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A great deal of research achievements on localization in wireless sensor networks (WSNs) has been
obtained in recent years. Nevertheless, its interesting challenges in terms of cost-reduction, accuracy
improvement, scalability, and distributed ability design have led to the development of a new algorithm,
the Push-pull Estimation (PPE). In this algorithm, the differences between measurements and current
calculated distances are modeled into forces, dragging the nodes close to their actual positions. Based
on very few known-location sensors or beacons, PPE can pervasively estimate the coordinates of
many unknown-location sensors. Each unknown-location sensor, with given pair-wise distances, could
independently estimate its own position through remarkably uncomplicated calculations. Characteristics
of the algorithm are examined through analyses and simulations to demonstrate that it has advantages
over those of previous works in dealing with the above challenges.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) are sets of sensors spatially
deployed mainly for applications of observing, tracking, and
controlling. Observing includes collecting data like parameters of
temperature, humidity, vibration, pressure, traffic, event counting,
etc. Tracking uses the observed data to follow and sometimes to
predict changing data where moving object tracking is an example.
Meanwhile, controlling pertains to decisions in response to data
provided by observing and tracking, like cutting power, sending
instructions to control traffic, putting out fires, sending alarms,
releasing missiles to detected enemy devices, and so on. Evidently,
applications of WSNs are all related to the physical locations of
sensed data.

The position of a sensor, or the prerequisite information,
can be achieved easily and correctly with an integrated Global
Positioning System (GPS) module. However, there is one problem
with GPS making localization algorithms necessary in practical
implementation. It is the expensive cost of GPS devices on sensors,
causing the total cost considerably high when the number of
sensors in a WSN is large. As a result, only few nodes (a.k.a.
beacons, anchors or pilots) have the known locations with GPS
modules. The locations of the remaining sensors (called normal
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nodes) are automatically estimated based on the measurements to
their neighbors using a localization algorithm.

Generally, localization categorizations are usually made de-
pending on the kind of input data: range-based or range-free; by
what methodology the algorithm is performed: centralized or de-
centralized; and whether the result is gained directly or through
iterations: multilateration or successive refinement. Short intro-
ductions on these concepts are discussed below.

1.1. Range-based and range-free data

The range-based scheme uses input pair-wise distance data.
These measurements can be inferred from such data as received
signal strength (RSS), time of arrival (TOA), time of difference of
arrival (TDOA), and angle of arrival (AOA) [13]. Measurement error
in RSS suffers from fading and shadowing, leading to poor accuracy
of localizations using this scheme. Meanwhile, TOA and TDOA
also use radio frequency (RF) and acoustic signal as RSS does, but
the ranges are estimated based on the time delay of propagation
through the environment (TOA) or the time discrepancy of
an incoming signal at two different nodes (TDOA) [19]. These
measurement methods are more accurate and easier to analyze
with the popular Gaussian noise model and, as a trade-off, are more
expensive than RSS systems.

For range-free schemes, the input data of localization algo-
rithms is the connectivity information between nodes and their
neighbors or the information of who in the communication
range [18,17]. A node can also estimate the distances to other
nodes by counting the shortest paths (minimum numbers of con-
nections) from itself to other nodes and multiplying this value
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with the mean hop distance [11]. The mean distance may be calcu-
lated by averaging all of the hops that make up the shortest paths
between anchors. Ranges based on connectivity do not require
complicated hardware or high interface power in normal nodes.
However, disadvantages of this scheme are: errors of measure-
ments are inevitable; the number of anchors should be high; and
the distribution of nodes should be uniform [11].

Since range-based algorithms and most range-free algorithms
work on the estimated ranges of pair-wise distances, we do not
distinguish between these two schemes. Instead, we concentrate
on solving localization problem with the calibrated measurements.
Push-pull Estimation (PPE) actually can be seen as a method using
the range-based scheme. It is built to deal with not only Gaussian
error but with any unbiased error as well. PPE can also solve
the problem of biased error measurement input if a de-biasing
function is found.

1.2. Centralized and decentralized methodologies

A centralized localization is executed by a single computer.
It therefore can easily deal with data combinations and perform
complicated computations like matrix operations or eigenvalue,
eigenvector calculations of a large matrix [9,15,24]. However, the
cost of communications becomes dominant when all of the input
data enters into one node, and all of the output data has to exit
from only that node. Moreover, the protocols for this kind of
method are hard to be implemented. The running time could be
long if the complexity of the algorithm is high, especially when the
number of nodes in the network becomes large. In other words, the
scalability of centralized algorithms is limited. Another variation of
the centralized algorithm is related to clustering methods where
the whole network is divided into groups, and each group has a
central computer to run the algorithm [26]. Yet the disadvantages
of this method are difficulties in defining how the groups are
divided. The central computer of a group would have strong
computing hardware compared to that of a normal node, so it
must be carefully deployed so that network communication and
computation are effective.

To overcome above disadvantages, researchers have been
seeking other methods which can be run distributedly on the
simple computers of normal nodes [18,17,11,2,6]. Algorithms of
this manner are called decentralized, distributed, pervasive or
collaborative localizations. Real-world applications prefer this type
of algorithm in which the big load of computations is shared,
the calculating time is reduced considerably, and communication
bottle-neck is no longer a problem. Our proposed PPE is designed
to avoid all of the disadvantages of centralized or clustering-based
centralized algorithms. It is purely a distributed method performed
by all of the normal nodes in the network.

1.3. Multilateration and successive refinement manner

Multilateration is usually used in distributed algorithms. It
takes at least three input range measurements (in 3-D case, four
is the least) to calculate a node’s coordinates [2]. The ratio of the
anchor number to the total node number for this manner is often
high because multilateration requires the exact positions of the
reference nodes.

Meanwhile, successive refinement obtains the estimated coor-
dinates of all normal nodes through iterations. If it is designed in
a decentralized method, each node has to calculate the estimated
position, send this information to the network, and receive new es-
timated positions from other nodes. These tasks are performed re-
peatedly until convergence. Successive refinement in a distributed
methodology is usually more difficult to design, and its conver-
gence is surely a problem [13]. However, it reduces the communi-
cation cost and makes the number of anchors not necessary to be
as high as in multilateration. In our proposed algorithm, successive
updating is used in all sub-stages of the method.

2. Related work

Only few range-free methods like RF-based fingerprint match-
ing [25] and grid-scanning [18,3] do not use range estimation. The
other range-free methods, to improve accuracy, estimate distances
by counting the hops between nodes and then using these esti-
mates as their inputs. For these ones, distance-vector-based (DV-
based) positioning [11] is one good way for approximating the
ranges. Apparently, pair-wise distance is quite necessary not only
with range-based schemes but also in range-free schemes. In both
of these schemes, the statistical model of pair-wise measurement
is usually assigned to the very popular Gaussian model. This model
represents the most unpredicted noise (maximum entropy) and
has a parametric function which is easy for analysis. However, it is
only appropriate for TOA, TDOA, and AOA measurements. In WSNs,
where RF signals are always available, RSS is likely the cheapest and
most convenient means for range-based schemes. Its error model,
however, is not typical Gaussian but a log-normal distribution, or
Gaussian in the log-domain [13,2,6,7]. In [7], although Malaney
does not give solutions, he presents how log-normal fading models
influence location accuracy and also gives the mathematical analy-
sis for the combination model of multipath fading and log-normal
power shadowing. Another technique using parametric channel
models is proposed in [21] to reduce error by using the information
of many parameters to refine the node locations. Recently, an ap-
proach in [10] has used least square (LS) and maximum likelihood
(MLE) algorithms to locate an unknown-coordinate node with ref-
erences to anchors.

The mentioned localizations are either “centralized and suc-
cessive refinement” or “decentralized and non successive refine-
ment”. Since successive refinement methods usually give higher
accuracy and decentralized methods are more practical, the com-
bination has gained more and more research interest. Patwari
and Costa first propose a learning-based algorithm [14], a candi-
date with the ability to find the eigenvalues and eigenvectors of a
sparse and symmetric matrix. Then, they introduce a distributed
weighted-multidimensional scaling approach (dwMDS [2]) devel-
oped from classical multidimensional scaling (MDS), a centralized
and more complex algorithm. In fact, MDS is such a novel tool that
many of its variations have been developed for node localization
in WSNs. Iterative MDS (IT-MDS) and simulated annealing MDS
(SA-MDS) discussed in [1] are two of these variations in which
simulated annealing is a famous method imitating the metal
cooling process to find the optimal state. Fastmap and MDS are
combined in [4] to give a two-stage algorithm in which Fastmap
provides the initial coarse input and MDS does the distributed gra-
dient descent for more accuracy like in [2]. Generally, MDS varia-
tions require a big load of computation and result in poor accuracy,
so the scalability of the methods is still an issue. A distributed MLE
with better accuracy [15] has been introduced, but this increased
accuracy occurs only when the algorithm has good first guess input
data (raw estimation). In [6], another method uses MDS to calcu-
late the initial data and then uses MLE to produce the refined re-
sult of localization, making the computation and communication
costs even higher. In this paper, we introduce a distributed succes-
sive localization. At each iteration on a normal node, only few sim-
ple computations are needed. Moreover, the communication cost
can be reduced remarkably with an insignificant accuracy trade-
off. One remarkable point is that PPE is unlike other methods which
base on available algorithms, it needs to be analyzed fully. The anal-
yses in later sections prove that PPE can obtain the global conver-
gence even it is performed distributedly. It is a convergent and
robust algorithm with any unbiased measurement input. There-
fore, it can deal with not only Gaussian model but the log-normal
model with a de-biasing function as well.

The rest of the paper is organized as follows. The main
analyses of PPE are in Section 3 where the annotations are
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Fig. 1. (a) Node i and measurement errors from i to its reference nodes. (b) The errors are modeled as pull-push forces.

introduced and the analyses of convergence, distributed ability,
scalability, and communication cost reducing ability are presented.
Section 4 includes the simulations for the purposes of verifying
the analyses and comparing the results with those of other
contemporary successive refinement approaches. Finally, we
present our conclusions in Section 5. Besides, a list of main
parameters for descriptions and analyses is available in the
Appendix at the end of this paper for the convenience of reading.

3. Push-pull Estimation (PPE)

3.1. Annotation and description of PPE

Our proposed algorithm [5] is based on geometry in which
the errors of measurements are modeled into pushing and pulling
forces. The influence of these forces leads a node to the point
where all of the forces are balanced or, in other words, where
the errors are minimized and canceled out through the averaging
mechanism. The algorithm is named the Push-pull Estimation
because of this original concept. PPE is designed to meet the basic
requirement that if the range measurement is shorter than the
calculated distance between two nodes, these two nodes pull each
other, and vice versa. In addition, the force magnitude should be a
monotone function of the discrepancy between the measured and
the calculated distances in order for PPE to work and converge.
The bigger is the discrepancy, the higher is the influence it gives to
reduce itself. This idea is demonstrated in Fig. 1 where node i needs
to update its coordinates to the balanced position. Node j causes
a pushing force on i because the range measurement between i
and j is longer than the current calculated distance between them,
and contrarily, node k exerts a pulling force on i. It should be
noted that in the concept of this model, we give normal nodes the
moving ability and consider location updating as a process in which
normal nodes move under the influence of forces caused by their
neighbors. When a normal node attempts to locate its balanced
position, it considers the other nodes to be still.

Assuming that the total node number of a 2-D deployed sensor
network is N, N = n 4+ m where n is the number of normal nodes
and m is the number of anchors, m < n.Lletx = {x; : i = 1,
..., N}, x; € R? be the true coordinate vector of normal sensors
{x; :i=1,...,n}and anchors {x; : i = (n + 1), ..., N}. The true
distance dj is the Euclidean distance between i and j,

dij:“Xj_xi ; L,j=1,...,N, (1)

So, dii =0and dij = dj,‘.

We used the range-based scheme for PPE input by assuming
that with a certain methodology, unbiased measurements from
a node to its neighbors and several anchors are available. This is
normal in most range-based localized WSNs. The ranges can also
be estimated through hops [11,22], and the anchors may have a

large broadcasting range. Then the pair-wise measurement or the
measured distance between node iandjis §; : i,j = 1,...,N;
8 = 8ji, 8 = 0 and §; = 0 if the range from i to j is too large, or
out of range. Since the error of measurement is always proportional
to the real distance, §; has the following form [4]

(Sij = d,] + d,'j.noiseij, l,_] = i, ey N (2)
where noise; ~ KX (O, crnz), some zero-mean distribution. We also
define the current estimated coordinate vector to be X = {X; :
i = 1,...,N},% € R% certainly we always have ; = x;,j =
(n+ 1), ..., N.The localization problem can be succinctly stated:
the input data of the algorithm are measurements §;; and anchors’
locations {x; : j = (n+1), ..., N}; the algorithm will give an initial
x and will update each x; of X so that the difference between X and
x is as small as possible, X then is the solution to the problem. Let

the current calculated pair-wise ranges be aij, then

di= % —%|, iji=1,....N. 3)

Now the distributed PPE algorithm for a normal node i is
presented with three phases. In each phase node i uses iterations to
produce a balanced position by updating position X; with the two

following equations:

—® 1 — @)

F = 7Mi(p) E fi (4)
~ - ( )—>(p)

X< X%+aPFE . (5)

. . — ) |
™ in (5) is the movement rate and F; is the mean-force

caused by a set of Ml-(p ) related nodes. These parameters vary in
different phase p of PPE.

- Phase 1: Raw estimation:

Node i needs at least three different beacon positions and the
measurements from itself to these beacons. By computing (4) and
(5),igets its raw estimated location where the sum of forces caused
by the related beacons is balanced. At each iteration, these forces
are

— (1) ~
fi = (d,,- - 5ij) . (6)

where j is the index of beacons related to i, and E])- is the unit

.. ~ ~ .. . . -
vector pointing from x; to x; to indicate the direction of fj. The
initial position of X; is chosen as the mean position of these beacons.
Choosing the initial position is empirical and will be mentioned

later in Section 4.1. M." is the number of beacons related to i.
- Phase 2: Pre-refinement:
After normal nodes complete the raw estimation phase, node
i takes the measurements to all of its related nodes, consisting of

related neighbors and beacons, and their current updated positions
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for determining its new balanced position. For normal neighbor
j, X is the current estimated position and for related beacon j, it
is the actual position. At each round the individual forces are

— () ~
fi = (d,»j - 8ij) €. 7)

For both phase 2 and phase 3, after a certain number of
iterations, node i must send out its current updated position to
its normal neighbors and get the new updated positions of the
neighbors for better location computing.

- Phase 3: Refinement:

This phase is used last to improve result accuracy because the
error of measured distance is proportional to the actual distance. It
has the same behavior as phase 2 with the same related nodes, or
Ml.(3) = Mi(z). The difference is the way node i calculates the forces

3) (2)
caused by all of its related nodes. E) is obtained by dividing T;

by aij"

—3) di — §; 8i | —
fu :( Ual] U) u_<]—du> el'j. (8)

jinphase 3 is the same as that in phase 2, the index of all nodes
related to i. The stop condition for all three phases is when the
magnitude of the mean-force on i is less than some small positive
value or when a given maximum number of iterations is reached.
Note that d;; # 0 in all three phases, d;j = 0 means that i does not
have the measured distance to j and so will not use j as a related
node for updating its position.

For convenience of description and further analysis, we add the
following common formula

f<p> 4 =% ) 9)
Ly
where
1 for phase 1 and phase 2
Lj= {a,-j for phase 3. (10)

Clearly, if 8; < dj, then T,J) having the same direction with
vector ?,; will be a pulling force given by node j on node i; and
vice-versa, if §; > dj, T,J) will be a pushing force. If §; = dj, the
force of j on i is zero.

This force model is the core idea of the algorithm. When a
normal node, say node i, is at a position where the forces around
it are not balanced, i will move under the force influence to a
new position where the sum-force tends to be weaker. While i
is moving, at any new position, the sum-force changes in both
of magnitude and direction, so the path of movement is actually
a curve. Since we cannot make a continuous curve, we will use
step-wise movements over iterations to update the estimation. In

. — @) o .
addition,«® F; ~ must be a quantity in the same unit as that of dj
or §;;. We can define ® with a more specific formula

OZ(D =0
a® = o, (11)
(1(3) = 0[3&1']'

where «; is a non-unit quantity and is small enough to guarantee

convergence; and d; is the mean value of the distances measured
from i to its neighbors and can be replaced by other parameters
provided that the replaced ones have the same unit of length.
Determining the value of «® so that the step is small enough
to guarantee convergence is difficult. If «® is too small, too

aef\ v b

Fig. 2. (a) The mean-force in coordinate system uOv. (b) The mean-force decreases
in magnitude when a node moves along it.

many iterations are needed. If it is too large, the algorithm may
not converge. There are a few approaches for adjusting «® to
overcome this dilemma. For consistency with the goal of low cost,

we choose the line search technique by doubling «® until

starts to increase.

For evaluating the accuracy of PPE in later sections, we use the
root mean square of the position errors.

1
EZH)?k—XkHZ, (12)

where k is the index for a normal node.

3.2. PPE’s convergence analysis

We analyze PPE’'s convergence by proving the following
statements:

(i) “In all three phases, a node will always find a balanced position
via the force mechanism”.

This statement implies that the force described in (9) converges
the location of a normal node i to a balanced point, and therefore
i would never get stuck in infinite loop. We decompose the mean-

- -
force F; (F;
and F, ina coordinate system uOv in which e;, and e; are the basis

1.2 E
= Fi( ) into two orthogonal sub-components F,

—
vectors. In order to simplify the analysis, we choose ( F, Ou) =0

—

= = .
and let ¢; = (Fi , ) (see Fig. 2). For phase 1 and phase 2, the

mean-force is rewritten:

— 1 ~

F=—o> (d-0)%. (13)
Mi Jj

- = =

FF=F + F,, (14)

- 2

Fi = (p <<\/( +(U,'—Uj) —8,]) COS@])
Ml

M(p ]Z <<\/ —u) + (vi—vy)’ - 8ij> sin <pj> :

(15)

Now we analyze how the mean-force changes when i moves

—_
along F;’s direction such a small distance that g; is considered to

be unchanged. It should be noted that although the v-component
F,,) = 0, when i moves along F, , F becomes F,*, and the v-
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—_
component of F; " is not zero. Partial derivation of Eq. (15) reveals

Q
oF e —u] COS @;
o (p)
au; M \/ Ul v)z
ul—uj sin g;
M@ Z - |- (16)
+ (v~ v)

oF 1
i _ 2 |\
LA <M;p> IR %) 2
1 ) N
+ (1\/1(”) Z—cos%smwj) e,. (17)
i J

_)
Eq. (17) means that_v)vhen i moves along F; a vg)ry small
distance Au (Au > 0), F; changes by an amougt) of A F;, which

is composed by two orthogonal components A F, and AFU) (see
Fig. 2),

— — —
AF, = AF, + AF,. (18)
— 1
AF = (@) Z — cos? (p;) Au,?:
M; J
1 . —
+ (M“’) Z — C0Ss @; sin <pj> Aue; . (19)
i J

The new updated mean-force on i becomes

—}r — —
Fr=F +AF. (20)
Because of the fact that ) ; — cos® ¢; < 0, the inner product

- - —> . . —>
<A Fy, eu> < 0, or AF, always has a counter-direction to F;.In
addition, v || <K ’ _1) ’.As aresult, for phase 1 and phase 2 (see
Fig. 2(b)):
- —
7]~ <|7 ] @

In the same manner, in phase 3, we infer the change amount of
—>
Fi(a)-

3
dF; 1 Si\ 5 \=
= —Fv —= | Cos" ;| e
dui  2M (;( ds a

1 S\ . —
b —= | singjcosg; | e, . (22)
i (5 (-5 oo =

— —

The u-component AFf’) is also opposite in direction with F,-G).
Therefore, (21) holds for all three phases of PPE. This means that
when i moves under PPE’s force effect, the mean-force’s magnitude
gets smaller and smaller. As a result, i’s location eventually
converges to a balanced position.

One can easily see that PPE is basically an optimization method
for a normal node in which the objective function to minimize is
the length of the mean-force,

— (@)

X; = arg min F (23)

X

Aiming at a low-cost algorithm, we have avoided much of the
complicated load of the gradient descend method which provides

balanced point B

Fig. 3. When the measurements have no error and the reference nodes’ locations
are known, the balanced point of a node is its actual position.

the optimal direction of movement. By letting a normal node
gradually move along the mean-force, our method is simpler
and involves only few simple computations. The proof above
guarantees the minimization.

(ii) “Estimation of a normal node in phase 1 is unbiased”.

In this phase, the reference nodes of a normal node i are the
anchors. Since E {‘Sij} = dj;, the expectation of the mean-force is

E {Ff”} e Z( i — ) e (24)

where j is the index of the known-location nodes. This equation
implies that the expectation of the mean-force is built upon
the correct measyrements from the known-location nodes. Each
individual force f;; tries to move i to the circle Cj;, having the radius
djj, to minimize its own magnitude (see Fig. 3). As the result, i’s
position converges to the intersection point iy of these circles Gy,
or

E{x} = xi. (25)

(iii) “Estimations of a normal node in phase 2 and phase 3 are
unbiased”.

In these two phases, every normal node has its raw location
estimation and uses all of its reference nodes to better the
estimation. Since the algorithm mainly deals with probability
issues, we not only consider the force effects to be specifically
caused by the nodes but also consider the force effects caused by
sub-areas. We assume that the whole deployed area is divided into
small sub-areas, in each of which the node number is large and the
node distribution is uniform. Fig. 4 illustrates this idea: the actual
positions are the black round nodes, e.g., ko, while the current
estimated positions are the smaller black square nodes, e.g., k. The
solid links between them are the current errors of estimations.
What we want to do here is to prove that even with these errors of
estimations, the balanced position of node i under PPE mechanism
is its actual position ij.

Let the mean force on i caused by the area Si be

- 1 dit — S ik
o= — 3 [ 22 ) = 26
iK n ( Lik dik ( )

kg

~ . = =
E dy, — dy — di.noise;, \ iK :I— Kk . 27)
Lix dik




476 V.-H. Dang et al. / . Parallel Distrib. Comput. 71 (2011) 471-484

NI

Sy, areaaround K/

Fig.4. The force effect of a sub-area on a node is equivalently the force effect caused
by the center position of this sub-area with the correct measurement.

K is the center point of Sk, and n in (26) is the number of nodes
in Sk. In (27), noise;, and Kk are independent of each other and of
dy. dy. E !El?
unbiased. Eq. (27) is rewritten as

— dig —dic \ | =
E{F,K} _E{(m)} iK (28)
Elf) ¢ {(lk—lk)}g (29)
1I<Lik

Assume that the estimation errors of nodes in Sy are small so
that k still has a uniform distribution in Sk, or E {ik} = E {iko}. If
iK = ipK, then E {ikg — igko} = O. Since dyL;, is a positive and
= 0.IfiK > igK,then E{ikg—igko} > 0,and

= 0 since the estimation of the previous phase is

—
bounded value, E {Fi,( }
E {F,K } becomes a pull force with the direction of iK . Conversely, if

—
iK > igK, then E { F,-K} becomes a push force. Hence, the balanced

point of i belongs to the circle C(K, ipK). Combining the effects of
other sub-areas on i, we find that iy becomes the unique balanced
position of i. With the previous proof that PPE leads i to a balanced
point, we can conclude that the estimations of i in phase 2 and
phase 3 are unbiased.

In these two phases, a normal node acts as if it is affected by
forces caused by groups of reference nodes, where each group
plays the role of a beacon. With more reference beacons, phase
2 has a better accuracy of estimation than does phase 1 (see
Section 3.3). In addition, it should be noted that the assumption
that k has a uniform distribution in Si is not a tight one. However,
through iterations, each node updates and achieves a better and
better estimation, so the assumption becomes tighter and tighter.
Consequently, the expectation of the balanced point of a normal
node i is the very ip, and PPE drags i toward iy even when the
current estimations of the reference nodes are experiencing errors.
In other words, one node’s updating is independent of the others’
and global convergence is obtained. This means that the distributed
PPE is a robust convergent algorithm.

3.3. Necessity of PPE’s phases

Raw estimation, i.e. initial input data, is the same requirement
for most successive localizations, unless the Procrustes algorithm
is used [6,4]. Procrustes is the method used in the last module
of localization to fix a flipped or rotated result. However, it
usually needs all of the node location estimations, leading to a
centralized mechanism and the associated problems, which all

b v ;fj,/‘i’”=(fl/"”cost9/,fy"”sin9/)
‘
‘

f(;p)

Fig. 5. (a) The mean-force is not a zero vector at the correct position because
measurements have errors and the number of reference nodes is limited. (b) A force
is decomposed into horizontal and vertical components.

distributed approaches aim to avoid. The raw estimation can be
any one of the low-cost algorithms so far. However, multilateral
localizations have either complicated calculation (localizing the
most likely area) or a high number of anchors [18,21,14,23,8,16].
Contemporary successive algorithms are surely more complex;
in [6], MDS is used to obtain this raw estimation. Clearly, PPE’s
phase 1 plays an important role for the later phases based only on
simple computations. Moreover, by using phase 1, we can utilize
the same hardware and software modules because the structures
of all of three phases are similar. This makes the method more
practical.

In all three phases, if the reference node number is infinitely
large, the node’s balanced position will be at its actual position.
Unfortunately, the limited reference node number Mi(’J ’ and the
errors of measurements make the mean-force non-zero at the
correct position iy, drive i out of iy, and rise PPE's error (see
Fig. 5(a)). Obviously, the larger is the variance of the mean-force’s
magnitude, the larger is the error in the final result. Therefore, to
compare the performances of the three phases, we examine the

—
variance of F,.(p |l at position iy when all of the reference nodes are

at the correct positions.

—>
Fi(P)

Let Fi(P) f(p)

= fi}p) and decompose each in-

dividual force f(p) into components as in Fig. 5(b), so ﬁ(p)
(f(p) cos6;, f;” sin Gj). Remarking that E {ﬁj@] = 0,E {F,.(p)} =
0, (unbiased measurement error and unbiased estimation respec-
tively), and f ® and 0; are two independent variables, we obtain

NG
FP = ( ® Z £P cosé;, (p) Z £ sm91> (30)
2
var (Fi(p)) =E {(Fi(p)> } —E? {Fi(p)} (31)
. 2
®») _ ®) .
var (Fi ) =E (M.(p) qu cos@,)
i J
2
®) g,
(M(p) Z smej) (32)
(f(P))

(p)
var(Fi) _ (33)
(p)
M,.

Eq. (33) implies that the variance of Fl-(p) does not depend on

the directions of the forces caused by neighbors, but only on the
reference node number and the variance of the individual force.
It also guarantees that phase 2 is necessary to improve phase 1's
result, which is obtained only with anchors (Mi(]) < Mi(Z) ).

In order to show the necessity of phase 3 over phase 2, we
compare the variances of the individual forces in these two phases
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because the number of reference nodes in these phases are the
same, Mi(Z) = Mi(3). From (4) and (11), we have

var (f (2)) = var (o (8; — d;j)) = var (azd;;.noise;)
Y Y _
var (fj(3)) = var (013(11']‘-%) = var (oc3d,-j.noiseij) .
ij
Obviously, in each phase, the balanced position of a node is the
same with any «; provided that ¢; is small enough so that PPE can

obtain convergence. Therefore the comparison is meaningful only
when the forces have equivalent magnitudes, or

(34)

Zazdij.noiseij A Za3d7j.noiseg & ay X as. (35)
j J
Then,
var (fj(z)) = o [ [ d,j noise;;) ] —E? {dij.noiseij}]

_ 2
_az[

& var (fj(z)) = o (var (dj) + E* {d;}) var(noisey)
= o3E? {d;j} var (noise;)
+ o var (d;j) .var (noisey) . (37)

l notse,]) } - O] (36)

Meanwhile,

var (fj(3>> = o2d; var (noise;) = o2E> {d;j} var (noisez) . (38)
Egs. (37) and (38) lead to

var (fj(3>> < var (fj(2)> . (39)

The variance of the mean-force is reduced in the refinement
phase. Consequently, the result of estimation in phase 3 is better
than that in phase 2 when the measurement error is proportional
to the real distance. Confirmations are conducted via simulation in
Section 4.3.

3.4. Distributed ability and scalability

In any of the three mentioned phases, PPE works distributedly
in the way that the computation load of localization is divided
into sub-tasks performed by the normal nodes of the network.
Statements proved in Section 3.2 assure the convergence of the
whole result, even if the reference positions are not correct. Hence,
normal nodes do not require synchronized updating while the
localization is being performed. In other words, PPE is a distributed
algorithm.

One important point is that the lack of minor information can
be accepted by PPE. Removed or added nodes will not affect much
a node’s position updating as long as the number of these nodes
is small compared to the number of reference neighbors. The
reason is that each individual force contributes to the mean-force
an amount proportional to 1/Mi(p). Some nodes, including newly
added ones, even do not need to obtain the distances to the beacons
beforehand because they can use the estimated positions of the
reference neighbors. Besides, each node only uses the information
of its nearest anchors and neighbors, so the scalability of a network
using PPE is assured.

In any distributed successive refinement localizations, a node
needs to know its neighbors’ current positions in order to
obtain a higher estimation at every iteration. The communication
cost would significantly increase, whereas network designers
continually try to reduce and replace it with computation
cost. Fortunately, PPE is a good way to soothe the burden of
communication cost. Proven statements guarantee that a node’s
updated result is not affected much by those of others. Hence, it

is unnecessary for a node to send out requests to its neighbors
for reference updated positions after every iteration. Instead, the
communication cost can be reduced when a normal node sends
the request task once after every R internal iterations on it, or in
other words, the task is skipped R — 1 times. We call R the cycle
request number. Consequently, the communication cost decreases
by R-fold.

. C.Cost
PPE_Communication_Cost = 7 (40)

where C.Cost is the total communication cost of the network
when R = 1. This again verifies PPE’s distributed ability and
scalability for practical implementation with light computation
and communication. A simulation set in Section 4.1 shows how
little a node’s iteration result depends on those of the others; and
another in Section 4.3 illustrates the slight trade-off of accuracy for
significant communication cost.

3.5. De-biasing function and RSS scheme

The noise model in this article does not have to be a specific
one which can be represented by a mathematical formula. The
only constraint of the noise model is a zero-mean distribution or
unbiased measurements.

Suppose we have a function g(.) that changes the distribution of
variable §;; into an unbiased distribution of variable g (;) and g(.)
is a monotone increasing function so that PPE can correctly define
the direction of the force, the formula (6), (7) and (8) now can be
replaced by

5% = () -2 (@) & (41)
and

7Y ‘Wg(df) e (42)
g(di;‘)

Phase 3 with (42) is necessary only when the error of g () is
proportional to g (du). In reality, RSS power decays proportionally
to a negative exponent of the distance. As a result, the power error
measured at a receiver is modeled to the log-normal distribution,
Pj ~ N (E {Ps} . 07). We will find the de-biasing function g(.) for

this case:
8ij

Pj =Py — 10logyy | — |, (43)
do

P;j = E {P;} + Pnoise. (44)

P; is the received power in decibels at node i when node j
transmits to i and Pnoise ~ N (O, apz) while Py is the received
power, also in decibels, from a node at a reference distance
dp. In this article, we do not focus on the physical parameter
channel-loss, which is included in the Gaussian variable Pnoise (see
Appendix of [4]), and just use Pnoise for the simulation of the log-
normal measurement model. Rewrite (44):

101ogyq (8;) = 10logy, (djj) — Pnoise. (45)
Even though §; does not have an unbiased distribution over

d;j, 101ogy, (8;) does over 10log;q (d;j). Therefore the de-biasing

function in PPE to deal with the log-normal distribution is g(d) =

10log,(d). Actually, the function g(d) does not need to be

exactly 10log;o(d), but any of the log variations providing that

g(d) is a monotone increasing function and g (8;) = g (dy) +

N (0,07) .t % 0.Then,

g(d) = alog,o(d), aecR". (46)
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For a log-normal RSS scheme, the measurement model is (from
(45))
8,] — dU]OPnOise/lo, (47)

and only the first two phases with (41) are used.

3.6. Details of PPE

As a consequence of all PPE’s characteristics and the related
analysis, PPE for a normal node i now can be described in

details. In this description, T,-j)(p) is defined in (41) and (42);
g(.) is the de-biasing function. We choose g(d) = d if the
distance measurement is unbiased and g(d) = logyyd if it
has a log-normal distribution. R is the cycle request number.

Algorithm 1: Phase 1: Raw estimation

+ Send out requests for nearest anchors’ coordinates x; (at
least three) and the measurements to each.
+ Set the initial position, X; = (1> > Xi-

+ Set the initial moving step a,
+ kM = 0, k™ is the iteration index.

repeat
k<1> = kM —|— 1;
F (1) (1) Z f] ’

(jis the index of the nearest beacons).
if Fi( ) still decreases over the iterations then
| Double a®;
else
Halve aV;
L Stop updating oV;

- - —>
X < x+aVFED;
—
until (kO > k) OR (H F® H < e) :

Algorithm 2: Phase 2: Pre-refinement

+g@ = a(l)

+k® =0, k® is the iteration index.

repeat

if mod(k®, R) == 0 then
Request the current updated coordinates of the
neighbors.
Send out the current self updated position X; to the
neighbors.

k? = k@ —|— 1;

—

F'(z) - (2> Z fj ,

(jis the mdex of all reference nodes).
Xi <~ X, + Ot(z) F; (2),
—
until (k? > k2,) OR (H F® H < e) :

4. Experiment results and discussions

We conduct four main experiments. The first experiment
focuses on PPE’s convergence confirmation; the second tests the
accuracy enhancement of the refinement phase compared with
that of the pre-refinement phase. The third experiment is about
PPE’s ability to reduce communication cost, while the last one
analyzes the performance comparison of PPE with dwMDS and
MLE. We mainly examine a group of nodes to highlight PPE’s
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Algorithm 3: Phase 3: Refinement

ra® — g
+k® =0, k(3) is the iteration index.
repeat

if mod(k®, R) == 0 then
Request the current updated coordinates of the
neighbors.
Send out the current self updated position X; to the
neighbors.

k(3) = k® + 1;
RO = < SIS

(jis the index of all reference nodes).
if Fi@ still decreases over the iterations then
| Double «®;
else
Halve o®;
L Stop updating a«®;

- - —
X —X+aPFE®;
—
until (k@ > k2),) OR (H F® H < e) ;

Table 1
Common parameters used in simulations.

Deployed area [Om, 28 m] x [0 m, 28 m]
Total number of nodes N 196

Number of anchors 4

Distribution over area Uniform

characteristic instead of simulating the whole network with a
very large number of nodes. Each normal node has four reference
anchors and has other normal nodes as reference neighbors.
Table 1 defines the common parameters that we use in all four
experiments. For convenience of demonstration, the values a®
and «® are equal to «V. In this section, the normal nodes are
updated in a random order to show the distributed ability of PPE.

4.1. Verifying the convergence of PPE

This simulation set is aimed at verifying the algorithm’s
robustness in both pre-refinement and refinement phases. We
choose a normal node as the tested node and examine its
movement trend under the force effect of the other normal nodes
in the group after they undergo their raw estimations. The chosen
nodes are tested in two situations: at the corner and in the middle
of the deployed area of the group. The noise;; in this subsection is
Gaussian with o, = 0.4, the largest value in the chosen range.

Fig. 6(a) is the result of the first phase where each normal node
uses anchors to produce its raw-estimation (k;};x = 10). The actual
locations of all nodes are denoted as small dots while the errors are
presented as solid lines. Fig. 6(b) illustrates the convergence image
(or the representation of the movement tendency) of the corner
tested node. Every position on the [—7 m, 35 m] x [—=7 m, 35 m]
grid with a grid step of 2 m (the deployed field is [0 m, 28 m] X
[0m, 28 m])is examined as if it is the current estimated position of
the tested node. From each position, the tested node performs two
successive position updates which are presented by two arrows
to show its movement tendency. The figure shows that the tested
node, at any current estimation and with its reference nodes
suffering from a high degree of error, always moves to the unique
balanced point which is close to its actual position.

Likewise, Fig. 6(c) is the estimation result of all normal nodes
when phase 2 is finished with kﬁ,f;x = 10 and Fig. 6(d) is the
convergence image of the corner tested node with respect to the
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Fig. 6. (a) and (c) are the estimation results at the beginning and ending of phase 2, alternately, the errors of the estimated positions are denoted with solid lines. (b) and
(d) are the movement tendency images of the corner tested node with respect to the estimation results in (a) and (c), alternately when Eq. (7) is used.

estimation result in Fig. 6(c). The errors of all normal nodes are
reduced compared to the result of the raw estimation in Fig. 6(a).
Comparing the two convergence images (Fig. 6(b) and (d)), the
balanced positions of the corner tested node are almost the same.
This confirms the fact that a node’s updating is quite independent
of those of others and this is the basis for the reduction in
communication cost of PPE, as we mentioned in Section 3.4. This
is also true when the tested node is in the middle of the deployed
area, as depicted in Fig. 7. Fig. 7(a) and (b) are the convergence
images of the middle tested node when phase 1 is complete and
when phase 2 is complete, respectively. The movement tendency
of a middle node is straighter and faster than that of a corner node.
The balanced point is still unique and quite independent of the
current estimation result of the reference neighbors.

The movement curve in the convergence images can be
explained by the force effects of the small sub-areas of the
reference nodes. Each of these areas attempts to keep away the
tested node at a distance approximate to the distance from itself to
the balanced point. Therefore, on the way to the balanced position,
the tested node tends to move away from the side on which there
are more reference nodes and creates the movement curve. Figs. 6
and 7 show that if the current estimated position is in the middle

of the group, then the convergence is fast and the movement is
straight. This is why we use the average beacon position as the
initial input position in phase 1.

Phase 3's convergence verification is demonstrated in Fig. 8,
after phase 2 is complete. Fig. 8(a) is for the corner tested node,
and Fig. 8(b) illustrates the middle tested node. It can be seen that
if the current estimated position of the tested node has a large
error, phase 3 still guarantees a correct convergence. The balanced
position is unique and close to the actual position. Although the
number of steps for the tested node to get to the balanced position
is higher, the result of estimation is better. Obviously, all three
phases of PPE guarantee network localization convergence even
when the updates are ubiquitously performed on nodes. In other
words, PPE is a robust distributed algorithm.

4.2. Necessity of the refinement phase when the distance error is
proportional to the real range

In these simulations, we vary the standard deviation of
noisej;, o, and use different distributions for noise; to show
the improvement in the refinement phase over that in the pre-
refinement phase. After the first ten iterations of phase 2, the
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Fig.7. (a)and (b) are the movement tendency images of the middle tested node with respect to the estimation results in Fig. 6(a) and (c), alternately when Eq. (7) is used.
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Fig. 8. (a)and (b) are the movement tendency images of the corner tested node and the middle tested node, alternately at the start of phase 3 in which Eq. (8) is used.

comparison between phase 2 and phase 3 occurs in the next 20
iterations. Apparently, the analysis in Section 3.3 is verified with
the lower RMS error (see (12)) for phase 3 as shown in Fig. 9.
Higher accuracy is gained with a very simple but efficient step
which eliminates the distance factor from the force model.

Fig. 10(a) displays the average error result of 20 trials when
phase 3 is used and not used after the 10th iteration. Gaussian,
Rayleigh, and Uniform distributions for noise; are used, and 30
total iterations take place after the completion of phase 1. Although
Uniform distributions for noise;; are not appropriate in reality, we
use it to emphasize that PPE does not depend on any specific
distribution. Meanwhile, Fig. 10(b) plots the percentage of the
improvement of phase 3 over that of phase 2. Generally, the error
reduction is around 26%, a significant improvement. Fig. 10(a) does
not only demonstrate the linear relation between the standard
deviation o, of noise;; and the RMS error of the solution, but also
the independence of the result on the distribution of noise;;. These
consequences are consistent with (33), (37) and (38), in which the
variance of the mean-force is linearly proportional to the variance
of the individual force and does not depend on the distribution of
the individual force. This independence is an important advantage

—=—Phase 3
0.9 ——Phase 2

log10 of RMS Error (log10(m))
o
=

Number of iterations

Fig. 9. RMS error of the estimated position over 30 iterations, the curve with
diamonds represents the result of using the pre-refinement phase only while the
curve with squares represents the result of refinement phase after ten iterations.
Error is in log10 of meters.

point of PPE whereas other successive refinement methods like
MLE [6,20] or MDS variations [2,1,4] depend strongly on the noise
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Fig. 10. Error and accuracy improvement over oy, (a) Result error with and without refinement phase. (b) Percentage of improvement when the refinement phase is used.
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Fig. 11. Illustration of communication cost reduction when the cycle request number R = 1, 2, 3,5, 6, and 10, alternately.

model. For these approaches, the formula of the measurement
error distribution must be known in order to derive the formula of
the result error and then to find the calculation to force this error
to a minimum.

4.3. Communication reduction

This experiment is performed to examine the ability of PPE
to reduce communication cost. Each sub-figure in Fig. 11 is the
average result of 20 trials, with the total iteration number of
each trial being 30 (iterations of phase 1 are not included). The
sub-figures correspond to the different cycle request values R: 1,
2, 3, 5, 6, and 10. Fig. 11 again shows that the convergence of
PPE is quite independent of the current position at the reference

nodes. Apparently, achieving high accuracy incurs a trade-off of
the number of iterations and the communication cost. Nonetheless,
it is worth reducing the communication cost, the most critical
cost, especially when the trade-off error increases insignificantly
as in Fig. 12. Increasing the cycle request number R is very
efficient when this number is not very high (2, 3 or 5). The RMS
error then increases insignificantly (0.94%, 1.52% or 3.2%) while
the communication cost decreases remarkably (50%, 75% or 80%)
compared to the error when a data exchange occurs with every
node position update (R = 1). Even when the number of internal
iterations between two successive data exchanges is 9 (R = 10),
the error would increase only 17.1%. Hence, based on the specific
requirement of designed networks in terms of communication cost
and accuracy, an appropriate R can be chosen.
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Fig. 12. Cost communication and final RMS error over the number of iterations.
“C.Cost” is the maximum communication cost when the cycle request number R is
1.

4.4. Comparison to MLE and dwMDS

The contemporary popular MLE and dwMDS methods aim to
minimize the stress function [2,6]

N-1 N B
S=>" ) wydy—8)°, (48)

i=1 j=it1

where wy; is the weight value.

For the dwMDS (distributed weighted Multi Dimensional
Scaling) simulation, we rely mainly on Costa’s paper [2] and
a part of the Matlab code available on Patwari’s website [12]
to solve our problems and compare the results with our PPE’s.
For MLE (Maximum Likelihood Estimation), the updating method
is the nonlinear conjugate gradient. dwMDS is actually a two-
step method in which the first step is raw estimation, and the
second is refined estimation. However, the convergence time of
this algorithm is large; the result of the first step suffers from
negative estimation (the estimated positions make the deployed
area look shrunk); and the accuracy is poor especially when the
measurement error has the log-normal model. Meanwhile, MLE’s
estimation would hardly converge with random initial positions of
the normal nodes. Therefore, we take the output of PPE’s phase 1 as
the raw estimation inputs for both MLE and dwMDS although this
unbiased estimation is one of the important advantages of PPE over
other algorithms. Especially for the case of log-normal distance
error, we use the actual positions of all nodes as the input for the
second step of dwMDS so that the simulation time is smaller and
the accuracy is higher. Even so, the simulation results illustrate that
the performance of PPE is superior to those of the other methods.

4.4.1. Measurement error proportional to the real distance case

The measurements are generated according to the noise model
in (2) where noise;; is Gaussian for comparison purpose. o, varies
from 0.1 to 0.4 in intervals of 0.05, as in Fig. 13. We use the same
set of actual node positions, and with each value of o,,, we create
20 sets of measurement data based on the error distribution. For
dwMDS and MLE, the algorithms stop if the maximum iteration
number reaches 80 or if the average updating change of the stress
function is less than 10~4. The stop conditions for PPE are kg;x =
10, kfﬁ;x = 10, kfﬁ;x = 30, or the movement distance is less than
10~* m. Fig. 13 shows that PPE gives the lowest RMS error at every
value of o,,. This means that PPE has a better performance even
when dwMDS and MLE use the unbiased raw estimation of PPE’s
phase 1. Moreover, PPE also attempts to eliminate d; from the
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Fig. 13. RMS errors of different methods over the standard deviation o, of noise;;,
for the error model in Eq. (2).

Table 2
Computation cost.

Multiplications per iteration Iteration number

dwMDS 3(mM?)? + 13mP 80
MLE M2 +3M® s Iter, 52
PPE 5 Mi(3> 40

error, turning the variance of dj.noise; into the smaller variance
of ?U.noiseﬁ (see (39)). As a consequence, the accuracy of PPE in the
range-based scheme whose error of measurement is modeled in
(2) is better.

Table 2 shows the approximated computation costs of each
normal node for three methods in the simulation. The values in the
second column are the approximated numbers of multiplications
in one iteration. We consider a square-root operation as a
multiplication and ignore several extra multiplications outside the
loops. The values in the third column are the average numbers of
iterations necessary to produce the final result when the input data
is the raw estimation. Iterg is the extra number of iterations used
in MLE for computing the line search optimization. The average
of this number or mean(lItery) is 5.6. Table 2 also shows that PPE
requires fewer iterations than do dwMDS and MLE to reach a better
result. In other words, PPE needs less of both communication and
computation costs even when the cycle request number in this
simulation is 1.

4.4.2. Log-normal distribution for the measurement error case

For this part, sets of measurements modeled in (47) are used
instead of those in (2). o, is the standard deviation of Pnoise
and it is varied from 1 to 4 in increment of 0.5. We repeat that
with log-normal error model, only two first phases of PPE with
the de-biasing function log;,(.) are used. MLE has the same stop
condition as in the previous experiment while PPE stops at k;};x =
20, l<§§;x = 40, or when the movement distance is less than 104 m.
It should be noted that the input data for PPE does not include the
information of normal nodes’ locations, while dwMDS uses the real
node positions as the raw input and MLE uses PPE’s raw estimation
provided by phase 1. Therefore, for dwMDS, we set the maximum
number of iterations to be 20 in this case because a small value
of this number leads to small final error. However, it can be seen
in Fig. 14 that dwMDS gives the worst error compared to those
of PPE and MLE which have equivalently good results at small op,.
Although MLE has the best result when o, = 1, MLE’s accuracy
decreases faster than that of PPE while PPE’s error maintains a
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Fig. 14. RMS errors of different methods over the standard deviation o, of Pnoise,
for the error model in Eq. (47).

linear relation with o, when oy, is large (o, > 3). Obviously, MLE
is more sensitive to the big log-normal noise. Even with the same
raw estimation, and when the stop conditions are tougher for high
accuracy, MLE is not as good as PPE when o, increases. It is known
that large values of o,, are the case of the practical implementation,
especially for indoor settings.

5. Conclusions

Localization problems in WSNs include numerous challenges
for network designers in terms of accuracy, low-cost computation,
low-cost communication, distributed ability, scalability, etc. In this
article, we introduced a new method, the Push-pull Estimation,
which has many advantages that localization solvers aim at. Each
normal node, with the range measurements to its reference nodes
and the current estimated distances, models the differences to
forces and then moves under the effect of these forces. The
algorithm which relies mainly on geometry is not based on
available mathematical methods, such as MLE, MDS, Particle Filter,
etc. As a result, we have to pay more attention to analyzing
and proving most of PPE’s characteristics as well as its related
problems. Simulation experiments do not only confirm the above
analysis, but also show that PPE is a robust distributed algorithm
with very simple calculations and a low communication cost.
This cost can even be reduced considerably with an insignificant
accuracy trade-off by increasing the cycle request number.
Furthermore, the method has a flexibility to deal with different
unbiased distributions of measurement error, especially when the
error depends on the actual distance or when the error has a log-
normal distribution. If the measurement error is unbiased and is
proportional to the actual range, PPE’s result is better than that
of the popular successive refinement representatives MLE and
dwMDS. With the log-normal distribution of the measurement
interfered by noise, PPE is far better than dwMDS in terms of
computational cost and accuracy. It is also more robust than MLE,
particularly if the power error has large variance, even when MLE
uses its raw estimation as the input. Moreover, PPE needs neither
complex calculations for these initial data nor final corrections
like the re-scaling Procrustes algorithm to improve result accuracy,
thus the calculation and communication are reduced and simpler.
Therefore, PPE is a very good localization candidate to WSN
designers.
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Appendix

Main parameters

i,j, k: nodes’ names, also used as the index related to the nodes.
ig, ko: actual position of node i, node k.

N, n, m: total number of nodes, number of normal nodes and
number of anchors respectively, N = n 4+ m.

x;: true position of node i, x; € R?.

X;: current estimated position of node i, X; € R?.

dy: actual distance from x; to x;.

djj: current calculated distance from &; to &;.

d;;: measured distance, or measurement from node i to node j
which is estimated by the network and serves as the input for
PPE algorithm.

p: index of PPE’s phases; p = 1,2 or 3.

T,-j)(p): individual force caused by j on i. T,j) ‘
defined in Eqgs. (6), (7) and (8) respectively.
e/ : unit vector pointing the direction from &; to X;.
€ = aii,(f(j —Xp).

) =) —3)
,fy ,and fj are

F; (p): the mean-force, defined in (4).

M;®: number of node i's related nodes. M;? is number of i's
related beacons, M;® is number of both i's related beacons and
i's neighbors, and M;® = M;®.

a®: movement rate.

Ly: variable defined in (10) to unify the form of T,J) @ for
statement (iii)’s proof.

J, K: center points of sub-areas.

(ui, vi), (uj, vj): positions of node i and node j in the coordinate
system uOw.

—
(AF,, AF,): coordinate of AF; in the coordinate system uQv.

— . . =D, R

F; : variable replacing F;  in statement (i)’s proof.

Pjj, Pnoise: received power (dB) and error power (dB) at i
respectively when j transmits.

g(.): de-biasing function.

k® I<§§;X: iteration counting variable and it maximum value at
phase p.
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