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Ambulatory Monitoring of Activities and Motor
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Abstract—Ambulatory monitoring of motor symptoms in
Parkinson’s disease (PD) can improve our therapeutic strategies,
especially in patients with motor fluctuations. Previously published
monitors usually assess only one or a few basic aspects of the cardi-
nal motor symptoms in a laboratory setting. We developed a novel
ambulatory monitoring system that provides a complete motor as-
sessment by simultaneously analyzing current motor activity of the
patient (e.g., sitting, walking, etc.) and the severity of many aspects
related to tremor, bradykinesia, and hypokinesia. The monitor con-
sists of a set of four inertial sensors. Validity of our monitor was
established in seven healthy controls and six PD patients treated
with deep brain stimulation (DBS) of the subthalamic nucleus. The
patients were tested at three different levels of DBS treatment.
Subjects were monitored while performing different tasks, includ-
ing motor tests of the Unified PD Rating Scale (UPDRS). Output
of the monitor was compared to simultaneously recorded videos.
The monitor proved very accurate in discriminating between sev-
eral motor activities. Monitor output correlated well with blinded
UPDRS ratings during different DBS levels. The combined analysis
of motor activity and symptom severity by our PD monitor brings
true ambulatory monitoring of a wide variety of motor symptoms
one step closer.

Index Terms—Activity classification, ambulatory monitoring,
bradykinesia, Parkinson’s disease (PD), tremor.

I. INTRODUCTION

P ARKINSON’S disease (PD) motor symptoms mainly consist
of progressive bradykinesia, tremor, hypokinesia, rigidity,

and impaired postural control. The patients are usually treated
with drugs, but some are additionally treated with deep brain
stimulation (DBS). To optimize therapies, it is essential to know
how much the symptoms are suppressed by treatment. Currently,
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the specialist assesses the effect on the symptoms by taking the
history and by performing clinical examinations (e.g., the Uni-
fied PD Rating Scale – UPDRS). These procedures cover only
a short episode of the patient’s condition, in spite of the fact that
symptoms often fluctuate significantly within and between days.
Patients sometimes keep diaries to record motor fluctuations,
but these are subjective and influenced by subject inaccuracies.
Clinical observation of fluctuations by medical staff is time con-
suming and not always representative since the clinical environ-
ment is unfamiliar and sometimes rather stressful to the patient.
In addition, the demand on healthcare is growing rapidly, i.e.,
the number of PD patients worldwide is predicted to increase
from 10 million in 2000 to 40 million patients in 2020 [1]. For
these reasons, an objective monitor performing both long-term
and ambulatory measurements of symptom severity is needed.

Ambulatory monitoring of PD, studying tremor, bradykinesia,
and hypokinesia with kinematic sensors has been widely stud-
ied over the past decades [2]–[5]. However, these studies usually
only consider a few basic aspects of the complex symptomatol-
ogy. When assessing tremor, rest and kinetic tremor should be
treated as separate phenomena [6], [7]. Nevertheless, in previ-
ous studies they are usually quantified as a single symptom. In
addition, only rest tremor in the arm is commonly evaluated,
even though tremor in the leg and upper body can also be sig-
nificant in PD [6]. Bradykinesia and hypokinesia are generally
assessed by looking at arm activity. These symptoms, however,
also impair walking, and cause decreased step length and veloc-
ity, increased variation in step length, and reduced arm swing.
Another major problem in PD patients is standing up from a
sitting position. Thus far, only Salarian [5] has attempted to use
additional measures retrieved during posture transitions.

The PD monitor, presented in this paper, is able to perform
both long-term and ambulatory measurements to assess patients
objectively. Whereas previous monitors only assess a few as-
pects of motor symptoms, our PD monitor performs a detailed
analysis of multiple symptoms and provides a complete as-
sessment of tremor, bradykinesia, and hypokinesia. On top of
that, the use of an activity classifier (AC) within a PD moni-
tor is proposed to differentiate between lying, sitting, standing,
standing up, and walking. This enables the complete analysis of
motor symptoms and the possibility for direct implementation
into an ambulatory environment. The AC is essential for these
applications: For instance, to compute step length, the activity
‘‘walking” should be classified first. In addition, when an ac-
tivity without arm movement is detected, rest tremor in the arm
can be evaluated, but when arm movement is detected, kinetic
tremor can be evaluated.

0018-9294/$26.00 © 2010 IEEE
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The AC has hardly been studied in combination with the PD
monitors, even though it is essential for a complete ambulatory
assessment. Salarian [5] incorporated an AC into a PD monitor-
ing system, but used it only for the determination of on and off
periods. In addition, Dunnewold et al. [10] used an AC, but they
only considered static activities and they assessed just a few
basic aspects of PD motor symptoms. In contrast, the AC itself
has been a subject of research for a long time [8]–[14]. Methods
have been proposed for the discrimination of static from dy-
namic activities using the alternating current component of an
acceleration signal [8], [9]. Within the static activities, posture
detection can be performed by assessing the direct current com-
ponent of the acceleration signal [8], [10]. Considering dynamic
activities, it has been proposed that detection of walking is pos-
sible by analyzing signal morphology [8], peak detection [11],
or the frequency domain entropy [12].

In this paper, we studied a new ambulatory monitoring sys-
tem that combines several algorithms to classify current motor
activity and symptom severity simultaneously. This combined
detection of motor activity and symptom severity yields a moni-
tor that is truly ambulatory, in a way that it provides easily inter-
pretable data even when used in the patient’s home environment.
A preliminary version of this paper has been reported [15].

II. METHOD

A. Experimental Setup

Six PD patients (age 54–68) treated with DBS in the sub-
thalamic nucleus took part in the experiments. We chose to use
patients with DBS in order to test whether our PD monitor was
responsive to instantaneous changes in symptom severity within
subjects. Patients were included when they had good clinical
results with DBS and responded within 5 min to changes in
stimulator settings. Furthermore, they had to be able to fully
cooperate with the experiments, show no major symptom fluc-
tuations due to medication, and not suffer from dementia or
dyskinesias. As a control group, seven healthy subjects (age
53–61) were also included. The study protocol was approved by
the local medical ethical committee and all subjects gave written
informed consent after a thorough written and oral explanation
of the experimental setup.

The patients were measured under three conditions. Condi-
tion 1 (“on”): Stimulator at the optimal settings (as determined
previously by the treating physician). Condition 2 (“interme-
diate”): Stimulator at a stimulation amplitude of 80% of the
optimal setting. Condition 3 (“off”): Stimulator off. The mea-
surements started 15–30 min after the adjustment of the DBS.
The healthy control group was measured in one condition, their
healthy state. During each condition, the subject was asked to
perform certain daily tasks and UPDRS motor tests in a ran-
domly predefined order. Each task was repeated two times, ex-
cept for the tasks related to standing up. These tasks were each
repeated three times. The daily tasks included: sitting quietly
for 30 s; sitting while rapidly tapping three predefined spots
forming a triangular shape on a table using the most affected
arm for 20 s; transition from sitting to standing (UPDRS motor
score item 27); transition from sitting to standing and walking

Fig. 1. Schematic representation of the experimental setup. The subject wore
four inertial sensors placed on the wrist, thigh, and foot of the most affected
site and on the sternum. The sensors were wired to the ‘‘Xbus master,” which
provided power, collected, and sent data to the laptop via bluetooth. The patient
was also videotaped.

(the timed-up-and-go test); walking for 30 s (UPDRS item 29);
standing still for 30 s; standing while picking up, drinking, and
returning a cup of water; standing while moving a bottle of wa-
ter from one spot to another; lying down on a bed for 30 s. In
addition, the following UPDRS-III motor tests were assessed:
rest tremor of the arm and leg (UPDRS item 20); postural tremor
of the arm (UPDRS item 21) and kinetic tremor while touching
the nose and researcher’s index finger alternately using the most
affected arm; rapid pronating and supinating movements for
20 s (UPDRS item 25); foot tapping for 20 s (UPDRS item 26).

During all these tasks, motor activity was measured using
four MT9 inertial sensors (3-D accelerometers and 3-D gyro-
scopes, Xsens Technologies BV, Enschede, The Netherlands).
The sensors were placed on the trunk and wrist, thigh, and foot
of the most affected side of patients and the dominant side of
the control group (see Fig. 1). A 50 Hz sample frequency was
used. The Xbus master, worn around the waist, sent the data
from the sensors to a laptop via bluetooth. The activities of the
subject were videotaped. The video recording was of a satisfac-
tory quality, i.e., resolution of 720 × 576 pixels and a rate of
25 frames/second [16]. Using this video, actual activities were
visually determined as a gold standard to which the PD moni-
tor’s AC output was compared. The physician, who was blind
to stimulator settings, also used this recording to score a subset
of the UPDRS [6] during each of the three conditions. Louis
et al. [17] showed that videotaped UPDRS motor examination
is a sufficiently accurate alternative to in field studies.

B. Data Analysis

Our PD monitor used a three-step approach. First, the raw
signal was preprocessed. Second, the AC evaluated the current
motor activity of the patient for each measured second (e.g.,
sitting still, sitting while moving the arm, standing, etc.). Third,
the motor symptom monitor (MSM) determined the severity of
the motor symptoms, i.e., tremor, bradykinesia, and hypokine-
sia. Fig. 2 shows the general structure of the PD monitor. The
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Fig. 2. General structure of the PD monitor. Body motion is measured by the
inertial sensors and the raw motion signal is preprocessed. The AC first extracts
features, which are used by the classifier to determine the activities (see Fig. 3).
After the AC, the information is split into two data streams of the MSM, one
for tremor and one for bradykinesia and hypokinesia. Dependent on the activity,
certain features are extracted and tremor detection is performed. When tremor
is present, the tremor severity is determined (see Fig. 4). In the second data
stream, bradykinesia and hypokinesia severity are determined (see Fig. 5).

next three paragraphs describe each step of the PD monitor’s
approach.

1) Preprocessing Algorithm: The raw signal was expressed
in sensor coordinates (ss ). As information in the body coordinate
system was needed, the signal had to be converted from sensor
to body coordinates (sb ). This was done using a rotation matrix
(Rbs) (1), as previously proposed by Luinge et al. [18]. Briefly,
the calibration procedure of the sternum sensor was as follows.
First, the subject stood upright. During this, the body z-axis was
equal to the gravity vector and could be expressed in the sen-
sor coordinate system. Second, the trunk was bended forward
around the hip-axis being the body y-axis, by which this axis
could be expressed in the sensor coordinate system. The body y-
and z-axis were cross-multiplied to obtain the x-axis. The bend-
ing task was repeated three times. The thigh and foot sensors
were calibrated starting in a sitting posture. Subsequently, they
were lifted while turning around the hip-axis (thigh) and knee-
axis (foot). Finally, the arm was laid horizontally on a table and
lifted while turning around the elbow-axis

�sb = Rbs�ss. (1)

After this, the contents of the raw sensor signal were analyzed,
namely, acceleration (a), gravity (g), offset (o), and noise (n) (2)

�sb = �ab − �gb + ob + nb. (2)

To obtain the acceleration signal, all other signal components
were removed. First, a second-order low-pass Butterworth filter
with a cut-off frequency of 23 Hz (Hlpf 1) reduced high fre-

quency noise (3)

�sb,1 = Hlpf 1 (�sb) ≈ �ab − �gb + ob . (3)

Assuming that there were no fast orientation changes of the sen-
sor and, thus, no fast changes in the direction of gravity, gravity,
and offset were estimated by low-pass filtering the signal. For
this purpose, a second-order low-pass Butterworth filter having
a cut-off frequency of 0.25 Hz (Hlpf 2) was used. Subtracting
this low-pass filtered signal from the original signal, which had
already been compensated for high-frequency noise, provided
the acceleration (4)

�sb,2 = �sb,1 − Hlpf 2 (�sb,1) ≈ �ab. (4)

The acceleration signal (ab ) was essential for further analysis.
Furthermore, the low-pass filtered signal (Hlpf 2(sb ,1)) was use-
ful for the estimation of body inclination. The inclination is
defined as the angle of the body axes relative to the global ver-
tical. As the direction of gravity equals the vertical axis in the
global space, the orientation of the body relative to the global
vertical is known when the gravity vector in the body system is
known. Luinge et al. [19] showed that, although a better method
exists, the low-pass filtered signal still gives a good estimate of
the inclination. The average error of sensors placed on the trunk
and pelvis was 3◦ with reference to an optical tracking system,
with an increasing error with movement speed. Especially dur-
ing slow movements, which are often present in PD, this method
is useful. As calibrated signals were obtained from the Xsens
software, the offset was negligible and therefore, the low-pass
filtered signal was a good estimate of the inclination.

2) Activity Classifier: The AC uses the concept of a decision
tree (see Fig. 3). The following features were used on the par-
ticular nodes. Node 1 used the Integrals of the Absolute value
of the Accelerometer output (IAA, (5), [9]) to detect whether
the person was performing a static or dynamic activity

IAA =
1
t

(∫ t

0
|ax | dt +

∫ t

0
|ay | dt +

∫ t

0
|az | dt

)
. (5)

The acceleration (a) of the thigh sensor was used in (5). As this
feature sometimes missed slow movements (i.e., <0.25 Hz),
which are especially present in PD patients, a second feature
was introduced in this node. This feature identified the change
in thigh inclination per second (t = 1 s), i.e., the difference in
value of the inclination signal between one second and the next.
When the difference was above a threshold, a dynamic activity
was also recognized.

Node 2 was used to differentiate an upright trunk position
from a horizontal one. This was accomplished by using the
trunk sensor, assessing the inclination of the trunk [8]. The
same principle was applied on node 4 using the thigh sensor,
which distinguishes standing from sitting by assessing the thigh
inclination. In node 6, active arm movement (AAM) was de-
tected by determining the IAA of the acceleration measured in
the wrist sensor.

The other branch of the tree considered the dynamic activi-
ties. Node 3 detected standing up, which was defined when the
following sequence of events was recognized. First, the sub-
ject’s thigh had to be orientated horizontally in global space.
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Fig. 3. Schematic overview of the decision tree for the classification of
activities. The differentiation made in the binary decision nodes (BDN).
BDN 1: Discrimination of static from dynamic activities. BDN 2: Discrimina-
tion of an upright from a lying posture. BDN 3: Discrimination of “sit to stand”
from other possible motions. BDN 4: Discrimination of sitting from standing.
BDN 5: Discrimination of dynamic activities in a standing posture from all other
dynamic activities. BDN 6: Discrimination of postures with and without AAM.
BDN 7: Discrimination of walking from all other “active standing” activities.

Subsequently, an inclination change had to be present. For this
purpose, a feature representing the change of inclination in the
thigh over 1 s was used. During the inclination change, the orien-
tation of the thigh had to be changed to a vertical one. A vertical
orientation was defined using the same parameters as node 4. Fi-
nally, nodes 5 and 7 differentiated walking from other dynamic
activities. Node 5 checked whether the orientations of the thigh
and trunk were upright. Node 7 applied a method for walking
detection based on, but not similar to, a method proposed by
Najafi et al. [11]. First, a peak detection algorithm was applied
on the acceleration signal measured on the foot, which was fil-
tered below 5 Hz using a second-order Butterworth filter. Only
sufficiently high peaks, thus, peaks above a certain threshold
(determined during the algorithm’s training procedure), were
detected. Successive peaks with intervals of 0.25–2.25 s defined
potential steps. Two successive potential steps defined walking.

3) Motor Symptom Monitor a) Tremor: Two types of tremor
were evaluated, namely, rest and kinetic tremor. Arm rest tremor
was only determined when the arm was not moving, thus, when
the activities sitting or standing without AAM were identified
by the AC (see Fig. 4). In contrast, arm kinetic tremor was only
evaluated when sitting and standing with AAM were classified.
Furthermore, thigh and trunk rest tremor were quantified during
the entire sitting and standing time, i.e., sitting and standing
with or without AAM (as the thigh and trunk were not moving
during these activities).

For rest tremor evaluation, the acceleration was first filtered
between 3.5 and 9 Hz [20] and subsequently windowed using a
Blackman window. The window had a length of 3 s and it was
shifted over the data each second. Subsequently, the frequency
spectrum of each window was computed using fast Fourier trans-
form. In the spectrum, the dominant frequency was determined.
When the power of this frequency was sufficiently high, the
tremor was identified. During the training of the algorithm, the

Fig. 4. Schematic overview of the detection and quantification of tremor. The
middle boxes in light gray show the current activity. Dependent on the activity,
different types of tremors are analyzed, resulting in scores for the different types
of tremor.

threshold for tremor detection was determined per activity, i.e.,
sitting and standing without AAM, separately. Tremors detected
in isolated windows were rejected. After this, the rms values
(intensity) of the signal in all directions within the positively
labeled windows were computed, as well as the percentage of
time during which the tremor was present. The intensity (i) and
the duration (d) of tremor together quantified tremor severity
(TS) (6)

TS = i
√

d (6)

where TS was computed for all axes of the 3-D acceleration. The
TS values of each axis separately, of each possible combination
of two axes, and the three axes combined were computed. The
combined axes were calculated using Pythagoras. This gave a
total of seven different combinations of which the one that best
quantified tremor was determined per body part. How well a
parameter quantified tremor was tested by computing the corre-
lation between the parameter and the UPDRS 20 scores.

A different method was used to evaluate kinetic tremor, be-
cause this type of tremor occurs during limb movement. This
movement interferes with the previous tremor detection ap-
proach. First, a second-order Butterworth filter filtered the ac-
celeration signal between 3.5 and 12 Hz [20]. Subsequently, the
signal was windowed using 3-s Blackman windows, and slid
over the data each second. For each window, the periodogram
was computed. From the periodogram, the first- and second-
order moment were calculated. Before the moments could be
calculated, the total energy (Ex ) of the signal had to be calculated
using the Fourier transformed signal (X(f)) (7). The frequency
(f) is normalized by the sample frequency

Ex =
∫ 0.5

f =0
|X (f)|2 df. (7)

The total energy was subsequently used to normalize the mo-
ments. The first-order moment (fm 1) determined the mean
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Fig. 5. Schematic overview of the quantification of bradykinesia and hypoki-
nesia. The upper and lower boxes in light gray show the current activity. The
white boxes represent the features that are extracted during these activities.
Bradykinesia and hypokinesia are characterized using multiple parameters. The
wide variety of parameters assessed provides a detailed analysis of bradykinesia
and hypokinesia. acc = acceleration; corr = correlation.

frequency [21] (8)

fm1 =
fs

Ex

∫ 0.5

f =0
f |X (f)|2 df (8)

where fs represents the sample frequency. The second-order mo-
ment (fm 2) represents the variance in frequency, which provides
a measure of spectral spread (standard deviation of the mean).
This parameter is an indication of the bandwidth of the signal
about the mean frequency. Equation (9) shows the computation
of this parameter [21]

fm2 =
fs

Ex

∫ 0.5

f =0
(f − fm1)

2 |X (f)|2 df. (9)

The variance of the frequency was used to define whether the
power was concentrated in a small frequency band around the
mean frequency, which is the case for PD patients [22]. Kinetic
tremor was detected when the value of the variance was beneath
a certain threshold. The severity of the kinetic tremor was quan-
tified by computing the percentage of time that kinetic tremor
was observed. The amplitude was not used as a measure, because
ordinary movement too heavily influenced this parameter. The
variance of frequency (9), which is used to compute the percent-
age of time with kinetic tremor, is also influenced by ordinary
movement, i.e., this parameter is increased by about 50% when
ordinary movement is present in comparison to periods without
movement. However, the average variance of frequency during
periods of movement with tremor, i.e., 0.073 ± 0.027, still dif-
fers significantly from the value during periods of movement
without tremor, i.e., 0.090 ± 0.031 (P < 0.01).

3) Motor Symptom Monitor b) Bradykinesia: Since bradyki-
nesia manifests in many ways, several aspects of this phe-
nomenon were assessed (see Fig. 5). The average value of accel-
eration represents the slowness of the movements. To obtain a
meaningful parameter related to bradykinesia (and not hypoki-
nesia), the average arm acceleration was only computed during
periods with AAM. Because bradykinesia affects walking, pa-
rameters related to step length and step velocity were extracted
during this activity. It had previously been demonstrated that
the walking velocity decreases with a reducing step length [1].

Another feature of bradykinesia is the difficulty experienced
during standing up [5]. Therefore, the duration of standing up
and a range of movement parameters were extracted during this
activity (see Fig. 5).

Step velocity and length were computed using an accelerom-
eter and gyroscope placed on the foot. The validated algo-
rithm proposed by Sabatini et al. [23] was applied for this
purpose. Step length and velocity were normalized according
to leg length. The length of the inside leg was measured man-
ually using a ruler. Parameters related to standing up were ex-
tracted from the low-pass filtered trunk accelerometer signal us-
ing a second-order Butterworth filter with a cut-off frequency of
0.65 Hz [5]. This provided information about the inclination
change in the upper body. From this signal, the transition du-
ration was obtained by calculating the time between the two
subsequent negative peaks [5]. The minimal trunk acceleration
was defined by the peak with the highest negative value. Finally,
the difference between the value of this same negative peak and
the highest positive peak defined the range of trunk acceleration.

Finally, the average acceleration due to arm movement was
computed during standing and/or sitting with AAM. This pa-
rameter was calculated by combining the 3-D acceleration using
Pythagoras and subsequently taking the rms value. Previous to
this, the acceleration was low-pass filtered below 3 Hz with a
fourth-order Butterworth filter, to remove movement due to the
tremor [20].

4) Motor Symptom Monitor c) Hypokinesia: Hypokinesia
is characterized by the poverty of movement. This can be
studied by assessing how much a patient moves his arms,
which was defined by the time during which the arm was
moving as a percentage of the entire sitting and/or stand-
ing time (see Fig. 5). The arm movement was studied af-
ter movement due to tremor was filtered off using the
same procedure as applied in the bradykinesia evaluation.
Hypokinesia also presents as diminished arm swing during
walking [1]. In healthy people, the arm moves forward as the
thigh moves backward and visa versa, which provides a high
correlation between both in healthy people. However, when
arm swing becomes random and there is a changing phase be-
tween arm and thigh swing, correlation decreases. As arm swing
occurs slowly, it can be assessed by studying the acceleration
signals below 1 Hz. Therefore, the correlation between the low-
pass filtered (<1 Hz) acceleration signals of the arm and thigh
were computed during walking. Furthermore, the amplitude of
the arm swing diminishes in PD. For this reason, the average
acceleration due to arm movement during walking was assessed.

C. Training the Algorithm

Training was performed to define the threshold values to be
applied in the algorithm. These thresholds were needed for
activity and tremor detection. During the training procedure,
the activities determined by the algorithm while using differ-
ent threshold levels, were compared to the activities defined by
manual labeling of the video data. Manual labeling of the video
data was performed per second during which both the current
activity and the presence of tremor were determined.
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The training was achieved using the leave-one-subject-out
approach [24]. This method keeps training and test data strictly
separated. The training set was created out of all subjects except
one. This ‘‘excluded” subject was used as the test set and was,
thus, used to evaluate the performance of the PD monitor. This
was repeated five times. During each time, the training set was
composed of another combination of five subjects and the test
set was composed of the ‘‘excluded” subject. The results of
subjects were combined to obtain the overall evaluation of the
PD monitor.

D. Statistical Analysis

To assess the performance of the AC and tremor detection,
the accuracy, the ability to correctly classify each window, was
computed. Equation (10) shows the formulae used for the com-
putation of accuracy, TP = true positives, TN = true negatives,
FP = false positives, and FN = false negatives

accuracy(%) =
TP + TN

TP + TN + FP + FN
· 100 (10)

Furthermore, the PD monitor’s ability to accurately score symp-
toms was assessed by comparing its output scores for the symp-
toms to the UPDRS scores given by the physician after analyzing
the video data. This relation was quantified by the between-
subject Spearman rank correlation. Finally, the use of the PD
monitor to optimize treatment was assessed by analyzing its
ability to discriminate different settings of the stimulator. This
was assessed by a repeated measures ANOVA test and a subse-
quent Tukey test.

III. RESULTS

A. Preprocessing

The inclination estimate was compared to the one of the Xsens
softwares. They report a rms of 3◦, while using the accelerom-
eter, gyroscope, and magnetometer. We used the accelerometer
only, to reduce the amount of sensors for future ambulatory use.
Our estimation differed by 1.9◦ from the Xsens estimate.

B. Activity Classifier

The manually (video recordings) and automatically labeled
activities were compared. Fig. 6 gives an example of one PD
patient’s trial. Table I gives the results of a test of the AC’s
ability to classify activities in PD patients. The AC achieved an
overall accuracy of 98.9%.

Data of a healthy population were also used for training and
evaluation of the AC. This gave slightly better results, namely, an
overall accuracy of 99.3%. Especially, the activities walking and
AAM during standing were detected better in healthy subjects.

C. Motor Symptom Monitor—Tremor

Rest tremor detection was performed with an accuracy of
84.5% during sitting and 94.1% during standing in the arm,
while it was 79.1% during sitting and 90.1% during standing in
the thigh. Kinetic tremor in the arm detection had an accuracy
of 78.7% during sitting and 81.7% during standing.

Fig. 6. Results of the AC. The figure shows manually and automatically
labeled activities for one person during a 400 s during trial. The upper graph
presents the activities labeled by the AC. The lower graph shows the manually
labeled data using the video recordings. The manually labeled data act as a
control for the automatic labeling of the AC. The activities determined by the AC
show great similarity to the manually labeled data. During the encircled activity,
sitting with AAM, the feature ‘‘average arm acceleration” was computed (see
Fig. 7).

TABLE I
EVALUATION OF AC–ACCURACY (IN PERCENT)

The ability of the MSM to quantify the various forms of
tremor was assessed by comparing the output of the algorithm
to the physician’s UPDRS scores. For rest tremor in the arm,
the best correlation between the PD monitor’s output and the
UPDRS scores was achieved when using acceleration data in
the axial and radial direction while sitting, namely, a correlation
of 0.84 (P < 0.01). A correlation analysis on rest tremor in the
thigh was not performed, because too little variation in UPDRS
scores given by the physician was present for a proper analysis.
The correlation of the trunk rest tremor was also not computed,
because it was not scored by the physician as it is not a standard
UPDRS item. Quantification of kinetic tremor was assessed and
proved to be more difficult, so a correlation of 0.67 (P < 0.01)
to UPDRS item 21 was achieved during sitting. Furthermore,
the severities of rest tremors, which were observed within one
individual, were often different within the arm, thigh, and trunk.
The same observation was made for rest and kinetic tremors,
which also differed within individuals.

The ability of the MSM to discriminate between different set-
tings of the stimulator was assessed by performing a repeated
measures ANOVA test and subsequent Tukey test. Arm, thigh,
and trunk rest tremor differed significantly between all condi-
tions (P < 0.05, P = 0.01, and P < 0.01, respectively). Further-
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TABLE II
EVALUATION OF AC–ACCURACY (IN PERCENT)

more, the post-hoc Tukey test revealed significant differences
between “on” and “off” (arm: P < 0.05, thigh P < 0.05, trunk
P < 0.01) and between “intermediate” and “off” (arm: not sig-
nificant, thigh: P < 0.05, trunk: P < 0.05). In contrast to rest
tremor, no significant differences were found between severity
levels of kinetic tremor during different stimulation settings.
However, the trends were as expected. This means that kinetic
tremor increased as the treatment level was reduced. An evalu-
ation of the UPDRS test’s ability to discriminate the conditions
showed no significant differences (UPDRS item 20 arm: P =
0.58, thigh: P = 0.70, UPDRS item 21: P = 0.77).

D. Motor Symptom Monitor—Bradykinesia and Hypokinesia

The correlation between the output scores of the PD monitor
for bradykinesia and hypokinesia and the UPDRS scores are
summarized in Table II. As the parameters cannot directly be
translated into single UPDRS items, we chose to compare them
to item 31, which represents overall bradykinesia and hypoki-
nesia. The table shows that most of the bradykinesia related
parameters had a significant correlation with the UPDRS score.
However, the achieved correlations were lower than those ob-
tained for rest tremor. None of the hypokinesia-related param-
eters were significantly correlated with the UPDRS item 31.
However, the hypokinesia parameter ‘‘percentage of time dur-
ing which the arm was active while standing and sitting” just
failed to reach significance (P = 0.053).

Bradykinesia and hypokinesia scores of the PD monitor did
not differ significantly between the “off,” “intermediate,” and
“on” states, although trends were as expected (i.e., less bradyki-
nesia and hypokinesia in the “on” state). Fig. 7 shows an example
of the bradykinesia score ‘‘average arm movement during sit-
ting” averaged over all subjects per condition. This figure shows
that bradykinesia worsens as the treatment level is reduced. Note

Fig. 7. Bradykinesia score ‘‘average arm acceleration,” which is determined
during the activity sit with AAM (see encircled activity in Fig. 6), is compared
per condition. The score is averaged over all subjects per condition, the mean,
and the standard deviation of the mean are shown. A trend of a decrease in the
average acceleration, representing worsening of bradykinesia, is shown as the
treatment level is reduced.

that this trend is visible when averaging over all subjects, but in-
dividual patients may not always follow this trend. For example,
one patient suffered from more severe bradykinesia during con-
dition “intermediate” than during condition “off”. The UPDRS
item 31 scores did not show significant differences between
conditions either (P = 0.23).

IV. DISCUSSION AND CONCLUSION

Currently, motor symptoms of PD patients are assessed by
the use of short subjective tests performed in the hospital, such
as the UPDRS. As this approach has some downsides, a new
evaluation system would be beneficial. This paper presents a
novel monitor to follow PD patients in their daily lives. Current
objective PD monitors only assess general aspects of tremor,
bradykinesia, and hypokinesia. The advanced PD monitor de-
scribed in this paper assesses a wide range of aspects related
to tremor, bradykinesia, and hypokinesia in order to gain a
complete motor assessment of the patient. To accomplish this
thorough analysis, an AC was incorporated into the PD monitor.
Another advantage of the AC lies in the fact that it enables direct
implementation of our PD monitor into an ambulatory environ-
ment. Although not further explored in this paper, the AC could
eventually also be used to gain knowledge about the time spend
on different activities during the entire day. The monitor uses a
setup of four sensors worn on the thigh, wrist, and foot of the
affected side and on the trunk. This was the minimal number of
sensors required to accomplish the proposed analysis.

The inclination estimate and activity classification proved
accurate. Subsequent tremor analysis comprised the evaluation
of rest tremor in the arm, thigh, and trunk and the evaluation
of kinetic tremor in the arm. The validity of the PD monitor in
quantifying arm rest and kinetic tremor was demonstrated by
the significantly high correlation with corresponding UPDRS
scores. Differences between rest tremor in the arm, thigh, and
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trunk as well as differences between rest and kinetic tremor
within individual patients were observed. This underlines the
importance of assessing different aspects of tremor, which is
accomplished in our PD monitor.

The three aspects of bradykinesia and hypokinesia that were
analyzed (arm movement, standing up, and walking) included
features with a significant correlation to UPDRS item 31 score
for overall bradykinesia and hypokinesia. However, whereas
multiple bradykinesia parameters were correlated, none of the
hypokinesia parameters were correlated. One reason for this
might be that item 31 not solely quantifies hypokinesia, but also
bradykinesia. This is an apparent advantage of our PD monitor,
which makes a clear distinction between both symptoms.

After the accuracy of the motor symptom quantification was
established, it was investigated whether the monitor could be
used to optimize the treatment of PD. In the DBS patients, three
conditions were analyzed: stimulator on, stimulator on with a
stimulation amplitude at 80%, and stimulator off. The ability
to distinguish the severity of tremor, bradykinesia, and hypoki-
nesia at different DBS settings was evaluated. First, the PD
monitor found the expected trends, i.e. the symptom worsened
as the treatment level reduced. Second, it was shown that the
values of rest tremor differed significantly between conditions.
However, kinetic tremor, bradykinesia, and hypokinesia related
parameters did not differ significantly between conditions. Still
the results showed that the UPDRS test was not able to find any
significant difference in symptoms severity between the condi-
tions, whereas our PD monitor was. Therefore, our PD monitor
proves to be a useful tool in optimizing treatment. Furthermore,
the lack of significant differences can be explained by inter-
individual differences in the severity of the disease, as well as
differences in the response to DBS. The different responses to
DBS are not only the result of differences in the way Parkinson
is manifested in the patients, but may also be caused by inter-
individual variations of the electrode position causing activation
of different areas in the somatotopically organized subthalamic
nucleus [25]. Therefore, the patients cannot be considered as a
homogeneous group. This is also found in our results, as not
all individual patients followed the expected trends of wors-
ening symptoms with reducing treatment level. Finally, Krack
et al. [26] argued that it could take several hours and even days
before the effect of changes in DBS settings on bradykinesia
stabilize. We chose to measure patients during a single day in
order to circumvent day-to-day fluctuations. In addition, we lim-
ited our total measurement time to three hours, thereby avoiding
fatigue in the PD patients. Therefore, our experiments started 15
to 30 minutes after adjustment of DBS, even though the effect
of changing the settings on bradykinesia might not have been
fully stable. This may have negatively influenced our results on
bradykinesia evaluation.

Dyskinesia, which has been studied before by Keijsers
et al. [27] and Hoff et al. [28], is not considered in this pa-
per. Nonetheless, this is an important aspect that can be used to
identify on and off-periods. Dyskinesia detection is also essen-
tial because bradykinesia cannot be quantified during a period
of dyskinesia. For these reasons, the inclusion of dyskinesia
detection in the PD monitor is an important next step in the

development of the monitor. Another symptom not yet assessed
by our monitor is freezing of gait, which would be classified
as standing still by our current algorithm. We are currently per-
forming studies to resolve this issue. A last topic not addressed
in this paper, is the test-retest reliability. This is another essential
next step before final implementation of the PD monitor.

In conclusion, this paper shows the PD monitor’s accuracy in a
thorough analysis of tremor, bradykinesia, and hypokinesia that
can eventually be carried out in an ambulatory environment.
Furthermore, it demonstrates that the monitor can be used to
evaluate the PD motor symptoms in order to optimize treatment.
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