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SUMMARY

A new class of reduced-order controllers is obtained for the H1 problem. The reduced-order controller
does not compromise the performance attained by the full-order controller. Algorithms for deriving
reduced-order H1 controllers are presented in both continuous and discrete time. The reduction in order is
related to unstable transmission zeros of the subsystem from disturbance inputs to measurement outputs.
In the case where the subsystem has no infinite zeros, the resulting order of the H1 controller is lower than
that of the existing reduced-orderH1 controller designs which are based on reduced-order observer design.
Furthermore, the mechanism of the controller order reduction is analysed on the basis of the two-Riccati
equation approach. The structure of the reduced-order H1 controller is investigated. Copyright # 2002
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Low-order controller design is one of the fundamental though difficult problems in control
engineering. In particular, reduced-order H1 controller design problems has received quite
some attention over the past decade; see, for example, References [1–14]. In References [1–6],
fundamental ideas in the controller order reduction lie in the structure of the system: for
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example injectivity or surjectivity of the feedthrough term of a subsystem, and finite or infinite
zero structure of a subsystem. A consequence is that we can see a priori the resulting order of the
reduced-order controller. On the other hand, in References [7–14] the problem is considered in a
rather general setup by using linear matrix inequalities (LMIs). After the presentation of an
elegant idea of solving control problems using LMIs [8, 9], in the study of reduced-order
controller design, the main focus is rather on solving a non-convex optimization problem.
Indeed, the tools to find directly a controller of a given order can be based on the numerical
method described in References [11–14]. Although the approach is so flexible that many control
problems can be treated in a unified manner, the problem is that these algorithms still have
numerical difficulties and also the structure of the resulting controller is not well understood.

Our focus is not on solving the optimization problem, but on finding a relationship between
the structure of the control problem and the order of the controller. Moreover, we do not
investigate optimal or suboptimal controllers of a fixed degree for the H1 control problem.
Instead, we seek tools to reduce the order of the controller without compromizing performance.
For an H1 problem, here part of the measurements is not affected by disturbances, reduced-
order controller design has been studied in References [1–4, 15]. This was first studied in
Kimura, et al. [1], then a reduced-order H1 controller is derived in continuous-time case on the
basis of reduced-order observers by Stoorvogel et al. [2]. Also in Reference [15], the continuous-
time reduced-order H1 controller design has been considered and the structure of the controller
is clarified on the basis of a controller parametrization established in Mita et al. [16]. On the
other hand, in the discrete-time case as well as in the continuous-time case, Xin et al. [3]
characterized the reduced-order H1 controller design problem in terms of LMIs and algorithms
to derive a reduced-order controller in this setting are available. The common factor of these
approaches is that the resulting order of the H1 controller is the same. However, it can be
expected that further order reduction is possible.

In this paper, the relationship between these approaches is discussed and the possibility of
further order reduction is investigated. Then it is shown that in the continuous-time case there
exists a reduced-order H1 controller which has lower order than the order of the controllers
derived in References [1–4, 15] if the sub-system from disturbances to measurements has
unstable transmission zeros on the non-negative real axis but no infinite zeros. Also, in the
discrete-time case a similar argument is used to derive a reduced-order H1 controller. We
present algorithms based on the LMI approach for designing the reduced-order H1 controllers
for both continuous-time and discrete-time cases. Secondly, the structure of the controller order
reduction is analysed on the basis of the classical approach which uses two algebraic Riccati
equations. This analysis not only finds new ways to reduce the order of the controller further,
but also establishes the plant structure that allows us to reduce the order of the H1 controller.
From this analysis we also find another algorithm to obtain the reduced-order H1 controller.
Compared with the former algorithm this one has an advantage that we can obtain a larger class
of reduced-order H1 controllers in the case where the subsystem has multiple real zeros and in
the case where the subsystem has complex zeros.

Notation: In denotes the identity matrix of dimension n� n. For a matrix A 2 C
n�n, lðAÞ

denotes the set of eigenvalues of A. The conjugate transpose of a matrix A is denoted by A�. We
denote the set of positive real numbers by Rþ, the open left half complex plane by C� and the
open right half complex plane by Cþ. In continuous time, if a matrix has all eigenvalues in C�,
the matrix is said to be stable. In discrete time, if a matrix has all eigenvalues inside the unit
circle, the matrix is said to be stable. The class of stable real rational transfer functions is
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denoted by RH1. A generalized inverse of a matrix D is defined by the properties DDyD ¼ D
and DyDDy ¼ Dy and is in general not unique. A square matrix D is said to be unitary if
DDT=I. An orthogonal complement of a full-rank matrix D is denoted by D?, and is chosen in
such a way that the following relations hold. If D is of full column rank, (DD?) is square and
the equation:

ðD D?Þ
Dy

ðD?ÞT

 !
¼ I

holds. If D is of full row rank, DT ðD?ÞT
� �T

is square and the equation:

Dy ðD?ÞT
� � D

D?

 !
¼ I

holds. The symbol (A,B,C,D) is used to represent the system with a transfer matrix
D+C(sI�A)�1B. The symbol F‘ is used to represent the linear fractional transform:
F‘ðG; QÞ ¼ G11 þ G12QðI � G22QÞ�1G21, where

G ¼
G11 G12

G21 G22

 !

The H1 norm of a stable, continuous-time transfer function G(s) is defined as jjGðsÞjj1 :¼
supo2ð�1; 1Þ %ssGðjoÞ where %ss denotes the largest singular value. Similarly, the H1 norm of a
stable, discrete-time transfer function G(z) is defined as jjGðzÞjj1 :¼ supo2ð�p; pÞ %ssGðejoÞ. A
symbol z 2 C is used to represent s in the continuous time and z in the discrete time.

In this paper, various kinds of zeros are used to present results.

Definition 1 Invariant zero
The invariant zero of a system with realization (A,B,C,D) is defined as z0 2 C for which

rank
z0I � A �B

C D

 !
5 normrank

zI � A �B

C D

 !

holds [17, 31], where normrank means the rank of a matrix with entries in the field of rational
functions.

Definition 2 Transmission zero
The transmission zeros of the system (A,B,C,D) are equal to the zeros of the transfer matrix
GðzÞ as defined through its Smith–McMillan form.

Lemma 1
Suppose a 2 C is not a pole of the transfer matrix GðzÞ. Then the system has a transmission zero
in a if and only if rank ðGðaÞÞ5normrank ðGðzÞÞ.

Moreover, the transmission zeros are a subset of the invariant zeros of a system and in case of a
minimal realization these two sets are equal.
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2. PROBLEM DESCRIPTION AND BACKGROUND

2.1. Singular H1 control

Consider the following linear time-invariant (LTI) system:

S :

sx ¼ Axþ B1wþ B2u

z ¼ C1xþD11wþD12u

y ¼ C2xþD21wþD22u

8>><
>>: ð1Þ

where x 2 Rn is the state, z 2 Rp1 is the controlled output, y 2 Rp2 is the measurement output,
w 2 Rm1 is the disturbance input and u 2 Rm2 is the control input. A symbol s indicates the
derivative, sxðtÞ ¼ dxðtÞ=dt, in continuous time and a shift operation, sxðkÞ ¼ xðkþ 1Þ, in
discrete time. For this system we make the assumptions that (A, B2) is stabilizable and (C2, A) is
detectable. The transfer function of S is denoted by

SðzÞ ¼
S11ðzÞ S12ðzÞ

S21ðzÞ S22ðzÞ

 !

where Sij ; ði; j ¼ 1; 2Þ is the subsystem associated with the transfer matrix
SijðzÞ ¼ Dij þ CjðzI � AÞ�1Bi.

The H1 suboptimal control problem is to find a stabilizing controller

Sk :
sZ ¼ AkZþ Bky

u ¼ CkZþDky

(

where Z 2 Rnk is the state of the controller, such that the resulting closed-loop system has anH1-
norm strictly less than an a priori given bound g, if one exists. In this paper we call g the
performance index of the H1 control problem. If g is minimized, the problem is called the H1

optimal control problem. It is known that if the suboptimal H1 control problem is solvable,
then we can always find a suitable controller whose dynamic order is at most equal to the order
of system (1). However, in the singular case where the direct feedthrough matrix D21 does not
have full row rank or in its dual case where D12 does not have full column rank we can
guarantee a priori that a controller of lower order than the order of the system can be found, see
References [2, 3, 15].

2.2. Background

We can assume, without loss of generality, that the matrix (C2 D21) has full row rank. For the
singular problem where D21 does not have full row rank, we then obtain that

rank ðC2 D21Þ � rank ðD21Þ > 0:

From References [2, 3, 15], we know that we can obtain a reduced-order H1 controller whose
order is less than or equal to

nk ¼ n�½rank ðC2 D21Þ � rank ðD21Þ�: ð2Þ

A key step in deriving the reduced-order controller is the reduced-order observer-based
controller design [2], where the system with partially noise-free measurement outputs can be
stabilized with an output feedback controller whose order is equal to the order of the system S
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minus the number of noise-free measurements. In Reference [15], the continuous-time reduced-
order H1 controller is also derived from the same standpoint, and the structure of the reduced-
order H1 controller is clarified on the basis of the classical Riccati-based approach. On the
other hand, the reduced-order H1 controller design problem can also be characterized in terms
of LMIs and algorithms to derive the reduced-order controller of order nk are presented not
only for the continuous-time case but also for the discrete-time case in Reference [3].

Interestingly, from these results it can be established that there exists a reduced-order H1

controller which has order lower than nk if S21ðzÞ has unstable transmission zeros on the real
axis in continuous time and in discrete time as well. We obtain this result by exploiting bilinear
transformations to reveal relationships between the continuous-time and discrete-time systems.
Motivated by this, we consider an algorithm to obtain reduced-order H1 controllers of lower
order. In addition, ideas in Reference [15] are utilized to understand the mechanism of the
controller order reduction in continuous time as well as to extend the result that is based on the
bilinear transformations to the case where S21ðsÞ has unstable transmission zeros in C

þ.

3. RESULTS BASED ON BILINEAR TRANSFORM

3.1. Continuous time

In this section, on the basis of the result presented in Reference [3], we show that there exists a
continuous-time reduced-order H1 controller which has order less than nk. Then we present an
algorithm, which uses the LMI approach, to obtain the reduced-order H1 controller.

First, define bilinear transformations

Gc : s/z ¼
sþ a
s� a

; 05a 2 R ð3Þ

Gc0 : s/*ss ¼
1

s
: ð4Þ

Gc transforms a continuous-time system into a discrete-time system and Gc0 transforms a
continuous-time system into another continuous-time system. The stability, the order and the
H1 norm of an LTI system are invariant under these transformations. If a is not an eigenvalue
of A, then Gc transforms the system S to a new system

*SSd :

s *xxd ¼ *AAd *xxd þ *BBd1wþ *BBd2u

z ¼ *CCd1 *xxd þ *DDd11wþ *DDd12u

y ¼ *CCd2 *xxd þ *DDd21wþ *DDd22u

8>><
>>: ð5Þ

where

*xxd ¼ ðaI � AÞx� B1w� B2u

*AAd ¼ �ðaI þ AÞðaI � AÞ�1

*BBdi ¼ �½ðaI þ AÞðaI � AÞ�1 þ I �Bi

*CCdi ¼ CiðaI � AÞ�1

*DDdij ¼ SijðaÞ; i; j ¼ 1; 2:
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Here, it should be noted that the matrix *DDd21 has a lower rank than the matrix D21 if D21 has full
rank and the following inequality holds:

rank ðS21ðaÞÞ5normrank ðS21ðsÞÞ; a40 ð6Þ

This means that we can choose a bilinear transformation such that *DDd21 has a lower rank
than the normal rank of the associated transfer matrix if the system S21ðsÞ has transmission
zeros on the non-negative real axis. Moreover, if 0 is not an eigenvalue of A, Gc0 transforms
the system S to a new system *SSc, which can be derived similarly as *SSd but of course
using a different bilinear transform. On the basis of this observation we deduce the following
result.

Theorem 1
Suppose that the system S21ðsÞ has unstable transmission zeros on the non-negative real axis and
let one of these zeros be a50. In that case, there exists a continuous-time H1 controller with a
performance index g of order

nkc ¼ n� ½rank ðC2 D21Þ � rank ðS21ðaÞÞ� ð7Þ

if the continuous-time H1 problem for the system S is solvable with a performance index g.
Moreover, if D21 has full rank, then we obtain nkc5nk.

Before we prove Theorem 1, we state a useful lemma.

Lemma 2
For a50, there exists a matrix N 2 Rm2�p2 which satisfies

detðaI � A� B2NC2Þa0 ð8Þ

if (A,B2,C2) is stabilizable and detectable.

Proof
Since (A,B2,C2) is stabilizable and detectable, for the system S we can find a stabilizing
controller:

sp ¼ Kpþ Ly

u ¼ Mp

Then, since a50 we have

det
aI � A �B2M

�LC2 aI � K

 !
a0

because otherwise the closed-loop system has an unstable pole in a. By taking the Schur
complement, we obtain

detðaI � A� B2MðaI � KÞ�1LC2Þa0:

Here, we need that K � aI is invertible. If this is not the case, note that when K is replaced
by K þ eI this is still a stabilizing controller for e small enough. Finally, by replacing
MðaI � KÞ�1L with N we obtain (8). &
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By this lemma, even if we have detðaI � AÞ ¼ 0, by using a static output feedback:

u ¼ Nyþ v ð9Þ

we can make the A-matrix of the new system:

SF :

sx ¼ ðAþ B2NC2Þxþ ðB1 þ B2ND21Þwþ B2v

z ¼ ðC1 þD12NC2Þxþ ðD11 þD12ND21ÞwþD12v

y ¼ C2xþD21w

8>><
>>: ð10Þ

non-singular at a, where we assume D22=0 without loss of generality. Then we can apply the
reduced-order controller design in Theorem 1 to SF and obtain a reduced-order controller. The
preliminary static output feedback does not change the order of the resultant controller, and
zeros of the system S21 are invariant under this preliminary feedback.

Next, let us move on to the proof of Theorem 1.

Proof of Theorem 1
The condition that (A, B2, C2) is stabilizable and detectable is implied by the solvability of the
H1 control problem. Therefore from Lemma 2, we can assume, without loss of generality, that
a is not an eigen-value of A. When a > 0, Gc preserves the stability, the order and the H1 norm
of an LTI system. If a controller with transfer matrix Sk solves the continuous-time H1 control
problem and therefore yields an H1 norm strictly less than g, then we have

jjF‘ðSðsÞ; SkðsÞÞjj1 ¼ jjF‘ð *SSðzÞ; *SSkðzÞÞjj15g ð11Þ

where *SSkðzÞ is the bilinear transform of SkðsÞ. This implies equivalence of existence of H1

controllers of an order n0 for both the continuous time and discrete time. Using results in
Reference [3] we can then obtain a discrete-time controller of order

n� ½rank ð *CC2 S21ðaÞÞ � rank ðS21ðaÞÞ�

After applying the inverse bilinear transformation to the discrete-time controller we then obtain
a controller of the continuous-time system of the same order. The result follows by noting that

rank ð *CC2 S21ðaÞÞ ¼ rank ðC2 D21Þ ð12Þ

When a ¼ 0, we use Gc0 to obtain *SSc. Similarly Gc0 preserves the stability, the order and
the H1 norm of an LTI system. Then a similar argument as in the previous case can be
applied.

It remains to show that nkc is strictly smaller than nk if D21 has full rank. Since a is a
transmission zero of the system we know that rank ðS21ðaÞÞ5normrankðS21ðsÞÞ. On the other
hand, since D21 has full rank, we obtain normrank (S21ðsÞÞ ¼ rankðD21Þ. It is then obvious that
rank (S21(a))5rank (D21) and combined with (12) the result follows. &

Remark 1
Using duality, we can also obtain reduced-order controllers when S12 has unstable zeros with a
resulting order of the controller equal to

n� rank
B2

D12

 !
� rank S12ðaÞ

" #
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However due to space limitations we will only discuss the case where S21 has unstable zeros,
although all of our results have dual versions.

Remark 2
If a50, Gc no longer preserves the stability of the system and inequality (11) is not satisfied. This
idea therefore only works when S21ðsÞ has transmission zeros on the non-negative real axis. On
the other hand, in the case where S21ðsÞ has stable zeros, the controller order reduction problem
is discussed in References [5, 6].

Remark 3
This theorem states that if S21ðsÞ has a transmission zero on the non-negative real axis, we can
obtain a reduced-order H1 controller of order nkc . Based on the above proof we obtain the
following algorithm to design the reduced-order H1 controller.

I. Transform the system S by Gc or by Gc0 to obtain *SSd or *SSc, where the parameter a is
chosen such that inequality (6) is satisfied. If the matrix A has an eigenvalue at a, apply the
preliminary feedback (9) for S first, and then apply the transformation.

II. Solve the discrete-time H1 problem for *SSd or the continuous-time H1 problem for *SSc

by using the LMI algorithm presented in Reference [3], and obtain an H1 controller of
order nkc .

III. Apply the inverse of the bilinear transformation that is used in step I to this controller to
obtain an nkc th order continuous-time H1 controller with realization (Ak, Bk, Ck, Dk). The
resultant controller is obtained as (Ak, Bk, Ck, Dk+N) where if the preliminary feedback is
not used, N is put to zero.

Remark 4
If the matrix D21 has full column rank, the difference between nk and nkc is

nk � nkc ¼ rank ðD21Þ � rank ðS21ðaÞÞ

¼ normrank ðS21ðsÞÞ � rank ðS21ðaÞÞ

This indicates that the difference in the order between the reduced order H1 controller obtained
here and the nkth order H1 controller is equal to the geometric multiplicity [17] of an unstable
transmission zero of S21ðsÞ at a. Thus, the order reduction of the controller depends on the
selection of the zero. If the geometric multiplicity of the zero is higher, then we can obtain a
lower order H1 controller.

3.2. Discrete time

For the discrete-time case we use, similar to the continuous time, a bilinear transformation:

Gd : z/ %zz ¼
bz� 1

b� z
; jbj > 1; b 2 R: ð13Þ

This transformation transforms a discrete-time system into another discrete-time system, and
the unit circle and the unit disk are invariant under this transformation. The stability, the order
and the H1 norm of an LTI system are therefore invariant under this transformation. If b is not
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an eigenvalue of A; this can be assumed, without loss of generality, from Lemma 2, Gd

transforms the system S to a new system:

%SSd :

s %xxd ¼ %AAd %xxd þ %BBd1wþ %BBd2u

z ¼ %CCd1 %xxd þ %DDd11wþ %DDd12u

y ¼ %CCd2 %xxd þ %DDd21wþ %DDd22u

8>><
>>: ð14Þ

where

%xxd ¼ ðbI � AÞx� B1w� B2u

%AAd ¼ �ðI � bAÞðbI � AÞ�1

%BBdi ¼ �½�ðI � bAÞðbI � AÞ�1 þ bI �Bi

%CCdi ¼ CiðbI � AÞ�1

%DDdij ¼ SijðbÞ; i; j ¼ 1; 2

Here it should be noted that the matrix %DDd21 has a lower rank than the matrix D21 if the
following inequality:

rank ðS21ðbÞÞ5normrank S21ðzÞ ð15Þ

holds. This means that %DDd21 has a lower rank if the system S21ðzÞ has a transmission zero
fb 2 Rjjbj > 1g.

On the other hand, when S21ðzÞ has a transmission zero at z=1 or �1, we may introduce one
of the following bilinear transformations:

Gd1 : z/s ¼ Z
zþ 1

z� 1
; 05Z 2 R; if S21ðzÞ has a zero at 1

Gd�1
: z/s ¼ Z

z� 1

zþ 1
; 05Z 2 R; if S21ðzÞ has a zero at � 1

These transformations transform a discrete-time system into a continuous-time system. It can
also be verified that these transformation preserve the stability, the order and the H1 norm of
an LTI system. If 1 is not an eigenvalue of A, Gd1 transforms the system S to a new system &SS.
On the other hand, if �1 is not an eigenvalue of A, Gd�1

transforms the system S to a new system
#SS.
On the basis of these observations, the following result can be deduced.

Theorem 2
Suppose that the system S21ðzÞ has a transmission zero

b 2 fz 2 Rjjzj51g

Then, there exists a discrete-time H1 controller of order

nkc ¼ n� ½rank ðC2 D21Þ � rank ðS21ðbÞÞ� ð16Þ

which solves the H1 control problem with a performance index g if the discrete-time H1

problem for the system S is solvable with a performance index g. Moreover, if D21 has full rank,
then we obtain nkc5nk.
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Proof
Since the parallel argument for the continuous-time case can be applied to this case, we omit the
details. If one of the transmission zeros is at z=1 or �1, transform the discrete-time system S
into a continuous-time system by using one of the bilinear transformations of Gd1 and Gd�1

. By
the parallel argument with the continuous case, we can obtain a discrete-time H1 controller of
order nkc for S. In the case where no zero is at z=1 nor at z=�1, but one of the zeros is
b 2 fz 2 Rjjzj > 1g, we obtain a discrete-time system %SSd by using Gd. Since stability, the order
and the H1 norm are invariant under this transformation, it is verified that we can obtain a
discrete-time H1 controller of order nkc for S. It remains to show that nkc is strictly smaller
than nk if D21 has full rank. Since b is a transmission zero of the system we know that
rank (S21(b))5normrank (S21(s)). On the other hand, since D21 has full rank we obtain
normrank(S21(s))=rank(D21). It is then obvious that rank (S21(b))5rank (D21), hence the result
follows. &

Remark 5
This theorem says that if S21ðzÞ has transmission zeros on fz 2 Rjjzj51g, we can obtain a
reduced-order H1 controller of order nkc by following the algorithm:

I. If S21(z) has a transmission zero on fz 2 Rjjzj > 1g, transform the system S by Gd to obtain
the system %SS, where the parameter b is chosen as the transmission zero in fz 2 Rjjzj > 1g.
Then proceed to step II. If S21(z) has a transmission zero at 1 or at �1, transform the
system S by Gd1 Gd�1

respectively, where the parameter Z is chosen arbitrary such that
05Z 2 R is satisfied. Then proceed to step III.

II. Solve the discrete-time H1 problem for %SSd using the algorithm based on LMIs as
presented in Reference [3], and obtain a discrete-time H1 controller of order nkc . Then
proceed to step IV.

III. Solve the continuous-time H1 problem for &SS or #SS using the algorithm based on LMIs as
presented in Reference [3], and obtain a continuous-time H1 controller of order nkc .

IV. Transform the controller by the inverse of the bilinear transformation that is applied in
step I to obtain a discrete-time H1 controller of order nkc .

Remark 6
If the matrix D21 has full column rank, the difference between nk and nkc is

nk � nkc ¼ rank ðD21Þ � rank ðS21ðbÞÞ

¼ normrank ðS21ðzÞÞ � rank ðS21ðbÞÞ

where b 2 fz 2 Rjjzj51g. This implies that the difference in the order between the reduced-order
H1 controller obtained here and the nkth order H1 controller is equal to the geometric
multiplicity [17] of an unstable transmission zero of S21ðzÞ on fz 2 Rjjzj51g. Thus, the number
in order reduction of the controller depends on the selection of the zero. If the geometric
multiplicity of the zero is higher, then we can obtain a lower order H1 controller.

3.3. Discussions

We have thus characterized a new class of reduced-order H1 controllers by using one unstable
real zero of S21. However, in general, S21 might have more unstable zeros and they might be
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complex. Moreover, by using a continuity argument, we can argue that if a zero is slightly
changed by some perturbation, we may still be able to reduce the order. Thus, we have issues as

1. In the case where S21 has multiple zeros, we have to choose one of the zeros as the
parameter a even when the zeros are close to each other. However, from a continuity
argument we can expect that both of the zeros can render to reduce the order of the
controller. Our algorithm can handle only one zero, however, it is not clear whether further
reduction is possible in case of multiple zeros.

2. In the case where the system S21 has zeros in the open right half-plane, we can also apply the
bilinear transformation Gc to the system S. Here, a is a complex number such that a 2 Cþ.
Then Gc still preserves the stability of the system and inequality (11) is also satisfied. In this
case, we have to solve an H1 control problem for a system with complex coefficients. Thus,
whether this technique generally works for the system that has a non-minimum-phase
subsystem S21 or not depends on whether the LMI techniques from Reference [3] work for
complex valued systems.

Algorithms presented in this section relies on a reduction in rank of the transfer matrix S12ðzÞ
at its transmission zeros. Clearly, computing numerically a rank is intrinsically difficult.
However, computing transmission zeros can be done in a reliable fashion. Therefore, we will, in
general, apply this transformation and work with system which have singular values which are
very small in a point a but not exactly equal to zero. If we perturb the system to make the
singular values equal to zero then we can rely on a continuity argument to conclude that for the
obtained reduced-order system will also work for the original system. This is mathematically not
a precise statement but in examples we have seen that these algorithms are numerically more
robust then one might think after noting all the rank evaluations.

4. ANALYSIS OF THE CONTROLLER ORDER REDUCTION

In the previous section we have established the existence of a new class of reduced-order H1

controllers, and obtained an algorithm to design the controller. The structure of the reduced-
order H1 controller obtained there is not cleat because it is based on the bilinear
transformation. Therefore, it is not easy in our view to analyse the above questions on
continuity and multiple zeros based on this technique of bilinear transforms. Moreover, we
know from previous papers that the structure of the reduced-order H1 controller of order nk
can be explained by a reduced-order observer. Hence, we will present a different approach which
will allow us to better understand the structure of the reduced-order H1 controller. This will
then allow us to obtain results for the cases of multiple zeros and for continuity arguments.

Thus, motivated by the results presented in the previous section, we analyse the mechanism of
the controller order reduction in the continuous-time singular H1 problem. We will see that the
results based on the bilinear transformation can be extended to more general cases. The analysis
is based on a solution obtained by using the fundamental two-Riccati equation approach [1, 15,
16, 18, 19]. We assume that S21 has unstable zeros in Cþ and, in addition, that D21 has full
column rank. To this end, we introduce our recent work [15], which uses the two-ARE approach
presented by Mita et al. [16], and extend its idea to analyse the controller order reduction.
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4.1. Preliminaries

Consider the continuous-time system described in (1). In addition to the conditions that (A,B2)
is stabilizable and (C2,A) is detectable, we consider the H1 problem under the following
assumptions:

A1. D12 is of full column rank.
A2. D21 is of full column rank.
A3. S21 has invariant zeros in C

þ

A4. S12 and S21 do not have invariant zeros on the imaginary axis.

Assumptions A1, A2 and A4 are made to simplify our analysis. Assumption A3 captures
the feature of the singular H1 problem we consider. The more general singular problem
when these assumptions are not satisfied has been studied in References [3, 20–24].
However, there is no study of the controller order reduction exploiting the existence of
invariant zeros in C

þ.
Without loss of generality, we can put assumptions on the matrices C2, D11, D21 and D22 as

follows:

B1. D11=0 and D22=0.
B2.

ðC2 D21Þ ¼
C21 0

C22 Im1

 !
;

where C21 2 Rðp2�m1Þ�n is of full row rank.
Assumption B1 can be relaxed by using some standard techniques as described in References

[21, 25]. Assumption B2 basically amounts to choosing a suitable basis for the input and output
spaces.

The invariant zeros of the system S21 can be made explicit by a suitable state-space
transformation for the system S, i.e. x ¼ T %xx with T invertible.

Lemma 3
There exists a suitable basis such that the matrices A� B1D

y
21C2, ðD?

21Þ
T C2 and D

y
21C2 have the

following block decomposition with A� stable and Aþ 2 Rr�r antistable

where the pair (A+,C22rr) is observable.

A� B1D
y
21C2

ðD?
21Þ

TC2

D
y
21C2

0
BBBB@

1
CCCCA ¼

A11 A12 0 0

A13 A14 0 0

A31 A32 A� 0

A33 A34 0 Aþ

Ip2�m1
0 0 0

C22ll C22lr C22rl C22rr

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð17Þ

- - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -
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By the definition of the invariant zero, it can be verified that eigenvalues of A+ are the unstable
invariant zeros of S21.

Proof
See Reference [26]. &

Furthermore, for notational ease we partition C1 accordingly with D
y
21C2 as

C1 ¼ ðC1ll C1lr C1rl C1rrÞ

4.2. Parameterization of the H1 controller

In this section, we derive the full-order H1 controller for the system S on the basis of the two-
ARE approach. Here full order means the same order as the system S has. First, we introduce
two AREs:

XðA� B2D
y
12C1Þ þ ðA� B2D

y
12C1Þ

TX

þ X g�2B1B
T
1 � B2D

y
12ðB2D

y
12Þ

T
h i

X þ CT
1D

?
12ðD

?
12Þ

TC1 ¼ 0 ð18Þ

and

YAT
ZH þ AZHY þ Y g�2CT

1C1 � ðDy
12C2Þ

TD
y
12C2

h i
Y ¼ 0 ð19Þ

Here, AZH is defined by AZH ¼ A� B1D
y
21C2 þ LHðD?

21Þ
TC2 where a matrix LH is selected such

that

flðAZHÞg � flðAþÞg � C� ð20Þ

is satisfied.} This condition implies that the observable subspace of the pair ðA� B1D
y
21C2;

ðD?
21Þ

TC2Þ is stabilized by LH.
If these AREs have solutions that satisfy

l A� B2D
y
12C1 þ g�2B1B

T
1 � B2D

y
12ðB2D

y
12Þ

T
h i

X
� �

� C�

l AZH þ Y g�2CT
1C1 � D

y
21C2

� �T
D
y
21C2

� �� �
� C

�

we call these solutions the stabilizing solutions. It is easy to show that the stabilizing
solution of these AREs is unique and that the solution Y is independent of a specific
choice for LH, provided that (20) is satisfied. These AREs are the key equations for
analysing the mechanism of the controller order reduction as well as for deriving the H1

controller.
By following the result presented in Reference [16], we can obtain the class of all suboptimal

H1 controllers, which are parametrized with two free parameters.

}The set difference is defined by S�T :¼ fx 2 Sjx =2 Tg.
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Lemma 4
Suppose that (A,B2) is observable and (A,C2) is detectable, and the assumptions A1–A4 are
satisfied. Then an H1 controller with performance index g exists if and only if the two AREs in
(18) and (19) have stabilizing solutions X50, Y50 and these matrices satisfy

g2I � XY > 0 ð21Þ

If there exists an H1 controller, the class of all H1 controllers is represented by

K1 ¼ fK1ðsÞjNðsÞ; WðsÞ 2 RH1; jjNðsÞjj15gg ð22Þ

with

K1ðsÞ ¼ K�1
1 ðsÞK2ðsÞ ð23Þ

where parameters are defined by

K1ðsÞ ¼ CK ðsÞðsI � AY Þ
�1 #BB2 þP�1

K2ðsÞ ¼ CK ðsÞðsI � AY Þ
�1H1 þNðsÞDy

21 þWðsÞðD?
21Þ

T

AY ¼ Aþ g�2YCT
1C1 þH1C2

CK ðsÞ ¼ �P�1F1Z þNðsÞDy
21

#CC2Z þWðsÞðD?
21Þ

TC2

#BB2 ¼ B2 þ g�2YCT
1D12

#CC2 ¼ g�2D21B
T
1X þ C2

F1 ¼ �D
y
12C1 �D

y
12ðB2D

y
12Þ

TX

H1 ¼ �B1D
y
21 � YðDy

21C2Þ
TD

y
21 þ LHðD?

21Þ
lT

z ¼ ðI � g�2YXÞ�1

P ¼ ðDT
12D12Þ

�1=2:

Here, N(s) and W(s) are called free parameters.

Proof
See Reference [16]. &

Remark 7

1. If we put free parameters equal to zero, we obtain an nth order H1 controller which is
called the central solution. The free parameters might be utilized to improve the controller
performance. But also, the free parameters can be used to reduce the order of the controller.
Controller order reduction using this philosophy is discussed in the next section.

2. It has been reported for the regular H1 optimal control in References [7, 27] that the matrix
Z might be ill conditioned as g tends to the optimal value. Thus, there exists a numerical
difficulty in calculating the controller by the formula in (22). However, this difficulty
depends on the realization of the controller, and using a descriptor form can be
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circumvented [7, 19, 22, 25, 28]. On the other hand, in the limit the infinite zeros of the
controller are cancelled by the poles of the controller at infinity. Thus the controller order
can be further reduced by exploiting this property.

4.3. nkth order H1 controller

4.3.1. Deflation of the Riccati equation
By using the formula in (17), the unique stabilizing solution of the ARE in (19) can be
represented by the unique stabilizing solution of the reduced-order ARE:

YrA
T
þ þ AþYr þ Yrðg�2CT

1rrC1rr � CT
22rrC22rrÞYr ¼ 0 ð24Þ

where the solution Yr stabilizes the matrix A+ as

AYr
:¼ Aþ þ Yrðg�2CT

1rrC1rr � CT
22rrC22rrÞ

i.e. lðAYr
Þ � C�.

Lemma 5
A positive-semi-definite matrix

Y ¼
0 0

0 Yr

 !
2 Rn�n ð25Þ

with Yr>0 is a stabilizing solution of the ARE in (19) if and only if Yr>0 is a stabilizing
solution of the reduced-order ARE in (24).

Proof
First, to make the proof as easy to understand as possible we represent LH as

LH ¼

LH11

LH13

LH31

LH33

0
BBBBB@

1
CCCCCA 2 Rn�ðp2�m1Þ: ð26Þ

Since LH satisfies condition (20), submatrices LH11
and LH13

can be chosen arbitrarily as long as

l
A11 þ LH11

A12

A13 þ LH13
A14

 !
� C

� ð27Þ

is satisfied and LH31
and LH33

are completely free.
Necessity: Suppose the ARE in (19) has the stabilizing solution Y50. The ARE can be

represented as

YAT
ZH þ AYY ¼ 0 ð28Þ
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Let U be a row basis of the stable subspace of the matrix AZH. Then we can choose
U ¼ ðIðn�rank ðAþÞÞ 0Þ, which satisfies the following equation:

UAZH ¼ LU ð29Þ

where

L ¼

A11 þ LH11
A12 0

A13 þ LH13
A14 0

A31 þ LH31
A32 A�

0
BBB@

1
CCCA

is a stable matrix. After post-multiplication by UT, Equation (28) becomes

ðYUTÞLT þ AY ðYUTÞ ¼ 0

Since lðLÞ � C�, lðAY Þ � C�, we can deduce that

YUT ¼ 0

Since Y is a symmetric matrix it must be of the form in (25). By substituting this Y into the ARE
(19), the reduced-order ARE (24) can be derived. Hence, it is necessary that the ARE has the
positive-semi-definite stabilizing solution Yr. Let a vector x be in kerYr. Then by pre-
multiplying the ARE (24) with x we have

YrA
T
þx ¼ 0

This implies AT
þx 2 Yr, in other words kerYr is A

T
þ-invariant. Here, we denote the restriction of

AT
+ to kerYr as A

T
þj ker Yr

. Then we also have

ðAT
þ þ RYrÞj ker Yr

¼ AT
þj ker Yr

where

R :¼ g�2CT
1rrC1rr � CT

22rrC22rr

However, we know

C
þ� lðAþÞ ¼ lðAT

þÞ � lðAT
þjker YrÞ

¼ lðAT
þ þ RYrj ker Yr

Þ � lðAT
þ þ RYrÞ � C�

This implies that kerYr={0}, in other words, Yr is invertible.

Sufficiency: Suppose that the reduced-order ARE in (24) has the stabilizing solution Yr>0. If
we select Y as in (25), it can be verified that

lðAY Þ ¼ l AZH þ Y g�2CT
1C1 � D

y
21C2

� �T
D
y
21C2

� �� �

¼ l

A11 þ LH11
A12 0 0

A13 þ LH13
A14 0 0

� A32 A� 0

� � � AYr

0
BBBBBB@

1
CCCCCCA

� C�
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where *
0s are matrices of less interest, and also that the matrix Y satisfies the ARE in (19).

Hence Y is a positive-semi-definite stabilizing solution of the ARE. &

4.3.2. A controller order reduction
Utilizing the free parameter W 2 RH1, we derive a class of H1 controllers whose central
solution has an order nk.

Theorem 3
A class of H1 controllers whose central solution has an order nk is represented by

Knk
1 ¼ fKnk

1ðsÞjN 2 RH1; jjNjj15gg ð30Þ

with

Knk
1ðsÞ ¼ *KK

�1

1 ðsÞ *KK2ðsÞ ð31Þ

where

*KK1ðsÞ ¼ *CCK ðsÞðsI � *AAY Þ
�1 *BB2 þP�1

*KK2ðsÞ ¼ *CCK ðsÞðsI � *AAY Þ
�1 *HH1 þ O

*AAY ¼ ðV?ÞTAYV
? 2 Rnk�nk

*CCK ðsÞ ¼ ð�P�1F1Z þNðsÞDy
21

#CC2ZÞV?

*BB2 ¼ ðV?ÞT #BB2

*HH1 ¼ ðV?ÞTH1

O ¼ P�1F1ZVðD?
21Þ

T þNðsÞDy
21ðI � #CC2ZVðD?

21Þ
TÞ:

Proof
Since the matrices LH31

and LH33
in (26) are arbitrary we can choose these as

LH31
¼ �A31

LH33
¼ �A33 � Yrðg�2CT

1rrC1ll C
T
22rrC22llÞ

Also, LH11
and LH13

can be chosen arbitrarily, provided (27) is satisfied. We choose these
matrices such that

lðA11 þ LH11
Þ � C

�

LH13
¼ �A13

are satisfied. Then, AY is represented by

AY ¼

A11 þ LH1
A12 0 0

0 A14 0 0

0 A32 A� 0

0 *AA34
*AA43 AYr

0
BBBBB@

1
CCCCCA
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where

*AA34 ¼ A34 þ Yrðg�2CT
1rrC1lr � CT

22rrC22lrÞ
*AA43 ¼ Yrðg�2CT

1rrC1rl � CT
22rrC22rlÞ:

The structure of the controller in (23) can be seen as an observer-based feedback [15]. From
Lemma 4, it can be seen that the matrix CK(s) is parametrized by WðsÞ 2 RH1, and that a full
column rank matrix

V ¼
Ip2�m1

0

 !
2 Rn�ðp2�m1Þ

satisfies

CK ðsÞV ¼ ð�P�1F1Z þNðsÞDy
21

#CC2ZÞV þWðsÞ:

Hence, if we select the parameter W(s) as

WðsÞ ¼ �ð�P�1F1Z þNðsÞDy
21

#CC2ZÞV ð32Þ

we can see that the following equations:

AYV ¼ VðA11 þ LH1
Þ

CK ðsÞV ¼ 0

hold. Therefore, the parameter that satisfies (32) gives a reduced-order H1 controller whose
central solution has an order nk.

Substituting (32) into the formula in (23) reduces the order of the controller and we obtain
(31). Since WðsÞ 2 RH1 the controller is an H1 controller. &

Remark 8

1. The controller order reduction is as a consequence of a finite pole-zero cancellation in the
controller. The number of the controller order reduction matches the number of
measurements which are not affected by the disturbances.

2. If the free parameter N(s) is put to zero, the order of the controller becomes nk. The same
order of the singular H1 controller is attained in Stoorvogel et al. [2] and Xin et al. [3]. On
the other hand, the result obtained in this paper gives a nice interpretation of the structure
of the reduced-order H1 controller. It still preserves the structure of the observer-based
controller, which has the same order as the reduced-order observer as we also have an
observer structure in Reference [2].

3. If we utilize the free parameter N(s), we might obtain further order reduction. The next
section discusses this topic.

4.4. Further order reduction of the nkth order H1 controller

As we have seen in Section 3, the reduced-order H1 controller obtained in the previous section
may further reduce its order. This section investigates whether the reduced-order controller
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which is derived by the ARE approach can be further reduced in order. We will find that
the further order reduction is related to unstable zeros of S21 and also to the structure of the
zeros.

4.4.1. A basic result corresponding to Section 3
First, begin with an nkth order H1 control law with transfer matrix given by

Knk
1ðsÞ ¼ �P *CCK ðsÞðsI � *AAY þ *BB2P *CCK ðsÞÞ

�1ð *BB2PO� *HH1Þ þPO: ð33Þ

The matrix *AAY 2 Rnk�nk can be represented by

*AAY ¼
AY1

0

AY3
AYr

 !

and its components are written as

AY1
¼

A14 0

A32 A�

 !
; AY3

¼ ð *AA34
*AA43Þ

AYr
¼ Aþ þ YrR 2 Rr�r

It should be noted that the matrix *CCK ðsÞ contains a free parameter N 2 RH1; jjNjj15g. If it is
put to zero, the controller becomes an nkth order H1 controller. On the other hand, we have
possibilities of utilizing the parameter for improving performance of the controller. One of the
possibilities is the controller order reduction which we will study in detail. For notational ease,
we define a matrix #ZZ by

#ZZ ¼ ðI � g�2YrX4Þ
�1 ð34Þ

where the matrix X4 2 Rr�r is a diagonal block of the matrix X 2 Rn�n which is decomposed
as

X ¼
� �

� X4

 !

Here, *’s represent submatrices of less interest.
We state a lemma which is central to our method to obtain a reduced-order controller. Note

that in the above we have a free parameter N which is a rational, stable transfer matrix with H1

norm less than g. In the following lemma, we constrain N to be a static transfer matrix, i.e. a
matrix. Hence, we choose N from the set

fN 2 Rm2�m1 j %ssðNÞ5gg ð35Þ

Lemma 6
Suppose that the H1 control problem for S with assumptions A1–A4 and (A,B2,C2) is
stabilizable and detectable is solvable. Furthermore, suppose that S is equivalent to a realization
which allows the formula in (17) where lðAþÞ is the invariant zero of S21. Let Vm 2 Rr�m be an
arbitrary matrix which satisfies rank Vm=m and

AT
þVm ¼ VmJ; J 2 Rm�m ð36Þ
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where m is an arbitrary number such that m4r. Then the following properties hold:

1. If the following rank condition

rank D
y
21

#CC2

0

#ZZYrVm

 ! !
¼ m ð37Þ

is satisfied, there exists a matrix N in set (35) which satisfies the equation

*CCK ðsÞ
0

YrVm

 !
¼ 0 ð38Þ

where *CCK ðsÞ is defined in Theorem 3 and depends on N (constrained to be a static transfer
matrix).

2. If the solution of (38) satisfies condition (35), the solution reduces the order of the H1
controller in (33) to nk�m, while preserving the closed loop performance g.

Proof
From the solvability of the H1 problem, the ARE in (24) has a solution. Hence, the equation

YrA
T
þ þ AYr

Yr ¼ 0

is satisfied. Post-multiplying the above equation by the matrix Vm and using (36) we obtain

AYr
YrVm ¼ �YrVmJ

hence we also have

*AAY

0

YrVm

 !
¼ �

0

YrVm

 !
J

Hence, if there exists a solution N which satisfies Equation (38) and since the matrix YrVm has
full rank, the controller in (33) reduces its order by the number m, and the controller satisfies the
closed-loop performance g provided that condition (35) is satisfied. It remains to show that
property 1 holds.

By a simple calculation, we can see that the following equation holds:

*CCK ðsÞ
0

YrVm

 !
¼ ð�P�1F1 þND

y
21

#CC2ÞZV? 0

YrVm

 !

¼ ð�P�1F1 þND
y
21

#CC2Þ
0

#ZZYrVm

 !
: ð39Þ

Since the second term on the right-hand side of Equation (39) contains the free parameter N we
can choose the parameter in such a way that it satisfies Equation (38) if the rank condition in
(37) holds. &

Remark 9

1. This controller reduction can be considered as a consequence of a finite pole-zero
cancellation in the controller. The finite mode is originally from the finite unstable zero
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mode of the system S21. Hence, how much the order of the controller is reduced is bounded
by the number of the unstable zeros.

2. The assumption that the zeros of the system S21 are on the positive real axis corresponds to
the assumption made in Theorem 1 excluding zeros at the origin. If the system S21 has
multiple distinct unstable zeros on the real axis, the technique of Section 3 (bilinear
transform) is based on a specific choice of one of these unstable invariant zeros. On the
other hand, the technique of Lemma 6 does not depend on such an arbitrary choice.

3. Questions left here are whether conditions (37) and (35) are satisfied or not, or under what
condition these are satisfied.

Now, we are ready to state a result of the H1 controller reduction by using the solution of the
two-ARE approach.

Theorem 4
Suppose that the H1 control problem for S with assumptions A1–A4 and (A,B2,C2) is
stabilizable and detectable is solvable. Furthermore, suppose that S21 has an invariant zero on
the positive real axis with the geometric multiplicity m. Then there exists an (nk�m)th order H1

controller with the performance index g.

Proof
Since the H1 problem is solvable, both AREs in (18) and (19) have stablizing solutions. A
straightforward calculations with the ARE in (18) yields

XðA� B1D
y
21C2Þ þ ðA� B1D

y
21C2Þ

TX

þ CT
1C1 � g2CT

2 ðD
y
21Þ

TD
y
21C2 �Q ¼ 0 ð40Þ

where Q is defined by

Q :¼
�P�1F1

D
y
21

#CC2

0
@

1
A

T
I 0

0 �g2I

0
@

1
A �P�1 F1

D
y
21

#CC2

0
@

1
A:

From the ARE (19) and Equation (40) we obtain

YXðA� B1D
y
21C2ÞY þ YðA� B1D

y
21C2Þ

TXY

�g2ðYAT
ZH þ AZHYÞ � YQY ¼ 0

Since Y has the form in (25), representing Q as

Q ¼
� �

� Q4

0
@

1
A; Q4 2 Rr�r

yields the equation

ðYrX4 � g2IÞAþYr þ YrA
T
þðYrX4 � g2IÞT ¼ YrQ4Yr:

Since both Yr and #ZZ are non-singular, we obtain

VT
mAþ #ZZYrVm þ VT

mYr
#ZZ
T
AT

þVm ¼ �g�2VT
mYr

#ZZ
T
Q4

#ZZYrVm ð41Þ
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where #ZZ is defined in (34). Since S21 has an invariant zero on the positive real axis with the
geometric multiplicity m and flðAþÞg is the set of unstable invariant zeros of S21, we can choose
Vm in (36) such that

J ¼ aIm ð42Þ

holds. Hence from Equations (36), (41) and (42), we obtain

VT
mYr

#ZZ
T
Q4

#ZZYrVm ¼ �2g2aVT
mYr

#ZZ
T
Vm

where a > 0. Since Yr>0 and g2I � YrX4 > 0, we have

Yr
#ZZ
T
¼ g2Y1=2

r ðg2I � Y1=2
r X4Y

1=2
r Þ�1Y1=2

r > 0

Hence, we obtain

VT
mYr

#ZZ
T
Q4

#ZZYrVm50: ð43Þ

This inequality is equivalent to

0

#ZZYrVm

0
@

1
A

T

Q
0

#ZZYrVm

0
@

1
A50 ð44Þ

hence we have

0

#ZZYrVm

 !T

ðP�1F1ÞTP�1F1
0

#ZZYrVm

 !

5g2
0

#ZZYrVm

 !T

D
y
21

#CC2

� �T
D
y
21

#CC2

0

#ZZYrVm

 !
:

Here, noting that the following inequality

0

#ZZYrVm

0
@

1
A

T

ðP�1F1ÞTP�1F1

0

#ZZYrVm

0
@

1
A50

holds, we have

g2
0

#ZZYrVm

0
@

1
A

T

ðDy
21

#CC2Þ
TD

y
21

#CC2

0

#ZZYrVm

0
@

1
A > 0:

This means that the rank condition in (37) holds. Thus Equation (38) is solvable. Moreover,
since the solution to (38) satisfies the equation

0

#ZZYrVm

0
@

1
A

T �P�1F1

D
y
21

#CC2

0
@

1
A

T

I 0

0 �NTN

0
@

1
A �P�1F1

D
y
21

#CC2

0
@

1
A 0

#ZZYrVm

0
@

1
A ¼ 0

from (44) it is straightforward to verify that (35) holds. Thus, from Lemma 6, it is shown that we
obtain an H1 controller of order nk�m by using the solution of (38).
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Remark 10
Since a is an unstable invariant zero of S21, we can see that the maximal number m which
satisfies (36) and (42) amounts to the geometric multiplicity [17] of an unstable invariant zero of
S21. Therefore, the order of the controller given in this theorem coincides with the result given in
Theorem 1, except for the case a ¼ 0, as

nkc ¼ nk �m

provided that the matrix D21 has the full column rank.

4.4.2. Beneficial results of the two-ARE approach
The following theorem gives a condition for the H1 controller reduction in the case where two
distinct zero modes in positive real number are included in J.

Theorem 5
Suppose that the H1 control problem for S with assumptions A1–A4 and (A,B2,C2) is
stabilizable and detectable is solvable. Furthermore, suppose that we choose the matrix Vm in
(36) such that the matrix J is represented by

J ¼
aiImi

0

0 ajImj

0
@

1
A ð45Þ

where 05ai5aj are unstable invariant zeros of S21 and m=mi+mj. Then, theH1 controller can
be reduced to the order nk�m while preserving the closed-loop performance g if the following
condition

aj � ai 2 e > 0j2aiF þ e *FF > 0
	 


ð46Þ

is satisfied. Here F is a positive-definite matrix defined by

F ¼ VT
mYr

#ZZ
T
Vm

By using submatrices of

F ¼
F1 F2

FT
2 F4

0
@

1
A

the matrix *FF is defined by

*FF ¼
0 F2

FT
2 2F4

0
@

1
A:

Proof
As in the proof of Theorem 4, to prove this result it is sufficient to show that inequality
(43) holds if condition (46) is satisfied under the assumption that the H1 problem is
solvable.

As is obtained in the proof of Theorem 4, if the H1 problem is solvable, Equation (41) holds.
From (36) and (41) we have

VT
mYr

#ZZ
T
Q4

#ZZYrVm ¼ �g2ðJF þ FJÞ ð47Þ
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where we put F as

F :¼ VT
mYr

#ZZ
T
Vm:

From Yr>0 and g2I � YrX4 > 0, we have F>0. Since J can be represented by

J ¼ aiI þ ðaj � aiÞ
0 0

0 I

0
@

1
A

0
@

1
A

substituting J into Equation (47) we have

VT
mYr

#ZZ
T
Q4

#ZZYrVm ¼ �g2ð2aiF þ ðaj � aiÞ *FFÞ:

If condition (46) is satisfied, we therefore obtain (43). &

Remark 11

1. Condition (46) can be easily checked by solving an LMI feasibility problem [29]. Since F>0,
we note that if the distance between ai and aj is small enough, then condition (46) is satisfied.
This means that if the unstable zeros are located close each other we can obtain a lower
order H1 controller.

2. Compared with the algorithm presented in Section 3, this result has an advantage that if the
system S21 has distinct zeros on the positive real axis, we can further investigate lower order
H1 controllers.

Next, we consider the case where the system S21 has complex zeros on the right half-plane and
the complex mode is included in J.

Theorem 6
Suppose that the H1 control problem for S with assumptions A1–A4 and (A,B2,C2) is
stabilizable and detectable is solvable. Furthermore, suppose that we choose the matrix Vm in
(36) such that the matrix J is represented by

J ¼ blockdiag
a �b

b a

0
@

1
A; . . . ;

a �b

b a

0
@

1
A

0
@

1
A ð48Þ

where a and b with a > 0, a, b 2 R are, respectively, the real part and the imaginary part of an
invariant zero of S21. Then, the H1 controller can be reduced to the order nk�m while
preserving the closed-loop performance g if the following condition

b 2 fe > 0jaF þ e *FF > 0g ð49Þ

is satisfied. Here, F is a positive-definite Hermitan matrix and is defined as

F ¼ #VV
�
mV

T
mYr

#ZZ
T
Vm

#VVm
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where #VVm 2 C
m�m is a non-singular matrix which satisfies

J #VVm ¼ #VVm
#LLm

#LLm ¼
lIm=2 0

0 %llIm=2

0
@

1
A

l ¼ aþ jb:

ð50Þ

By using submatrices of

F ¼
F1 F2

F�
2 F4

 !

we define the matrix *FF by

*FF ¼
0 �jF2

jF�
2 0

 !
:

Proof
As in the proof of Theorem 5, we show that inequality (43) holds if condition (49) is satisfied
under the assumption that the H1 problem is solvable.

As is obtained in the proof of Theorem 4, if the H1 problem is solvable, Equation (41) holds.
From (36) and (41) we have

VT
mYr

#ZZ
T
Q4

#ZZYrVm ¼ �g2ðJTVT
mYr

#ZZ
T
Vm þ VT

m
#ZZYrVmJÞ:

Also from (50) and the above equation we obtain

#VV
�
mðV

T
mYr

#ZZ
T
Q4

#ZZYrVmÞ #VVm ¼ �g2ð #LL
�
mF þ F #LLmÞ: ð51Þ

Since #LLm is represented by

#LLm ¼ aI þ b
jI 0

0 �jI

 !

substituting #LLm into Equation (51) we have

#VV
�
mðV

T
mYr

#ZZ
T
Q4

#ZZYrVmÞ #VVm ¼ �2g2ðaF þ b *FFÞ:

Since #VVm is non-singular, if condition (49) is satisfied, we obtain (43). &

Remark 12

1. Condition (49) can be easily checked by solving an LMI feasibility problem [29]. Since F>0,
we note that if the imaginary part of the zero is small enough then condition (49) is satisfied.
This means that if the complex unstable zeros are located closer to the real axis, we can
obtain a lower order H1 controller.

2. Compared with the algorithm presented in Section 3, this result has an advantage that
if the system S21 has complex zeros in Cþ, we can further investigate a lower order H1
controller.
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5. NUMERICAL EXAMPLES

Consider the system

S

’xx ¼ 3xþ ð0:5 0:5Þ *wwþ u

z ¼ 2xþ u

y ¼

1

0

0

0
BBBB@

1
CCCCAxþ

0 0

1 0

0 1

0
BBBB@

1
CCCCA *ww

8>>>>>>>>>>>><
>>>>>>>>>>>>:

The signal *ww is the output of the system

Sd

’xx ¼
E 0

0 E

0
@

1
Axþ

F 0

0 F

0
@

1
Aw

*ww ¼
G 0

0 G

0
@

1
Axþ

H 0

0 H

0
@

1
Aw

8>>>>>>>><
>>>>>>>>:

where E, F, G and H are

E ¼
�3 1

�2 0

0
@

1
A; F ¼

�l1 � l2 � 3

l1l2 � 2

0
@

1
A; G ¼ ð 1 0Þ; H ¼ 1:

Since the system matrix of Sd loses its normal rank at the eigenvalues of the matrix

E � FG 0

0 E � FG

0
@

1
A

we can see that Sd has zeros at l1 and l2. The whole system is illustrated in Figure 1. The system
is an example where the subsystem from w to y has zeros at l1 and l2, and it has the direct-
feedthrough term of column full rank. In a state-space form, the system is represented by a fifth-
order dynamical equation. For this system we consider the H1 control problem where the
parameter g is given as g ¼ 3:0.

By using our technique given in this paper, we obtain the following result:

1. In the case where the zeros are given by l1=l2=3, we obtain a first order H1 controller

’ZZ ¼ �3Zþ ð 0 0:12 0:12Þy

u ¼ 3:4Zþ ð�4:5 �0:83 �0:83 Þy

The H1 norm of the closed-loop system is 2.37.
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2. In the case where the zeros are given by l1=3 and l245.3, we can obtain a second-order
H1 controller. In particular, given l2=5.3 the H1 controller is

’ZZ ¼
�3:7 1:1

1:1 �4:6

0
@

1
AZþ

0 �0:4 0:13

0 0:6 0:084

0
@

1
Ay

u ¼ 0 9:4
� �

Zþ ð�6:8 �2:5 �1:6 Þy

Then the H1 norm of the closed-loop system is 2.99. On the other hand, if the zero l2 is
more than 5.3, we cannot find a second-order H1 controller with our technique.

3. In the case where the zeros are given by l1=3+jb and l2 ¼ %ll1 where b42.8, we can obtain
a second-order H1 controller. In particular, given b=2.8 the H1 controller is

’ZZ ¼
�3:6 �1:7

4:9 �2:4

0
@

1
AZþ

0 0:34 0:11

0 �0:49 �1:3

0
@

1
Ay

u ¼ 0 11
� �

Zþ ð�11 �2:5 0:48 Þy

Then theH1 norm of the closed-loop system is 2.99. On the other hand, if b is more than 2.8, we
cannot find a second-order H1 controller with our technique.

6. CONCLUSION

In this paper, we have established the existence of a new class of reduced-order H1 controllers
for the cases of continuous time and discrete time. The reduced-order H1 controllers are
characterized by unstable invariant zeros of the system S21. An algorithm to obtain the reduced-
order H1 controllers is presented in both cases on the basis of the LMI approach. This
algorithm uses a bilinear transformation and depends on choosing one real unstable zero.

In order to better understand the relation between unstable zeros and the controller order
reduction, we use a controller parametrization obtained from the fundamental two-ARE
approach in continuous-time case. The mechanism of the controller order reduction is explained
with finite pole-zero cancellations in the parametrized controller. Moreover, in the cases where
the unstable zeros are distinct and are located in Rþ, or are located in Cþ we obtain some
conditions under which the order of the H1 controller is further reduced.

On the other hand, there are some open problems which should be further investigated. In our
state-space analysis, we have assumed that the matrix D21 has full column rank. However, this

Figure 1. The complete system.
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assumption is not necessary, hence an analysis to remove this assumption is left as the subject of
further research. Stable invariant zeros have already been discussed in References [5, 6] from the
view point of avoiding stable pole-zero cancellation between the plant and the H1 controller.
These analyses are related to the present analysis. Hence, it is also interesting to analyse stable
invariant zeros by using the presented state-space analysis. We know that as the control
performance reaches the optimal level g� the classical central controller reduces its order [7, 27,
28, 30]. This is because we have a pole-zero cancellation at infinity. It is not clear how to
combine this with a reduced-order observer.
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