KTH Royal Institute of Technology, Stockholm,
Sweden. Ref.: TRITA-CSC-E 2009:128 (2009)

11. Goldman, M., Katz, S.: MAVEN: Modular aspect verification. In:
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’07), vol. 4424 of LNCS, pp. 308–322. Springer, Berlin
(2007)

12. Gurov, D., Huisman, M.: Reducing behavioural to structural prop-
erties of programs with procedures. In: Verification, Model Check-
ing, and Abstract Interpretation (VMCAI ’09), vol. 5403 of LNCS,
pp. 136–150. Springer, Berlin (2009)

13. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification
of sequential programs with procedures. Inf. Comput. 206(7), 840–
868 (2008)

14. Hubbers, E., Poll, E.: Transactions and non-atomic API methods
in Java Card: specification ambiguity and strange implementa-
tion behaviours. Technical Report NIII-R0438, Radboud Univer-
sity Nijmegen (2004)

15. Hubert, L., Barré, N., Besson, F. Demange, D., Jensen, T., Mon-
fort, V., Pichardie, D., Turpin, T.: Sawja: Static Analysis Work-
shop for Java. In: Formal Verification of Object-Oriented Software
(FoVeOOS ’10), vol. 6528 of LNCS. Springer, Berlin (2010)

16. Huisman, M., Aktug, I., Gurov, D.: Program models for compo-
sitional verification. In: International Conference on Formal Engi-
neering Methods (ICFEM ’08), vol. 5256 of LNCS, pp. 147–166.
Springer, Berlin (2008)

17. Huisman, M., Gurov, D.: CVPP: A tool set for compositonal ver-
ification of control-flow safety properties. In: Formal Verification
of Object-Oriented Software (FoVeOOS ’10), vol. 6528 of LNCS,
pp. 107–121. Springer, Berlin (2010)

18. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.: Moped - a
model-checker for pushdown systems. http://www.informatik.
uni-stuttgart.de/fmi/szs/tools/moped/

19. Kozen, D.: Results on the propositional μ-calculus. Theo Comput
Sci 27, 333–354 (1983)

20. Larsen, K.: Modal specifications. In: Automatic Verification Meth-
ods for Finite State Systems, vol. 407 of LNCS, pp. 232–246.
Springer, Berlin (1989)

21. Leavens, G., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.,
Müller, P., Kiniry, J., Chalin, P.: JML Reference Manual, Feb. 2007.
Department of Computer Science, Iowa State University. Available
from http://www.jmlspecs.org

22. Müller, P.: Modular Specification and Verification of Object-
Oriented Programs, vol. 2262 of LNCS. Springer, Berlin (2002)

23. Pnueli, A.: The temporal logic of programs. In: IEEE Symposium
on Foundations of Computer Science (FOCS ’77), pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

24. Rot, J., de Boer, F., Bonsangue. M.: A pushdown system representa-
tion for unbounded object creation. In: Informal pre-proceedings of
Formal Verification of Object-Oriented Software (FoVeOOS ’10)
(2010)

25. Sail-web application, 2012. https://code.google.com/p/sail-web/
26. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional algorith-

mic verification of software product lines. In: Formal Methods for

123

http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/overview.html
http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/overview.html
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www.jmlspecs.org
https://code.google.com/p/sail-web/

S. Soleimanifard et al.

Components and Objects (FMCO ’10), vol. 6957 of LNCS, pp.
184–203. Springer, Berlin (2011)

27. Schneider, F.B.: Enforceable security policies. ACM Trans. Infin
Syst Security 3(1), 30–50 (2000)

28. Soleimanifard, S., Gurov, D., Huisman, M.: PROMOVER web
interface. http://www.csc.kth.se/~siavashs/ProMoVer

29. Soleimanifard, S., Gurov, D., Huisman, M.: ProMoVer: Modular
verification of temporal safety properties. In: Barthe, G., Pardo, A.,
Schneider, G. (eds.) Software Engineering and Formal Methods
(SEFM ’11), vol. 7041 of LNCS, pp. 366–381. Springer, Berlin
(2011)

30. Stirling, C.: Modal and Temporal Logics of Processes. Springer,
Berlin (2001)

Author Biographies

Siavash Soleimanifard is a PhD
candidate in the department of
Theoretical Computer Science at
KTH, Stockholm. He obtained
his master degree in June 2009
from Uppsala University, Upp-
sala, Sweden and started his PhD
in September 2009. His research
interests include formal methods
and program verification, sta-
tic analysis, runtime verification,
and software security.

Dilian Gurov received his PhD
degree from the University of
Victoria in 1998. After working
five years as a senior researcher
at the Swedish Institute of Com-
puter Science, he joined KTH
- Royal Institute of Technology,
Stockholm, where he is asso-
ciate professor since 2007. His
research interests centre around
program and system correctness,
with special emphasis on verifi-
cation and compositionality. He
has co-authored more than 30
refereed conference and journal

publications.

Marieke Huisman is an Asso-
ciate Professor at the Univer-
sity of Twente, the Netherlands.
She obtained her PhD in 2000
from the University of Nijmegen,
the Netherlands. Her thesis was
about the semantics and verifi-
cation of sequential Java pro-
grams. She spent almost eight
years at INRIA Sophia Antipo-
lis, France as a Chargé de
Recherche, working on program
verification, application-specific
security, compositionality and
concurrency. In 2008 she joined

the FMT group at the University of Twente. Huisman is a well-
established researcher in the area of program verification with around 30
refereed conference and journal publications in well-established venues.
She has (co-)supervised four PhD students and is actively involved in
the research community. In 2004 she received the EASST Best Paper
Award at ETAPS 2004 for: M. Huisman, D. Gurov, C. Sprenger, and
G. Chugunov. Checking absence of illicit applet interactions: a case
study. In 2010 she received a personal ERC Starting Grant for the Ver-
Cors project. Other projects she has been involved in are: VerifiCard,
Mobius, CARP and SlaLoM.

123

http://www.csc.kth.se/~siavashs/ProMoVer

	Procedure-modular specification and verification of temporal safety properties
	Abstract
	1 Introduction
	2 ProMoVer: a user's view
	3 Program model
	3.1 Models and simulation
	3.2 Flow graphs

	4 Property specification and compositional verification
	4.1 Property specification
	4.1.1 Linear-time temporal logic
	4.1.2 Safety automata

	4.2 Compositional verification
	4.2.1 Compositional verification for safety LTL
	4.2.2 Compositional verification for safety automata

	5 The ProMoVer tool
	6 Experimental results for ProMoVer
	6.1 Experiments on Java Card applications
	6.2 Experiments on a web application

	7 Conclusion
	Acknowledgments
	References

