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Abstract

Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is
called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time func-
tional magnetic resonance imaging for moment-to-moment decoding of attention to spatially overlapped objects belonging to two
different object categories. First, a whole-brain classifier was trained on pictures of faces and places. Subjects then saw transpar-
ently overlapped pictures of a face and a place, and attended to only one of them while ignoring the other. The category of the
attended object, face or place, was decoded on a scan-by-scan basis using the previously trained decoder. The decoder per-
formed at 77.6% accuracy indicating that despite competing bottom-up sensory input, object-based visual attention biased neural
patterns towards that of the attended object. Furthermore, a comparison between different classification approaches indicated that
the representation of faces and places is distributed rather than focal. This implies that real-time decoding of object-based atten-
tion requires a multivariate decoding approach that can detect these distributed patterns of cortical activity.

Introduction

In our daily life, we are continuously flooded with a multiplicity of
stimuli, all competing for our attention. However, only a small
amount of information can be assimilated at any given time due to
our limited information-processing capacity (Desimone & Duncan,
1995). To effectively cope with this influx of information, the brain
must filter out task-relevant information from the environmental
stimuli based on current task demands (Rissman & Wagner, 2012).
Selective attention drives this filtering by focusing processing
resources on particular aspects of the environment or stimuli, whilst
disregarding others. This selective attention can be deployed to a
certain feature such as color or motion (feature-based attention), to a
certain location in space (space-based attention) or to an organized
chunk of information that corresponds to an object (object-based
attention; Serences et al., 2004). Object-based attention uses top-
down control to enhance the sensory representation of the attended
object, resulting in its corresponding features being processed more
efficiently. Evidence for this top-down control has emerged from
numerous studies using a variety of measurement techniques. For
instance, in a study by Cerf et al. (2010), which employed single-
unit recordings, neurons coding for Marilyn Monroe were identified.
These neurons fired selectively when subjects were presented with a
composite picture of Marilyn Monroe and Josh Brolin while being
asked to attend only to the picture of Marilyn Monroe. Subjects

were able to robustly regulate the firing rate of their neurons,
increasing the rate for the target picture (Marilyn Monroe) while
simultaneously decreasing the rate for the non-target picture (Josh
Brolin). The study indicates that despite competing bottom-up sen-
sory input, firing rates in medial temporal lobe neurons can be vol-
untarily regulated to reflect object-based selective attention. Studies
using functional magnetic resonance imaging (fMRI), electroenceph-
alography and magnetoencephalography have likewise shown that
cortical representations for the task-relevant stimuli can be enhanced
while at the same time suppressing the activations for task-irrelevant
stimuli or features (Luck et al., 1993; Eimer, 1996; O’Craven et al.,
1999; Hopf et al., 2000; Serences et al., 2004; Gazzaley et al.,
2005; Yi et al., 2006; Rahnev et al., 2011).
Recently, with the introduction of multivoxel pattern analysis

(MVPA), new insights have been gained in understanding the effect
of goal-directed top-down control on cortical representations. One of
the first studies that employed MVPA to read subjective contents of
the human brain using fMRI has nicely demonstrated this (Kamitani
& Tong, 2005). The study showed that a classifier that was initially
trained to differentiate activation patterns of individual grating orien-
tations was also able to decode the attended grating orientation
when any two gratings were simultaneously presented. Furthermore,
distributed information about the attended orientation was present
even in V1, the earliest cortical level of visual processing (see also
Li et al., 2004; Haynes & Rees, 2006). This indicates that despite
the presence of competing bottom-up sensory inputs, attentional sig-
nals biased neural patterns in favor of the task-relevant features. Fur-
ther studies have reported that attention-driven top-down control can
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modulate the cortical representation of a range of different stimuli,
from simultaneously presented motion fields to simultaneously pre-
sented visual objects (Reddy & Kanwisher, 2006; Macevoy &
Epstein, 2009; Reddy & Tsuchiya, 2010), and even conjunctions of
features such as color and motion (Seymour et al., 2009; see Riss-
man & Wagner, 2012; Tong & Pratte, 2012 for more exhaustive
reviews).
In this study, we investigated if the object category of an attended

stimulus can be decoded non-invasively in real-time when stimuli
from two different categories are presented simultaneously. More
specifically, we examined whether a classifier trained on separately
presented pictures of faces and places can be used to decode the
attended object category (face or place) when both a face and a
place are presented simultaneously in the form of a composite pic-
ture. By presenting superimposed pictures of a face and a place, we
tested if object-based attention can bias the neural patterns in face-
and place-selective areas towards the attended category, and if these
differentiating activity patterns can be picked up on a moment-to-
moment basis by multivariate pattern analysis in a real-time fMRI
setting. Such an attention-driven real-time decoding setup could
form the basis for a brain–computer interface (BCI) for severely pa-
ralysed and locked-in patients. Furthermore, such a system could be
used to investigate if people can be trained to enhance their attention
or prolong their attentional span (Jensen et al., 2011).
Previous studies have shown that pictures of faces and places

invoke spatially distinct and dissociable cortical regions, namely,
fusiform face area (FFA) for faces and parahippocampal place area
for scenes (Puce et al., 1995; Kanwisher et al., 1997; Epstein et al.,
1999). More recently, however, these regions have been shown to
have a more overlapping and distributed representation than previ-
ously thought (Haxby et al., 2001; Ewbank et al., 2005; Hanson &
Schmidt, 2011; Mur et al., 2012; Weiner & Grill-Spector, 2012). In
light of this new view, optimal decoding of faces and places from
these regions call for a multivariate decoding approach that can
detect these overlapping and distributed neural patterns. Therefore,
in this study, we used whole-brain data to train a classifier to predict
the mental state of a subject as this approach does not rely on any
prior assumptions about functional localization (Laconte et al.,
2007; Anderson et al., 2011; Hollmann et al., 2011; Lee et al.,
2011; Xi et al., 2011; DeBettencourt et al., 2012). Moreover, the
whole-brain decoder is highly suited for real-time fMRI because it
automatically identifies sparse and distributed patterns of activity
that are representation-specific. The employed method is also com-
putationally fast, such that the entire experiment with both classifier
training and testing can be conducted in a single non-stop session.
In order to examine which activity patterns were related to suc-

cessful classification, we also assessed decoding performance when
the feature space was restricted to only those voxels activated during
a general linear model (GLM). For this purpose, we retrained the
classifier post hoc on a restricted feature space of only those clusters
activated in a GLM on the localizer task. Using this approach, we
examined whether multivariate or average activity patterns within
each cluster drove classifier performance. Finally, to assess if repre-
sentation of object-based attention is distributed across multiple
brain regions, we applied multivariate decoders to individual clusters
activated in the GLM. If the object representation is distributed
across various brain regions, then these individual clusters should
yield poorer decoding performance compared with whole-brain or
GLM-restricted decoders.
Because brain state predictions are available for every scan in

real-time fMRI, these online detected brain states can be used as
neurofeedback to train subjects to modulate their ongoing brain

activity. Such brain-state dependent stimulation provides a new ave-
nue for investigating the neuronal substrate of cognition (Hartmann
et al., 2011; Jensen et al., 2011). To ascertain how this brain-state
dependent stimulation impacted subjects’ task performance, we con-
ducted each attention trial twice, once with fMRI neurofeedback and
once without it. However, due to the lack of statistically significant
differences between feedback and non-feedback conditions, we will
focus primarily on the non-feedback condition and refer the reader
to the Supporting Information for a detailed analysis of the feedback
condition. Results for both the feedback and non-feedback condi-
tions showed that object-based attention can be successfully decoded
within a real-time fMRI paradigm.

Materials and methods

Subjects

Seven subjects (six males, one female) with an average age of
23.4 years (SD = 4.6) participated in the study. All participants had
normal vision, and received either monetary compensation or study
credits for their participation. The study was approved by the local
ethics committee (Commissie Mensgebonden Onderzoek Regio Arn-
hem-Nijmegen) and conformed with The Code of Ethics of the
World Medical Association (Declaration of Helsinki), printed in the
British Medical Journal (18 July 1964). Subjects gave written
informed consent before the experiment. To keep them motivated
during the experiment, participants were promised a monetary
reward if their task performance (i.e. average decoding accuracy) in
the experiment exceeded 95%.

Stimuli

The stimulus set consisted of color pictures of famous faces and
famous places collected from the World Wide Web. Previous studies
have shown larger activations for familiar faces and places com-
pared with unfamiliar faces and places, respectively (Shah et al.,
2001; Pierce et al., 2004; Rosenbaum et al., 2004). All pictures
were 450 9 450 pixels with a resolution of 95.987 pixels/inch and
subtended a visual angle of 8°. The stimulus set was not corrected
for luminance or spatial frequency.

Experimental protocol

Subjects were thoroughly briefed before the experiment to avoid
any verbal communication during the real-time fMRI run. Video
recordings of all experimental conditions were shown and the task
was verbally explained by the experimenter with the help of these
videos. No instructions were given to maintain a specific gaze direc-
tion. Subjects were allowed to close their eyes during the 12-s rest
periods between blocks/trials, but were instructed to open their eyes
a few seconds before this rest period was over.

Experimental design

The experiment consisted of two phases: a training phase (also
called localizer) in which a classifier was trained on the cortical
activity patterns induced by faces and places; and a test phase in
which the classifier was used to decode the category of the attended
picture in a hybrid of a simultaneously presented face and place.
The training phase consisted of 15 9 30-s blocks of face pictures

interleaved with 15 9 30-s blocks of place pictures with 12 s rest
intervals between consecutive blocks. Within each block, 15 pictures
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were presented, and the first picture was repeated at a random posi-
tion in the block. Subjects had to press a button on a button box
with their right index finger when they saw the first picture repeated
in that block. This kept them actively engaged in the task through-
out the training phase. Early repeats of the first picture were avoided
by constraining it to repeat after three other pictures had been pre-
sented. Subjects were advised to attend to all pictures in a block
regardless of when the first picture was repeated. Each picture
within a block was presented for 1.5 s followed by a 0.5-s fixation
period, as shown in Fig. 1A. All 14 pictures in each block were
unique and used nowhere else in the experiment. The entire training
phase took 22 min to complete.
In the test phase, 15 hand-picked pairs of transparently over-

lapped faces and places were used (see Figs S1, S2 and Movie S1),
and subjects had to attend to either face or place items depending
on the cue. Thirty trials were collected in the non-feedback condi-
tion, half of which had face as target (attend-face trials) and the
remaining half of which had place as target (attend-place trials).
Every trial started with presentation of the target and non-target cue
pictures for 1.75 s each, followed by a 0.5-s fixation period. Cue
pictures were labeled with either of the words ‘Target’ and ‘Non-tar-
get’, and the order of presentation of these cues was counterbal-
anced across subjects. After cueing, a hybrid image of the target and
non-target picture was shown for 12 repetition times (TRs), and sub-
jects had to attend to the target picture while ignoring the non-target
picture (Fig. 1C and D). The relative mix of face and place pictures
in the hybrid was not changed in the non-feedback condition, but it

was changed for the feedback condition (for full details about the
feedback condition please consult the Supporting Information).

MRI acquisition parameters

Experiments were performed at the Donders Institute for Brain,
Cognition and Behaviour using a Siemens MAGNETOM Tim TRIO
3.0 Tesla scanner with a 32-channel head coil. First, high-resolution
anatomical images were acquired using an MPRAGE sequence (TE/
TR = 3.03/2300 ms; 192 sagittal slices, isotropic voxel size of
1 9 1 9 1 mm). Then a real-time fMRI run was initiated and func-
tional images were acquired using a single-shot gradient echo planar
imaging sequence (TR/TE = 2000/30 ms; flip angle = 75°; voxel
size = 3 9 3 9 3.3 mm; distance factor = 10%) with prospective
acquisition correction (PACE) to minimize effects of head motion
during data acquisition (Thesen et al., 2000). Twenty-eight ascend-
ing axial slices were acquired, oriented at about 30° relative to the
anterior–posterior commissure.

Real-time data export and preprocessing

During the real-time fMRI run, all functional scans were acquired
using a modified scanner sequence and in-house software that sent
each acquired scan over Ethernet to another computer, which stored
them in a FieldTrip (Oostenveld et al., 2011) raw data buffer. Each
newly buffered raw scan was then fed into a MATLAB-based (The
Mathworks, Natick, MA, USA) preprocessing pipeline.

1.5 s
1.5 s 0.5 s

0.5 s

12 s rest
0.5 s 1.5 s

Non-target
Target

1.75 s
1.75 s

0.5 s

12 TRs

24 s 12 s rest

Non-target
Target

A

B

C

D

Fig. 1. Experimental design. (A) Face block in training phase in which pictures of famous people were presented. (B) Place block in training phase in which
pictures of famous landmarks were presented. (C) Attend-face trial during decoding phase in the non-feedback condition. Each trial started with target and non-
target cues. Participants then attended to the face object while ignoring the place object in a hybrid of transparently presented face and place pictures. (D)
Attend-place trial in the non-feedback condition. Same as attend-face trials, except the subjects now had to attend to the place object while ignoring the face
object. The order of presentation of target and non-target was counterbalanced across subjects. Note: copyrighted pictures used in the original experiment have
been substituted in the above graphic by non-copyrighted lookalikes.
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The first preprocessing step involved selecting one of the two
image series generated by the scanner sequence: the PACE series of
images that is only prospectively corrected and the MoCo (motion-
corrected) series that is both prospectively and retrospectively cor-
rected (Thesen et al., 2000). We used the MoCo series of images as
it contained the least residual motion. Then scans were slice-time
corrected, followed by retrospective motion correction using an
online rigid-body transformation algorithm with six degrees of free-
dom. This was done to remove any residual motion in the MoCo
series. Then a recursive least-squares GLM was applied to each scan
to remove nuisance signals (Bagarinao et al., 2003). Five regressors
corresponding to DC offset, linear drift and three translational
motion parameters were used in the model. Next, we removed white
matter and cerebral spinal fluid voxels from all scans using a gray
matter mask, which was obtained from high-resolution anatomical
images using SPM8s (Wellcome Department of Cognitive Neurol-
ogy, Queens Square, London, UK) unified segmentation-normaliza-
tion procedure (Ashburner & Friston, 2005). Volumes were resliced
to the resolution of the functional scans using the first acquired
functional scan as reference. After gray matter masking, top and bot-
tom slices in each scan were masked to avoid using the bad voxels
in these slices formed during online retrospective motion correction.
Each scan, now fully preprocessed, was saved in a FieldTrip prepro-
cessed data buffer. The entire real-time fMRI pipeline is shown in
Fig. 2.

Feature extraction and classification

Once preprocessed, scans were then used for training and decoding.
To train the classifier, scans collected in the training phase were
shifted by 6 s to account for the hemodynamic delay. Then all scans
corresponding to the 12-s rest periods between consecutive face and

place blocks were discarded. The remaining scans were labeled and
used to train the decoder. We used logistic regression in conjunction
with an elastic net regularizer. The elastic net regularization shrinks
and selects regression coefficients, identifying relevant features (vox-
els) while performing well in the presence of correlated variables,
making it a good choice for fMRI decoding.
Given a training set xi; yið Þf gNi¼1; where N is the total number of

observations, xi is the ith observation and yi the corresponding
response, the elastic net logistic regression model is fitted by maxi-
mizing the penalized log likelihood:

ðba; bbÞ ¼ maxa;b

�
1
N

XN

i¼1

n
yiðaþ xTi bÞ

� logð1þ expðaþ xTi bÞÞ
o
� kPcðbÞ

�

where k is the regularization parameter, a is an offset term, b is a
vector of regression coefficients and

Pc bð Þ ¼
Xp

j¼1

1
2

1� cð Þb2j þ c bj
�� ��� �

is the elastic net regularizer with mixing parameter c. For this study,
the value of c was fixed to 0.99, yielding a sparse solution. For the
regularization parameter k, a regularization path was calculated with
maximum number of allowed iterations set to 100. The optimal set-
ting of k was then computed using nested cross-validation on 75%
of the training data. Using a coordinate gradient-descent algorithm
(Friedman et al., 2010), classifier training took only a few minutes
to complete, after which the decoding phase was initiated. For
decoding object-based attention, each of the 12 scans in every trial
was individually classified. The classification threshold was set to
0.5. A prediction probability below 0.5 indicated attention to the
place object and above 0.5 indicated attention to the face object.
During the actual real-time fMRI run, a whole-brain decoder (MVA-
W) was used. That is, all gray matter voxels in every volume were
used during training and decoding.

Pattern analysis

To compare the whole-brain decoding approach to a GLM-based
approach, we retrained the classifier offline on a restricted feature
space of only those voxels that were detected in a GLM applied
to the localizer. The GLM for this decoder was carried out on
the training data and contained two regressors corresponding to
the face and place blocks, and six rigid-body motion parameters
as nuisance covariates. Two contrasts, faces > places and places
> faces were formed to find voxels that responded strongly to
faces and places, respectively. For each subject, these statistical
images were assessed for cluster-wise significance using a cluster-
defining threshold of P = 0.01. The 0.05 FWE-corrected critical
cluster size was found using Newton–Raphson search (Nichols &
Hayasaka, 2003) and ranged from 19 to 21 voxels across the
group. We applied this GLM-based decoder in two ways. First,
we used the voxels within all identified clusters as input to the
elastic net classifier (GLM-restricted multivariate analysis; MVA-
G). Second, we used the average time-series within each cluster
as input the elastic net classifier (MVA-T). This allowed us to
compare the impact of using multivariate vs. univariate patterns
within each cluster. Additionally, we performed multivariate
decoding on each individual cluster found in the GLM to exam-
ine if decoding of the attended object category is based on either
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Online GLM for nuisance 
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first volume
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Fig. 2. Donders real-time fMRI pipeline. See main text for details.
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localized or distributed patterns of cortical activation patterns. In
cluster-wise decoding (MVA-C), time-series of all voxels in a
cluster were averaged and then used for training and decoding.
This analysis was repeated for each cluster found in each subject.
Hence, a separate decoder was trained and tested for every
cluster.
Furthermore, we also computed the anatomical label of voxels

used by the decoders by grouping and labeling them using a sub-
ject-specific automatic anatomic labeling mask (Tzourio-Mazoyer
et al., 2002). We refer to these groups of classifier voxels with the
same anatomical labels as regions. A region may contain one or
more voxels that may or may not be spatially adjacent, but crucially
each voxel in a region has the same anatomical label. The same pro-
cedure was then repeated for all subjects. Any region not activated
in at least three subjects was dropped from further analysis. We then
calculated average percent signal change for attend-face and attend-
place trials in voxels in each of these groups.
Finally, to examine how the blood oxygen level-dependent

(BOLD) signal evolved during an attention trial in MVA-W, we cal-
culated percent signal change as a function of TR in face- and
place-selective voxels for attend-face and attend-place trials. Face-
selective voxels were defined as those voxels that were assigned
positive weights by the classifier, whereas place-selective voxels
were assigned negative weights.

Performance evaluation

Decoding performance was quantified in terms of accuracy, defined
as the percentage of successfully predicted trials. A trial was
regarded successful if the summed log probability for the target pic-
ture (

P12
k¼1 logP TargetjScankð Þ) exceeded the summed log probabil-

ity of the non-target picture (
P12

k¼1 logP Non� TargetjScankð Þ) for
all 12 scans in a trial. Additionally, decoding accuracy was also cal-
culated as a function of time (TR) within each trial to investigate
how it evolved over the course of the trial duration. Decoding accu-
racy at a given TR was defined as the percentage of successfully
decoded scans at that TR across the group. Furthermore, because
the non-feedback condition contained attend-face and attend-place
trials, performance for each of these trial types was calculated sepa-
rately as well.

Behavioral testing

A behavioral test was conducted post hoc to assess the familiarity
asymmetry of face and place pictures used in this study. In this
web-based test, participants had to rank the familiarity of a picture
on a five-point scale. In this way, all 589 pictures used in the study
were ranked. In total, 97 participants (25 female) with an average
age of 29.6 years (SD = 7.1) took part in this task. Thirty-two par-
ticipants completed the test, while the remaining participants
dropped out after ranking 96 pictures on average.

Results

In this study we tested if object-based attention to simultaneously
presented faces and places could be decoded on a moment-
to-moment basis using a whole-brain decoder (MVA-W) trained on
pictures of separately presented faces and places. We also compared
a whole-brain decoder with a GLM-restricted decoder (MVA-G).
Furthermore, we studied if decoding is based on average time-series
across clusters (MVA-T), or driven by multivariate activity patterns
within individual clusters (MVA-C).

Comparison of decoding performance

We used a one-way ANOVA to test for differences in decoding perfor-
mance among the four decoders. Decoding performance varied signifi-
cantly (Fig. 3) across the four different decoders, F3,24 = 9.04,
P = 0.000346. A Tukey test indicates that MVA-W (M = 77.6,
SD = 11.6) was decoded significantly better than MVA-C (M = 56.1,
SD = 3.74), P = 0.001. Similarly, MVA-G (M = 79, SD = 9.75) was
decoded significantly better than MVA-C (M = 56.1, SD = 3.74),
P = 0.001. No statistically significant difference was found between
MVA-W, MVA-G and MVA-T (M = 68.6, SD = 9.97), though a
trend towards significance could be observed. No statistically signifi-
cant difference was found between MVA-C and MVA-T.
Taken together, these results suggest that whole-brain multivariate

decoding and GLM-restricted decoding perform comparably. Fur-
thermore, because MVA-W and MVA-G both performed signifi-
cantly higher than MVA-C, it indicates that decoding depends on
distributed patterns of cortical activity. Finally, lower decoding per-
formance for MVA-T compared with MVA-W and MVA-G sug-
gests that multivariate patterns of activity distributed across clusters
drive decoding performance.

Whole-brain multivariate decoding

To further examine online decoding results using MVA-W, we tested
how its decoding performance evolved during the trials. The results of
a TR-by-TR analysis in the non-feedback condition (Fig. 4A) showed
that decoding accuracy followed BOLD activity, increasing in the ini-
tial 6 s and leveling off afterwards. Moreover, attend-face trials were
decoded with an accuracy of 84% (SD = 14.3), whereas attend-place
trials were decoded with an accuracy of 71% (SD = 15.3), respec-
tively. A paired-samples t-test failed to reveal a statistically significant
(t6 = 1.8117, P = 0.12) difference between attend-face and attend-
place trials (Fig. 4B). However, a statistically significant asymmetry
was found for the familiarity of face and place stimuli in the post hoc
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Fig. 3. Comparison of the decoding performance for four different decoding
techniques in the non-feedback condition. Both the whole-brain and GLM-
restricted decoders performed significantly higher than the cluster-wise multi-
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Note: only MVA-W analysis was performed online, while the remaining
analyses were done offline.
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behavioral test. A paired-samples t-test showed that subjects ranked
faces (M = 3.805, SD = 0.015) more familiar than places (M = 2.85,
SD = 0.016), t10668 = 43.19, P = 0.
Additionally, we tested how BOLD signal varied for attend-face

and attend-place trials in voxels used by the decoder (Fig. 4D and
E). A two-tailed paired-samples t-test on percent signal change
showed that face-selective voxels responded more strongly to
attend-face trials (M = 0.319, SD = 0.123) than to attend-place trials
(M = 0.179, SD = 0.142), t6 = 2.468, P = 0.048. Likewise, place-
selective voxels responded strongly to attend-place trials
(M = 0.125, SD = 0.079) compared with attend-face trials trials
(M = 0.485, SD = 0.248), t6 = �4.84, P = 0.0028. This shows that

category-specific voxels responded strongly to the preferred category
than to the non-preferred category.
Anatomical grouping of voxels used by the decoder showed that

the selected voxels were distributed across 31 distinct brain regions
across the subjects (see Fig. S4 for a list of all these regions).
Regions not activated in at least three subjects were excluded from
further analysis. This left only nine brain regions, as shown in
Fig. 4F. These included bilateral fusiform and lingual gyri, right
parahippocampal gyrus, left and right inferior occipital lobes, and
right middle and superior temporal lobes. Right fusiform gyrus, left
and right inferior occipital lobes, and right middle and superior tem-
poral lobes were assigned positive weights and responded strongly
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to faces during the localizer task (Fig. 5A). Hence, these were
labeled as face-selective regions. Left fusiform gyrus, bilateral lin-
gual gyri and right parahippocampal gyrus were assigned negative
weights and were more responsive to place stimuli in the localizer
task (Fig. 5B), and therefore labeled as place-selective regions. The
classifier weights summed across all subjects for all these regions
are shown in Fig. 4G.

GLM-restricted multivariate decoding

The MVA-G model not only gave decoding performance similar to
that of MVA-W, but also recruited voxels from the same regions as
were used in the MVA-W model. While nine regions were used in
the MVA-W decoding model, 10 regions were recruited in the
MVA-G model (Fig. 6), out of which six were the same as that in
the MVA-W decoder. Percent signal change across these regions is
shown in Fig. 7. The fact that MVA-G identified a number of differ-
ent regions compared with MVA-W may be explained by the fact
that these regions contain redundant information that is ignored by
MVA-W due to the sparseness constraint imposed by the elastic net
classifier. MVA-T also gave above-chance classification perfor-
mance, though the observed trend was that it was generally lower
than MVA-G.

Cluster-wise multivariate decoding

Thirty-four distinct clusters were found across the group in the indi-
vidual GLM. Those clusters that were not activated in three or more
subjects were removed from further analysis. Decoding performance
for the remaining 12 clusters is summarized in Fig. 8. As stated ear-
lier, the average decoding performance for MVA-C was found to be
significantly lower than MVA-W and MVA-G. These results suggest
that within each small cluster not much discriminable information is
present about the attended category. However, if decoding is
extended to multiple brain regions such as that in MVA-W or
MVA-G, then distributed patterns of cortical activation can help
increase the decoding performance dramatically.

Discussion

In this study, we decoded object-based attention to transparently
overlapped faces and places in real time on a single TR basis using
a whole-brain decoder trained on separately presented pictures of
faces and places. A decoding accuracy of 77.6% was obtained for
the non-feedback condition, which is high considering that decoding
was performed on a single TR without averaging multiple scans.
We also tested if neurofeedback of scan-by-scan brain state classi-

fication results can improve decoding performance by using a feed-
back condition in which the relative mix of the face and place
picture was adjusted depending on classification results. However,
neurofeedback did not significantly improve decoding performance
(see Supporting Information). When we analysed the results of TR-
by-TR decoding performance, we did not observe an improvement
in accuracy over time for feedback trials. This contradicted our
expectation that neurofeedback of the attended stimulus in the form
of its enhancement in the hybrid picture would result in higher
decoding performance. From a purely perceptual point of view,
enhancement of the target picture should make classification easier
as an enhanced target picture would resemble more closely the neu-
ral patterns that the classifier was originally trained on. To examine
why no improvement in decoding accuracy was observed in the
feedback condition, we computed classifier prediction probability as
a function of TR (see Supporting Information). We indeed observed
an increase in the prediction probability of attended stimuli for suc-
cessful feedback trials. However, we also observed a decrease in the

Fig. 5. Percent signal change for voxels selected by the MVA-W classifier in different anatomical regions. (A) Percent signal change for face-selective regions.
Voxels in these regions responded more strongly to faces than places in the localizer. (B) Percent signal change for place-selective regions that responded more
strongly to places than faces in the localizer. Error bars represent standard error of the mean.

Fig. 6. Anatomical regions used by the GLM-restricted decoder (MVA-G)
and the number of subjects for which these regions were activated.
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prediction probability for unsuccessful feedback trials. This is
because in the feedback condition, visibility of the attended picture
increased as a trial progressed, irrespective of whether it was the tar-
get or distractor picture. As a result, when both successful and
unsuccessful trials were combined and the TR-by-TR prediction
probabilities were computed again, we did not observe any differ-
ence between feedback and non-feedback conditions. Hence, no sig-
nificant difference between feedback and non-feedback conditions
was observed.
A number of other design choices may have affected performance

in the feedback condition. First, because feedback and non-feedback
trials were conducted in interleaved mini-blocks, it might have
weakened any learning effect as subjects would not have been able
to discover a consistent strategy due to frequent switching between
the feedback and non-feedback trials. In future studies, rather than
using a within-subject design for feedback and non-feedback condi-
tions, a between-subject design should be used. Second, the duration
of feedback was chosen to be 12 TRs (24 s) as a compromise
between the number of trials and the experiment duration. This
might have been too short for any significant strategy learning. Pre-
vious real-time studies have used trial durations ranging from 15 to
60 s conducted over the course of multiple days (see Weiskopf
et al., 2005 for a review). Third, feedback was updated every TR,
which might have resulted in cognitive overload, thereby resulting
in suboptimal learning in the feedback condition. Future studies

should investigate the use of slower feedback update rates. Fourth,
adjusting the relative contribution of attended and unattended pic-
tures based on decoder output did not allow us to dissociate between
the effect of neurofeedback and the effect of change in BOLD signal
due to change in the perceptual input. Future neurofeedback designs
should avoid changing object properties by using a more abstract
neurofeedback such as adjusting the color of the background sur-
rounding the hybrid picture depending on the results of the decod-
ing. Finally, a decoder trained on separately presented pictures of
faces and places might not be the optimal way of investigating the
effects of neurofeedback. This is because a decoder trained on faces
and places will recruit only those regions that it finds useful for dis-
tinguishing between face and place pictures. Presenting decoder out-
put as neurofeedback to the subjects may have little impact on their
task performance because the regions that respond to neurofeedback
may not be incorporated in the decoding model trained on just faces
and places. Hence, even if the subject’s brain is responding to neu-
rofeedback, the decoder may be unable to detect it. Therefore, it is
necessary that future studies using MVPA-generated neurofeedback
could aim to incorporate the brain regions responsible for processing
feedback into the model.
In case of whole-brain decoding, nine regions were consistently

used by the classifier to drive the predictions. Among these regions
was the left fusiform gyrus, which is usually associated with reading
and word processing (McCandliss et al., 2003; Hillis et al., 2005;
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Dehaene & Cohen, 2011). However, this area has also been sug-
gested to be sensitive to the conjunction of object and background
scene information (Goh et al., 2004). This view is strengthened by
invasive studies in primates that also pointed to the presence of neu-
rons in this area, which are responsive to the conjunction of object
features (Baker et al., 2002; Brincat & Connor, 2004). The left fusi-
form gyrus may be showing more activity for place blocks than for
face blocks because pictures of famous places in the stimulus set
contained not only objects but also a wide variety of backgrounds.
Pictures used in the face blocks rarely had objects in them. The
right fusiform gyrus showed a preference for face blocks, whereas
the left parahippocampal gyrus showed a preference for place
blocks. These two regions have been implicated in many studies to
be responsible for the processing of faces and places, respectively
(Aguirre et al., 1996, 1998; Kanwisher et al., 1997; McCarthy
et al., 1997; Epstein & Kanwisher, 1998). Furthermore, bilateral li-
gual gyri were also activated for place pictures. The lingual gyrus
performs bottom-up perceptual analysis of a scene in order to recog-
nize it. Lesions in this area are known to result in topographical dis-
orientation, which refers to the inability to orient oneself in a scene
or surrounding (Aguirre et al., 1996; Sulpizio et al., 2013).
Two other regions selected by the classifier were the right medial

temporal lobe and the right superior temporal lobe. Their involve-
ment could be related to activity modulations induced by famous as
opposed to non-famous stimuli. A study by Tempini and colleagues
(Gorno-Tempini & Price, 2001) showed an effect of fame in the
anterior medial temporal gyrus (aMTG) that is common to faces and
buildings, though this was stronger in the right than in the left
aMTG. In our study, the right temporal gyrus shows a preference
for faces but not for places. This could be because many of the
famous landmarks used in the stimulus set were less familiar to sub-
jects compared with famous people.
Finally, both left and right inferior occipital gyri were activated in

the experiment, showing more activation for the face blocks. These
regions contain the occipital face area (OFA). The OFA is spatially
adjacent to the FFA and preferentially represents parts of the face,
such as eyes, nose and mouth (Liu et al., 2002; Pitcher et al., 2007,
2008). The OFA is an essential component of the cortical face
perception network, and it represents face parts prior to subsequent
processing of more complex facial aspects in higher face-selective
cortical regions.
We also found that above-chance accuracies were obtained for

some scans in the transition period, i.e. the first 6 s of the BOLD
activity after stimulus onset. This supports the finding of Laconte
et al. (2007), where an offline analysis showed that the transition
period of the hemodynamic response contains reliable information
that can be decoded with above-chance accuracy. We have therefore
shown that predictions for scans in the transition period, if required,
can be used in real-time fMRI to reduce neurofeedback delay by as
much as 6 s.
Additionally, we tested how a whole-brain classifier compared with

a GLM-restricted classifier. In whole-brain decoding, the input fea-
tures to the classifier included all voxels in the entire volume. This
classifier could therefore include any voxels in the model that it con-
sidered useful for separating the two classes. On the other hand, in the
GLM-restricted approach, the input features to the classifier were uni-
variately reduced to only those voxels that responded to the experi-
mental manipulation. We found that both these classifiers yielded the
same decoding performance. The whole-brain multivariate approach
is potentially a more sensitive approach as it can not only detect vox-
els that respond to the experimental manipulation but can also take
interactions between the voxels into account that are ignored by a

massively univariate approach such as a GLM. Moreover, using a
whole-brain elastic net logistic regression classifier in real-time fMRI
decoding experiments results in a simpler and computationally more
efficient experimental design. Averaging of time-series within each
cluster resulted in a performance loss, though this was not significant
given the low number of subjects used. At the same time, one should
be aware of the fact that multivariate approaches may also be sensitive
to confounds that systematically covary with the conditions of interest.
The fact that the GLM identified regions that overlapped with those
found by the multivariate approach provides support that the multivar-
iate approach is also driven by neural correlates of shifts in object-
based attention.
Furthermore, we analysed if the decoding was driven by highly

localized activity patterns or by distributed cortical activations by
training and testing decoders on individual clusters detected in the
GLM. Because decoding on these small individual clusters yielded
poor decoding performance compared with the whole-brain or
GLM-restricted decoders, it suggests that faces and places are
encoded in the brain using distributed patterns cortical activations,
and as such detection of these patterns requires a multivariate deco-
der with input features spread across the brain.
Finally, because the MVA-W classifier - trained only on pictures of

separately presented faces and places - could not recruit any regions
related to attention, we conducted a reverse MVPA to find regions
associated with attention. We trained two classifiers: one on the feed-
back condition; and the other on the non-feedback condition. Subse-
quently, these classifiers were tested on the localizer. We not only
found activations in the same brain regions responsible for processing
faces and places as we found in MVA-W, but also detected additional
brain regions associated with attention and cognitive control. We
found activation in superior frontal, middle frontal and superior medial
frontal gyri. These are part of the frontal-parietal network that have
been known to become active in top-down attentional control para-
digms (Li et al., 2010) and during bistable perception in which the
observer’s perception can fluctuate between competing stimuli (Kna-
pen et al., 2011). We also found activation in crus I of the left cerebel-
lum. The cerebellum not only plays an important role in motor
coordination, but has also been shown to be involved in higher cogni-
tive functions such as selective visual attention (Allen, 1997). More-
over, activations in middle and anterior cingulate were also detected.
Previous studies have shown that these regions play a crucial role in
attention-demanding tasks by competition monitoring and goal-direc-
ted selective attention (Danckert et al., 2000; Davis et al., 2000).
Activation in bilateral precuneus was also found, but only in the clas-
sifier trained on the non-feedback condition. Activation in this region
has been shown in a previous study (Hahn et al., 2006) during
engagement of top-down spatial selective attention. This may imply
that subjects were engaged in both object-based and space-based
visual attention during the non-feedback condition. Apart from activa-
tion of these additional brain regions in the reverse MVPA, we also
observed that the classifier trained on the feedback condition per-
formed significantly higher than the classifier trained on the non-feed-
back condition. This indicates that a classifier trained only on pictures
of separately presented faces and places may not be the most optimal
way of decoding object-based visual attention.
Concluding, we have shown that real-time fMRI allows for online

prediction of attention to objects belonging to different object cate-
gories. Prediction is based on distributed patterns of activity in mul-
tiple brain regions. The outlined methodology not only allows us to
probe object-based attention in an online setting but also illustrates
the potential to develop BCIs that are driven by modulations of
high-level cognitive states.
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Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Fig. S1. A basis set of 15 face-place pairs used in decoding phase.
Each pair was used twice in each condition, once with the face
picture set as target and the other time with the place picture set as
target. Note: Copyrighted pictures used in the original experiment
have been replaced in the above graphic by their non-copyrighted
look-alikes.
Fig. S2. Graph-based visual saliency algorithm was used to select
the face-place pairs. Saliency of the 50/50 hybrid and each of its
constituents were observed and only those pairs were selected for
which the 50/50 hybrid had an equal number of salient points for
the face and place picture.
Fig. S3. Stimulus timeline. (A) Example of an attend-face trial in
non-feedback condition. (B) Example of an attend-place trial in
feedback condition. After cues have been presented, the face-place
hybrid image was updated every TR depending on classification
result of the preceding TR.
Fig. S4. List of all brain regions from which voxels were selected
by the MVA-W classifier for training. Only regions that were acti-
vated across three or more subjects were used for further analyses.
Fig. S5. (A) Absolute number of voxels selected in the regions used
by classifier for training averaged across the group. (B) Percentage
of voxels used per region averaged across the group. Error bars
show standard error of the mean.
Fig. S6. (A) Decoding accuracy as a function of TR for feedback and
non-feedback condition, and attend-face and attend-place trials that
constitute these two conditions. The filled round markers represent
significantly above-chance decoding (P < 0.05) whereas the empty
markers represent below-chance decoding (P > 0.05). (B) Mean
decoding accuracy. Error bars indicate standard error of the mean.
Fig. S7. Comparison of percent signal change in feedback and non-
feedback conditions. (A) Percent signal change for attend-face trials in
feedback and non-feedback condition. The top plots show percent sig-
nal change at every TR during a trial (including the 12 s rest period.
The bottom plot shows the percent signal change aggregated over the
12 TRs. (B) Percent signal change for attend-place trials in feedback
and non-feedback conditions. Error bars represent standard error of
the mean.
Fig. S8. Comparison of prediction probablities of the decoder for feed-
back and non-feedback conditions. (A) Prediction probability for feed-
back and non-feedback conditions containing both successful and
failed trials. No significant difference was found. (B) Prediction proba-
bility for only successful trials in feedback and non-feedback condi-
tions. The prediction probability for feedback trials was significantly
higher than non-feedback trials (C) Prediction probability for only
failed trials in feedback and non-feedback conditions. The prediction
probability for failed trials was significantly stronger (lower) for feed-
back trials compared to non-feedback trials. Error bars represent stan-
dar error of the mean.
Fig. S9. (A) Average decoding performance for classifiers trained on
feedback and non-feedback conditions. The classifier trained on the
feedback condition was decoded with significantly higher accuracy
than the classifier trained on the non-feedback condition. (B). Anatom-
ical regions recruited by the classifiers trained on feedback and non-
feedback conditions
Movie S1. The movie demonstrates an example of a trial in feed-
back and non-feedback conditions. Furthermore it shows the actual
performance of one particular subject for all attend-face and attend-
place trials in the feedback condition.
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