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Abstract

In the edge vector finite element solution of the frequency domain Maxwell equations,
the presence of a large kernel of the discrete rotor operator is known to ruin convergence of
standard iterative solvers. We extend the approach of [1] and, using domain decomposition
ideas, construct a multilevel iterative solver where the projection with respect to the kernel
is combined with the use of a hierarchical representation of the vector finite elements.

The new iterative scheme appears to be an efficient solver for the edge finite element
solution of the frequency domain Maxwell equations. The solver can be seen as a vari-
able preconditioner and, thus, accelerated by Krylov subspace techniques (e.g. GCR or
FGMRES). We demonstrate the efficiency of our approach on a test problem with strong
jumps in the conductivity.
Key words: Nédélec vector finite elements; kernel of the rotor operator; multilevel
iterative solvers; hierarchical preconditioners; domain decomposition.
AMS Subject Classification: 65N22, 65N30, 65N55.

1 Introduction

When modeling electromagnetic phenomena, the so-called frequency domain approach is often
used, meaning that the electromagnetic field is assumed to depend harmonically on time.
This is usually justified by the nature of the field sources [2, 3]. In many modern realistic
applications the electromagnetic fields have to be modeled in inhomogeneous media consisting
of different materials, i.e. in media with jumps in physical properties such as conductivity and
dielectric permittivity. Moreover, this often has to be done for a wide frequency range. The
complexity of the models requires development and implementation of special computational
schemes which satisfy certain (normal or tangential) continuity conditions of vector electric
and magnetic fields across the material interfaces [2, 3, 4]. Applied to the Maxwell equations,
the frequency domain approach is often combined with the reduction to a second-order partial
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differential equation of the Helmholtz type with respect to the vector complex-valued electric
or magnetic field.

Nédélec [5, 6] designed two families of finite elements for the Maxwell equations where a
specially chosen basis of vector functions provides the proper type of continuity of the electric
or magnetic field across the boundary between the elements. These continuity properties are
preserved if the material properties (such as conductivity and permittivity) differ from element
to element. A comprehensive study of different variational formulations for electromagnetic
problems and their discrete analogs is done in [7] where the main mathematical tools used
are differential forms, De Rham complex and Helmholtz decomposition.

Spectral properties of the matrix resulting from the vector finite element discretization of
this equation are characterized by the presence of a large kernel of the discrete rotor operator
[1, 8]. Due to large dimension of the kernel, application of standard preconditioners usually
does not give a reduction in the number of iterations or even may lead to divergence of the
iterative process [1, 9, 10].

One way to tackle this problem is proposed in [1, 11], where a number of multigrid and
multilevel solvers are developed. The idea is to decompose the space where the solution is
searched for into the kernel and its orthogonal complement [1]. Thus, the high frequency
modes of the solution and the components of the solution belonging to the kernel can be han-
dled separately by a suitable smoothing procedure. This approach makes efficient multigrid
solution of the discretized Maxwell equations possible. Based on the theoretical framework
of [12] and the concepts of [1], the authors of [13] further explore the potential of multigrid
methods for vector finite element solution of the frequency domain double rotor Maxwell
equations. However, in [13] only the case of zero conductivity is considered. This is an easy
test case (see the results presented in Section 9) though the matrix of the resulting linear
system is then still indefinite.
We note that similar problems arise in numerical solution of the scalar Helmholtz equation
(see e.g. [14, 15]).

The algorithms presented in this paper are based on the concepts of [1] and aim to ex-
tend them in a natural way. We develop a two-level iterative solver with a kernel projection
procedure and a multiplicative iterative solver. The latter solver is based on the domain
decomposition ideas and uses a hierarchical representation of the first order Nédélec elements
of the second type. When applied in combination with the two-level solver it is shown to
be a very efficient tool for higher order vector finite element solution of the frequency do-
main Maxwell equations in three-dimensional inhomogeneous media. This is confirmed by
numerical experiments presented in this paper.

The structure of the paper is as follows. In Section 2 the Maxwell equations are posed.
The vector variational formulation is discussed in Section 3, and in Section 4 the vector
finite elements are presented. In Section 5 we construct a hierarchical representation of finite
element bases and we formulate the discretized problem in Section 6. The two-level and
multiplicative iterative solvers are presented in Sections 7 and 8. Numerical experiments are
described in Section 9 whereafter the conclusions are drawn.
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2 Mathematical model

The behavior of a time-harmonic electromagnetic field is described by the following system
of the Maxwell equations:

rot E + iωB = 0, (1)

rot H − iωD − J = J0, (2)

divD = ρ, (3)

divB = 0, (4)

divJ + iωρ = 0, (5)

where E is the intensity of the electric field, D is the electric induction, H is the intensity
of the magnetic field, B is the magnetic induction, J is the current density, J0 is the given
source current density, ρ is the density of electric charges, ω is the cyclic frequency, ε is the
dielectric permittivity, µ is magnetic permeability, σ is the electric conductivity and i is the
imaginary unit. Here, E, B, D and H are three-dimensional vector fields defined in a domain
Ω ⊂ R3, and ε, µ and σ are, in general, three-dimensional positive semidefinite tensors. The
constitutive relations and Ohm’s law read:

D = εE, (6)

B = µH , (7)

J = σE. (8)

We assume that the following consistency condition holds for the Maxwell equations:

divJ0 = 0. (9)

Taking into account (3), (6), and (8), we can rewrite conservation law (5) as

div((σ + iωε)E) = 0. (10)

Furthermore, using (6)–(8), we reduce the system of equations (1) and (2) to a second order
equation in the complex-valued vector field E:

rot (µ−1rotE) + k2E = −iωJ0, k2 = iωσ − ω2ε. (11)

On the interface Γ between different materials the following continuity conditions hold:

[n × E]|Γ = 0, [n · (σ + iωε)E]|Γ = 0,

where n is a normal vector with respect to the surface Γ.
In this paper we consider the case where the conductivity σ and the permittivity ε are

discontinuous scalar functions on Ω and the permeability µ is constant. We assume that
the domain Ω is bounded and has a perfectly conducting Lipschitz-continuous boundary ∂Ω,
namely,

n × E|∂Ω = 0, (12)

where n is the unit outwards normal vector to ∂Ω. Without loss of generality, we assume for
simplicity that Ω is a polyhedral domain, i.e. it can be represented as a union of tetrahedra.
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3 Vector variational formulation

Introduce the following spaces [5, 6]

H(rot; Ω) =
{

v ∈ [L2(Ω)]3 : rot v ∈ [L2(Ω)]3
}

,

H0(rot; Ω) = {v ∈ H(rot; Ω) : v × n = 0} ,

equipped with the norm

‖u‖2
rot,Ω =

∫

Ω
u · udΩ +

∫

Ω
(rot u) · (rot u) dΩ

and inner product

(u,v) =

∫

Ω
u · v dΩ.

Here and throughout the rest of the paper, functional spaces are introduced over the complex
numbers. For system (11),(12), we consider the following variational formulation [1]:

Problem 1 Find E ∈ H0(rot; Ω) such that for all v ∈ H0(rot; Ω)

(rot (µ−1rot E),v) + (k2E,v) = −(iωJ0,v). (13)

With the help of a Green formula, the first term in (13) can be rewritten as
∫

Ω
rot (µ−1rot E) · v dΩ =

∫

Ω
(µ−1rotE) · (rot v) dΩ −

∫

∂Ω
µ−1 [(v × rot E) · n] dS,

where, due to the properties of the introduced spaces, the last term in the right-hand side
equals zero. This yields the following vector variational formulation:

Find E ∈ H0(rot; Ω) such that for all v ∈ H0(rot; Ω)

(µ−1rotE, rot v) + (k2E,v) = −(iωJ0,v). (14)

Let the following embedding property hold

gradφ ∈ H(rot; Ω), for all φ ∈ H1(Ω), (15)

where H1(Ω) is the Sobolev space. Since variational problem (14) holds for all v ∈ H(rot; Ω),
according to (15), we can take v = gradφ, φ ∈ H1(Ω). Then (14) takes the form

(µ−1rotE, rot gradφ) + (k2E, gradφ) = −(iωJ0, gradφ), for all φ ∈ H1(Ω).

Taking into account (9) and the property rot gradφ ≡ 0, we obtain

((ω2ε+ iωσ)E, gradφ) = 0, for all φ ∈ H1(Ω), (16)

((ω2ε+ iωσ)E, gradφ) =

∫

Ω
(ω2ε+ iωσ)E · gradφdΩ

=

∫

Ω
div

[

(ω2ε+ iωσ)E
]

φdΩ.
(17)

It follows from (17) that (16) is a variational analog of conservation law (10). In other words,
the solution of variational problem (14) satisfies conservation law (5) in a weak sense.
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4 Nédélec elements of the first and second type

Let a partition T of the domain Ω into a number of nonintersecting elements K be given:

Ω =
⋃

K∈T

K, Ki ∩ Kj = ∅ for all Ki,Kj ∈ T, i *= j.

Assume that T is built in such a way that the physical properties of the medium (determined
by the parameters ε, µ, and σ) are constant within each element K. Let hK be the diameter
of the element K. Define the characteristic size of the partition T as

h = max
K∈T

hK .

To build discrete analogs of the variational formulations posed in Section 3, we need to in-
troduce finite-dimensional subspaces of the space H(rot; Ω) and define interpolation functions
to approximate E. In this paper, Nédélec spaces of vector elements are taken as such finite-
dimensional subspaces [5, 6]. These subspaces are conforming in H(rot; Ω).

To define a finite element, one needs to specify (see e.g. [3, 5]): (i) a domain of the finite
element K, (ii) a space P (K) of polynomials on K, (iii) a space A of degrees of freedom which
are linear functionals on P (K).

For vector finite elements on R3 the polynomial space P is a subspace of C∞(K̄)3. For
each u ∈ C∞(K̄)3 there exists a unique interpolant Πu ∈ P such that

αi(u − Πu) = 0, ∀αi ∈ A.

In [5] the following result is proved:
Lemma 1 Finite element (K,A, P ) is conforming in H(rot; Ω) if and only if

(i) for any two adjacent elements K1 and K2 with a common face f , tangential components
of interpolants Π1u and Π2u (defined on K1 and K2, respectively) coincide on the face
f , or, equivalently,

(ii) for any degree of freedom αi defined on the face f , it holds: if αi(p) = 0, p ∈ P then
(n × p)|f = 0, where n is the normal vector on f .

In other words, vector finite elements that are conforming in H(rot; Ω) should guarantee
tangential continuity of the field across the inter-element interfaces. There are no restrictions
on the normal components of the field which effectively means that the normal components
can be discontinuous. When modeling the electric field E, this is a key property of the vector
finite elements.

Define first type Nédélec vector finite elements of the kth degree for tetrahedral and
hexahedral elements [5]. Let K be a tetrahedron. The space A of degrees of freedom consists
of

(a)
∫

e
(u · t)q ds, ∀q ∈ Pk−1(K),

(b)
∫

f

u × n · q dγ, ∀q ∈ (Pk−2(K))2,

(c)
∫

K
u · q dx, ∀q ∈ (Pk−3(K))3,
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where Pk(K) is the space of polynomials on K of degree not greater than k and t is the unit
tangential vector along edge e. Nédélec proved [5] that the number of degrees of freedom
defined in (a) is 6k, in (b) is 4k(k − 1) and in (c) is 1

2k(k − 1)(k − 2). This means that the
degrees of freedom of a first-type element are defined on the element edges for k = 1, on the
element edges and faces for k = 2 and on the element edges, faces and inside the element for
k ! 3.

In [6], Nédélec extended the definition of the degrees of freedom in a vector finite element
by introducing vector finite elements of the second type. The degrees of freedom of such an
element on a tetrahedron are defined as

(a)
∫

e(u · t)q ds, ∀q ∈ Pk,

(b)
∫

f u · q dγ, ∀q ∈ Gk−1(f),

(c)
∫

K u · q dx, ∀q ∈ Gk−2(K),

where Gk = (Pk−1)3 ⊕ P̂k−1 · r, with P̂k being the space of the polynomials of degree k,
r = (x, y, z)T . Here, the number of degrees of freedom defined by expression (a) for the edges
is 6(k + 1), by expression (b) for the faces is 4(k − 1)(k + 1), defined by expression (c) inside
the tetrahedra is 1

2(k−2)(k−1)(k+1). The interpolation error of the vector Nédélec elements
of the second type is O(hk+1) [6].

It follows from the definition of Nédélec elements of the first and second type that a first
order element of the first type is a zero order element of the second type. Note that zero
and first order elements of the second type have only degrees of freedom associated with the
edges. For k = 0, instead of the definition given above, the degrees of freedom can be defined
by prescribing a value of the tangential component of the field in any arbitrary point of the
associated edge. For k = 1, this can be done by prescribing values in two points. This means
also that the first order elements of the first type approximate the field tangential component
by constant values, whereas the first order elements of the second type by linear functions.

In this paper, first order Nédélec vector finite elements of the first and second type are
used.

5 Hierarchy of the vector basis functions

For a vector function u(x, y, z, ) its interpolant uh is defined on a tetrahedral element K as

uh(x, y, z) =
∑

i∈S

αi(u)wh
i (x, y, z), (18)

where αi are the degrees of freedom, S is the index set of the degrees of freedom, wh
i are the

basis functions, and (x, y, z) is a point in R3.
Let pi = (xi, yi, zi), i = 1, 2, 3, 4 be the coordinates of an arbitrary tetrahedron K in

the partition T (see Figure 1) and λi(x, y, z), i = 1, 2, 3, 4 the three-dimensional barycentric
coordinates of the point (x, y, z) ∈ K with respect to the tetrahedron vertices. Then the local
first order vector basis functions wK

j of the first type are defined as

wK
j = λi1∇λi2 − λi2∇λi1, j = 1, . . . , 6, (19)
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Figure 1: Local numeration of vertices and edges in a tetrahedral finite element.

where the edge j points from the vertex i1 to the vertex i2. The correspondence between the
local edge numbers j and the local vertex numbers i1, i2 is shown in Figure 1. For wK

j it
holds

tj · w
K
j =

1

lj
, (20)

where tj and lj are respectively the unit tangential vector and the length of the edge j. Define
the degrees of freedom as (cf. (18)):

αj(u) = (u(xc
j , y

c
j , z

c
j) · tj)lj , j = 1, . . . , 6, (21)

where (xc
j , y

c
j , z

c
j) are the coordinates of the center point of edge j. Besides (21), there are

other ways to define αj(u), for example,

αj(u) =
lj
2

(

u(xi1 , yi1 , zi1) + u(xi2 , yi2 , zi2)
)

· tj, j = 1, . . . , 6. (22)

The first way of computing αj(u) (cf. (21)) is cheaper, since it requires one evaluation of
u(x, y, z) per edge. However, as will be shown later, choice (22) has advantages with respect
to constructing the hierarchical basis.

The global basis function wjglobal
of the edge with the global number jglobal is defined as

wjglobal
(x, y, z) =

{

wK
jlocal

(x, y, z), if edge jglobal ∈ K,

0, if edge jglobal *∈ K,
(23)

where K is the element of the partition T such that (x, y, z) ∈ K and jlocal is the local number
of the edge jglobal in the element K.

We will denote spaces of the first order basis functions of the first type by Hh(rot; Ω; 1).
Weak form (16) of the charge conservation law remains to hold true after discretization

due to some embedding properties of the discrete finite element spaces. Indeed, consider
Hh(rot; Ω; 1) and introduce a discrete subspace Hh(grad;Ω; 1) of local basis functions taken
to be barycentric coordinate functions λi, i = 1, 2, 3, 4:

φK
i = λi, i = 1, 2, 3, 4. (24)
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It is easy to check that
∇φK

1 = ∇λ1 = −wK
1 − wK

2 − wK
3 ,

∇φK
2 = ∇λ2 = wK

1 − wK
4 + wK

5 ,

∇φK
3 = ∇λ3 = wK

2 + wK
4 − wK

6 ,

∇φK
4 = ∇λ4 = wK

3 − wK
5 + wK

6 ,

in other words, gradients of the functions from Hh(grad;Ω; 1) belong to Hh(rot; Ω; 1):

u ∈ Hh(grad;Ω; 1) ⇒ ∇u ∈ Hh(rot; Ω; 1). (25)

We now introduce a space Hh(rot; Ω; 2) of local first order vector basis functions of the second
type:

wK
j,1 = λi1∇λi2 , wK

j,2 = λi2∇λi1, j = 1, . . . , 6, (26)

where the edge j points from the vertex i1 to the vertex i2 and, for each edge j, two local
basis functions wK

j,1 and wK
j,2 are defined. For correspondence between the local edge and

vertex numbers see Figure 1. Relations similar to (20) can be obtained:

t1 · w
K
1,1 =

1

l1
λ1, . . . , t6 · w

K
6,2 =

1

l6
λ4,

where tj is the unit tangent vector along edge j. For functions from Hh(rot; Ω; 2), introduce
degrees of freedom in (18) as

αj,1(u) = (u(xi1 , yi1, zi1) · tj)lj ,

αj,2(u) = (u(xi2 , yi2, zi2) · tj)lj , j = 1, . . . , 6,

so that two degrees of freedom are associated with each edge j. Global functions of the
subspace Hh(rot; Ω; 2) are defined similarly to (23).

A discrete subspace Hh(grad;Ω; 2) corresponding to Hh(rot; Ω; 2) consists of scalar second
order local basis functions

φK
1 = λ1(2λ1 − 1), φK

2 = λ2(2λ2 − 1),

φK
3 = λ3(2λ3 − 1), φK

4 = λ4(2λ4 − 1),

φK
5 = 4λ1λ2, φK

6 = 4λ1λ3,

φK
7 = 4λ1λ4, φK

8 = 4λ2λ3,

φK
9 = 4λ2λ4, φK

10 = 4λ3λ4.

Let a discrete space M of finite elements be a direct sum of spaces V and W :

M = V ⊕ W.

We will call a basis of M hierarchical if it is a union of bases of the spaces V and W [16].
To build a hierarchical basis of Hh(rot; Ω; 2), we represent Hh(rot; Ω; 2) as

Hh(rot; Ω; 2) = Hh(rot; Ω; 1) ⊕ W,
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where the space W remains to be defined. It follows from (19) and (26) that W should be a
space spanned by the functions

wK
1 = λ1∇λ2 + λ2∇λ1, wK

2 = λ1∇λ3 + λ3∇λ1,

wK
3 = λ1∇λ4 + λ4∇λ1, wK

4 = λ2∇λ3 + λ3∇λ2,

wK
5 = λ4∇λ2 + λ2∇λ4, wK

6 = λ3∇λ4 + λ4∇λ3.

This yields the following hierarchical basis for Hh(rot; Ω; 2):

wK
1,1 = λ1∇λ2 − λ2∇λ1, wK

2,1 = λ1∇λ3 − λ3∇λ1,

wK
3,1 = λ1∇λ4 − λ4∇λ1, wK

4,1 = λ2∇λ3 − λ3∇λ2,

wK
5,1 = λ4∇λ2 − λ4∇λ2, wK

6,1 = λ3∇λ4 − λ4∇λ3,

wK
1,2 = λ1∇λ2 + λ2∇λ1, wK

2,2 = λ1∇λ3 + λ3∇λ1,

wK
3,2 = λ1∇λ4 + λ4∇λ1, wK

4,2 = λ2∇λ3 + λ3∇λ2,

wK
5,2 = λ4∇λ2 + λ2∇λ4, wK

6,2 = λ3∇λ4 + λ4∇λ3.

(27)

The degrees of freedom for the basis functions wK
j,1, j = 1, . . . , 6, are defined according to

(22) and for the basis functions wK
j,2 as

αj,2(u) =
lj
2

(

u(xi2 , yi2 , zi2) − u(xi1 , yi1 , zi1)
)

· tj , j = 1, . . . , 6.

We can now build a hierarchical basis for the space Hh(grad;Ω; 2). Since embedding prop-
erty (25) holds for Hh(grad;Ω; 1) and Hh(rot; Ω; 1), we take Hh(grad;Ω; 1) as the first direct
summand for Hh(grad;Ω; 2). Then, the local basis functions of the second direct summand
are

φK
1 = λ1λ2, φK

2 = λ1λ3,

φK
3 = λ1λ4, φK

4 = λ2λ3,

φK
5 = λ2λ4, φK

6 = λ3λ4.

(28)

Combining basis functions (24) and (28), we obtain the following hierarchical basis for Hh(grad;Ω; 2):

φK
1 = λ1, φK

2 = λ2,

φK
3 = λ3, φK

4 = λ4,

φK
5 = λ1λ2, φK

6 = λ1λ3,

φK
7 = λ1λ4, φK

8 = λ2λ3,

φK
9 = λ2λ4, φK

10 = λ3λ4.

(29)

It is not difficult to see that gradients of the scalar basis functions of Hh(grad;Ω; 2) are linear
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combinations of the basis functions of Hh(rot; Ω; 2). Indeed,

∇φK
1 = ∇λ1 = −wK

1,1 − wK
2,1 − wK

3,1,

∇φK
2 = ∇λ2 = wK

1,1 − wK
4,1 + wK

5,1,

∇φK
3 = ∇λ3 = wK

2,1 + wK
4,1 − wK

6,1,

∇φK
4 = ∇λ4 = wK

3,1 − wK
5,1 + wK

6,1,

∇φK
5 = ∇(λ1λ2) = wK

1,2,

∇φK
6 = ∇(λ1λ3) = wK

2,2,

∇φK
7 = ∇(λ1λ4) = wK

3,2,

∇φK
8 = ∇(λ2λ3) = wK

4,2,

∇φK
9 = ∇(λ2λ4) = wK

5,2,

∇φK
10 = ∇(λ3λ4) = wK

6,2.

We thus proved that

u ∈ Hh(grad;Ω; 2) ⇒ ∇u ∈ Hh(rot; Ω; 2). (30)

In the remainder of the paper the hierarchical bases of Hh(rot; Ω; 2) and Hh(grad;Ω; 2) on
tetrahedral meshes are used.

6 Discrete variational formulations

To build a discrete analog of the variational problem, we approximate the elements from
H(rot; Ω) by the elements from the discrete subspace Hh(rot; Ω). Consider the following
discrete analog of variational Problem 1:

Discrete variational problem 1 For given J0,re ∈ H(rot; Ω) find Eh
re ∈ Hh

0(rot; Ω) and
Eh

im ∈ Hh
0(rot; Ω) such that for all vh

1 ∈ Hh
0(rot; Ω) and vh

2 ∈ Hh
0(rot; Ω)

(µ−1rot Eh
re, rot vh

1) − (ω2εEh
re,v

h
1) − (ωσEh

im,vh
1) = 0,

(µ−1rotEh
im, rot vh

2) − (ω2εEh
im,vh

2) + (ωσEh
re,v

h
2) = (ωJ0,re,v

h
2).

Since embedding properties (25),(30) hold for the built discrete subspaces Hh(grad;Ω) and
Hh(rot; Ω), the approximate solution Eh = Eh

re + iEh
im satisfies the following weak form of

the charge conservation law (cf. (10),(16))

(−ωεEh
im − σEh

re,∇uh
1) = 0 for all uh

1 ∈ Hh
0(grad;Ω),

(ωεEh
re − σEh

im,∇uh
2) = 0 for all uh

2 ∈ Hh
0(grad;Ω).

Expanding the real and imaginary components of the unknown field Eh into the basis
functions of Hh

0(rot; Ω) and choosing the test functions vh
1 and vh

2 as the same basis functions,
we arrive at the following linear system

Ax = b, A =

[

D + B −C
C D + B

]

, x =

[

ere

eim

]

, b =

[

0
f

]

, (31)
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where ere and eim are the vectors containing the basis expansion coefficients of Eh
re and Eh

im,
respectively, and the entries of the matrices D, B and C and the vector f read

[D]i,j = (µ−1rotwh
i , rot wh

j ), [B]i,j = −(εω2wh
i ,wh

j ),

[C]i,j = (σωwh
i ,wh

j ), [f ]i = (ωJ0,re,w
h
i ).

We apply the following preconditioner

Ãx = b̃, Ã = P−1A, b̃ = P−1b, P =

[

Diag(D + B) −Diag(C)
Diag(C) Diag(D + B)

]

, (32)

where Diag(·) denotes the diagonal part of a matrix. In the sequel of the paper we assume
that this preconditioner is always applied first, before any action is taken.

7 Two-level iterative solver

7.1 Description of the two-level solver

Let system (32) be n × n. For simplicity of notation, we omit the tilde sign in (32):

Ax = b. (32′)

Let V be an m-dimensional subspace of Rn, m " n and x0 ∈ Rn an initial guess vector.
Consider the Galerkin orthogonal correction to the approximate solution x0 by an element of
V :

For a given initial guess vector x0, find z ∈ V such that the residual vector of the new
approximate solution x1 = x0 + z is orthogonal to V :

(b − Ax1, v) = 0, for all v ∈ V. (33)

If P is an n × m matrix whose columns span V , then (33) can be rewritten as

P T (b − Ax1) = 0, (34)

where x1 = x0 + z, z = Py ∈ V for a certain vector y ∈ Rm. Since

P T (b − Ax1) = P T (b − A(x0 + Py)) = P T (b − Ax0 − APy) =

= P T (b − Ax0) − P T APy = 0,

we have
y = (P T AP )−1P T r0, (35)

where r0 = b − Ax0 is the initial residual vector. Note that the matrix P T AP is nonsingular
because P is assumed to be of full rank. Introducing the error vectors ε0 = x − x0 and
ε1 = x − x1 and noticing that r0 = Aε0, we obtain

ε1 = x − x1 = x − x0 − P (P T AP )−1P T r0

= ε0 − P (P T AP )−1P T Aε0 = (I − P (P T AP )−1P T A)ε0,
(36)

where I is the identity matrix. In a similar way we get the following relation for the residual
vectors:

r1 = (I − AP (P T AP )−1P T )r0. (37)

11



Two-level algorithm SV (A, b, x0, ν)

r0 = b − Ax0,

for i = 1, 2, . . .

g = P T ri−1,

y ≈ (P T AP )−1g ( call y = S(P T AP, g, γP ) ),

xi−1/2 = xi−1 + Py,

ri−1/2 = b − Axi−1/2,

z ≈ A−1ri−1/2 ( call z = S(A, ri−1/2, γ) ),

xi = xi−1/2 + z,

ri = b − Axi,

if ‖ri‖ < ν‖b‖ then stop, return xi,

end for

Figure 2: An algorithmic description of the two-level iterative solver.

Assume that in the correction step the system with the matrix P T AP is solved approximately,
so that instead of (P T AP )−1P T r0 we have

(P T AP )−1P T r0 + δ,

where δ is an error vector. Replacing in (36), (37) the term (P T AP )−1P T r0 by (P T AP )−1P T r0+
δ, we obtain

ε1 = (I − P (P T AP )−1P T A)ε0 + Pδ,

r1 = (I − AP (P T AP )−1P T )r0 + APδ.
(38)

Note that if the vector (P T AP )−1P T r0 is computed approximately by solving the linear
system (P T AP )u = P T r0 inexactly with an iterative method, then the residual vector p =
P T r0 − (P T AP )u is related to δ as δ = −(P T AP )−1p. In other words, although δ is not
readily available, it can be made arbitrarily small in norm by controlling the norm of the
residual p.

Denote by S(A, b, γ) an iterative solver which, for a given matrix A, vector b and scalar
γ > 0, delivers an approximate solution x̃ to the linear system Ax = b such that

‖b − Ax̃‖ < γ‖b‖.

We assume, by definition of S(A, b, γ), that the initial guess vector in the solver S(A, b, γ) is
always taken zero. Based on the considered inexact Galerkin orthogonal correction procedure,
we can formulate a two-level iterative solver presented in Figure 2.

If the inner iterative solver z = S(A, ri−1/2, γ) in this algorithm converges then

‖ri‖ < γ‖ri−1/2‖ = γ
‖ri−1/2‖

‖ri−1‖
‖ri−1‖

and, for convergence of the algorithm, it is sufficient to require that

γ
‖ri−1/2‖

‖ri−1‖
< 1 ⇔ γ <

‖ri−1‖

‖ri−1/2‖
.

12



Thus, algorithm SV (A, b, x0, ν) converges if, at each iteration i, γ is chosen as

γ = α
‖ri−1‖

‖ri−1/2‖
,

with α being a chosen scalar, 0 < α < 1. Note that, with this choice of γ, computational work
in the algorithm SV (A, b, x0, ν) varies with the iteration number because the inner iterative
solvers may require a different number of iterations for convergence.

Other, simpler ways of choosing γP and γ can work in practice. In all experiments
presented in this paper we simply take fixed values γP = 0.1 and γ = 0.9. The values are
chosen experimentally and work well for a wide range of test problems. Indeed, it appears to
be important for convergence to solve the projected system with the matrix P T AP relatively
accurately. However, the main computational costs in the two-level solver are connected with
the step z ≈ A−1ri−1/2, even though the value γ = 0.9 gives a mild stopping criterion.

We note that convergence of inexact or the so-called inner-outer iterative schemes has
been extensively studied [17, 18, 19], especially in connection with a proper choice of stopping
criteria in the inner solvers. Incorporating one of the approaches proposed in the literature
may further tune the performance of the two-level solver. This is, however, left beyond the
scope of this paper.

7.2 Choice of the subspace V

Consider now the application of the two-level iterative solver to linear system (32′). Since
the matrix A of linear system (31) is nonsymmetric, we use the stabilized biconjugate gra-
dient iterative BiCGSTAB [20, 21, 22] as the inner iterative solvers S(P T AP, g, γP ) and
S(A, ri−1/2, γ) in the two-level solver (cf. Figure 2).

It is sensible to choose the subspace V as the kernel space Nh(rot; Ω) of the rotor operator
in the space Hh(rot; Ω):

Nh(rot; Ω) =
{

u ∈ Hh(rot; Ω) : rot u = 0
}

.

Due to the embedding property (cf. (25),(30)) and the fact that rot grad ≡ 0, we have

Hh(grad;Ω) = Nh(rot; Ω).

With this choice of V , the columns of the matrix P (recall that spanP = V ) are the coordinates
of the gradients of the basis functions of Hh

0(grad;Ω) with respect to the basis of Hh
0(rot; Ω).

This means that the linear system

P T APu = P T r (39)

is equivalent to the following variational problem:
For given F 0,re, F 0,im ∈ H(rot; Ω) find Uh

re ∈ Hh
0(grad;Ω) and Uh

im ∈ Hh
0(grad;Ω) such that

for all vh
1 ∈ Hh

0(grad;Ω) and vh
2 ∈ Hh

0(grad;Ω)

(µ−1rot gradUh
re, rot gradvh

1 ) − (ω2εgradUh
re, gradvh

1 ) − (ωσgradUh
im, gradvh

1 ) = (F 0,im, gradvh
2 ),

(µ−1rot gradUh
im, rot gradvh

2 ) − (ω2εgradUh
im, gradvh

2 ) + (ωσgradUh
re, gradvh

2 ) = (F 0,re, gradvh
2 ),

13



which, due to the property rot grad ≡ 0, can be simplified to

−(ω2εgradUh
re, gradvh

1 ) − (ωσgradUh
im, gradvh

1 ) = (F 0,im, gradvh
2 ),

−(ω2εgradUh
im, gradvh

2 ) + (ωσgradUh
re, gradvh

2 ) = (F 0,re, gradvh
2 ).

We note that the matrix of projected linear system (39) can be obtained by the finite element
technique rather than by direct matrix multiplications, which are expensive.

The two-level iterative solver with this choice of the subspace V will be denoted by
SNh(rot;Ω)(A, b, x0, ν).

8 Multiplicative iterative solver

8.1 Description of the solver

Let V1, V2 ∈ Rn be subspaces such that

V1 ∪ V2 = R
n, V1 ∩ V2 *= ∅

and let the columns of matrices P1 and P2 span the subspaces V1 and V2, respectively. Using
the Galerkin orthogonal corrections (cf. (33)–(35)) alternatively with respect to V1 and V2,
a multiplicative Schwarz solver for system (32′) can be formulated as shown in Figure 3 (see
e.g. [22]). Here Sj(P T

j APj , gj , γj), j = 1, 2 are inner iterative solvers which, for a zero initial

guess, deliver approximate solution to the systems (P T
j APj)yj = gj such that the following

stopping criterion is satisfied

‖gj − (P T
j APj)yj‖ < γj‖gj‖, j = 1, 2.

In this multiplicative iterative scheme, the error vector εi = x − xi satisfies [22]

εi = (I − P2(P
T
2 AP2)

−1P T
2 A)(I − P1(P

T
1 AP1)

−1P T
1 A)εi−1,

so that it is sufficient for convergence to require that

‖(I − P2(P
T
2 AP2)

−1P T
2 A)(I − P1(P

T
1 AP1)

−1P T
1 A)‖ < 1.

We now explain how the stopping parameters γj of the inner solvers can be chosen. Note
that (cf. (38))

ri−1/2 = (I − AP1(P
T
1 AP1)

−1P T
1 A)ri−1

︸ ︷︷ ︸

=rexact
i−1/2

−AP1(P
T
1 AP1)

−1p,

where p is the residual of the inner solver S1(P T
1 AP1, g1, γ1) and rexact

i−1/2 is the “exact” residual

vector corresponding to the case p = 0. It is realistic to assume that ‖AP1(P T
1 AP1)−1p‖ ≈

‖p‖, so that
‖ri−1/2‖ " ‖rexact

i−1/2‖ + ‖p‖.

Due to the inner stopping criterion it holds ‖p‖ < γ1‖P T
1 ri−1‖. Assume that the process

converges for p = 0, i.e.
‖rexact

i−1/2‖ = β‖ri−1‖, 0 < β < 1.

14



Multiplicative Schwarz algorithm:

r0 = b − Ax0,

for i = 1, 2, . . .

g1 = P T
1 ri−1,

y1 ≈ (P T
1 AP1)

−1g1 ( call y1 = S1(P
T
1 AP1, g1, γ1) ),

xi−1/2 = xi−1 + P1y1,

ri−1/2 = b − Axi−1/2,

g2 = P T
2 ri−1/2,

y2 ≈ (P T
2 AP2)

−1g2 ( call y2 = S2(P
T
2 AP2, g2, γ2) ),

xi = xi−1/2 + P2y2,

ri = b − Axi,

if xi satisfies a stopping criterion then stop, return xi,

end for

Figure 3: An algorithmic description of the multiplicative solver.

We want p to be comparable in norm with β‖ri−1‖, so that ‖ri−1/2‖ is of the same order of
magnitude as ‖rexact

i−1/2‖. This can be achieved by taking γ1 = ‖rexact
i−1/2‖/‖ri−1‖ because then

‖ri−1/2‖ " ‖rexact
i−1/2‖ + ‖p‖

< ‖rexact
i−1/2‖ + γ1‖P

T
1 ri−1‖

= ‖rexact
i−1/2‖ + ‖rexact

i−1/2‖/‖ri−1‖‖P
T
1 ri−1‖ ≈ 2‖rexact

i−1/2‖.

In practice the value of residual reduction ‖rexact
i−1/2‖/‖ri−1‖ is unknown beforehand and we use

an approximation, namely, residual reduction achieved at the previous outer iteration i − 1:

γ1 =

{

‖ri−3/2‖/‖ri−2‖, if i > 1,

0.1, if i = 1.

Analogously, we take

γ2 =

{

‖ri−1‖/‖ri−3/2‖, if i > 1,

0.1, if i = 1.

This simple strategy for choosing γj works very well in practice and is used in all numerical
experiments presented in this paper.

8.2 Choice of the subspaces V1, V2 and the inner solvers

We now define spaces

Nh(rot; Ω; 1) = {u ∈ Hh(rot; Ω; 1) : rot u = 0},

Nh(rot; Ω; 2) = {u ∈ Hh(rot; Ω; 2) : rot u = 0}.
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We have shown (see (27)) that Hh(rot; Ω; 2) is spanned by the basis functions of Hh(rot; Ω; 1)
and by gradients of scalar functions, so that

Hh(rot; Ω; 2) = Hh(rot; Ω; 1) ∪ Nh(rot; Ω; 2), Hh(rot; Ω; 1) ∩ Nh(rot; Ω; 2) = Nh(rot; Ω; 1).

This motivates the following choice of the spaces V1 and V2 in the multiplicative Schwarz
algorithm:

V1 = Hh(rot; Ω; 1), V2 = Nh(rot; Ω; 2).

It follows from the definitions of these subspaces that the matrices P T
1 AP1 and P T

2 AP2 cor-
respond to discrete variational problems posed for the vector Helmholtz equation in the
spaces Hh(rot; Ω; 1) and Nh(rot; Ω; 2), respectively. Thus, the linear systems with the matri-
ces P T

1 AP1 and P T
2 AP2 can be computed using the finite element technique.

Depending on the matrix properties, for the inner iterative solver S1(P T
1 AP1, g1, γ1) either

the conjugate gradient (CG) or the BiCGSTAB method was taken [21, 22, 20]. Due to the
definition of the hierarchical basis of Hh(grad;Ω; 2) (see (29)), it holds

Nh(rot; Ω; 1) ⊂ Nh(rot; Ω; 2).

Based on this observation, for the inner iterative solver S2(P T
2 AP2, g2, γ2) we choose the

two-level solver SV (P T
2 AP2, g2, 0, γ2) with V = Nh(rot; Ω; 1).

9 Numerical experiments

We test the performance of the two-level and the multiplicative solvers for the following model
problem: boundary value problem (11), (12) is solved in the cubic domain Ω = [−0.5, 0.5]3 .
The domain is cut by the plane x = 0.25 into two subdomains, where the conductivity σ has
values σ1, σ2, respectively. The dielectric permittivity is constant in the whole domain, so
that ε = ε1 = ε2 (see Figure 4). In the first subdomain a coil is placed, with an alternating
electric current of 1 A and 14 MHz. For the numerical solution of this problem we follow the
procedure described in Sections 3–6 and employ the iterative solvers from Sections 7 and 8.

All the computations presented in this Section were done on a PC with the Athlon-
XP +1800 processor and 512 Mb memory. The computations were done on a sequence of
unstructured tetrahedral meshes Ti, see Table 1. In all runs, the iterations of the solvers are
stopped as soon as the outer residual norm is reduced by a factor of 106.

Table 1: The length hmax of the largest edge and dimensions of the discrete spaces for the un-
structured tetrahedral meshes used in the tests. All the meshes were built with the NETGEN
mesh generator (see http://www.hpfem.jku.at/netgen/).

hmax Hh(rot; Ω; 1) Nh(rot; Ω; 1) Hh(rot; Ω; 2) Nh(rot; Ω; 2)

T1 2.5 · 10−1 8776 1474 17552 10250
T2 8.84 · 10−2 63756 9632 127512 73388
T3 6.25 · 10−2 236364 34204 472728 270568

The first point we make is that standard Krylov subspace solvers, when applied to sys-
tem (32′), converge very slowly or do not converge at all (see Figures 5 and 6). The conver-
gence deteriorates as discontinuity in σ becomes more pronounced.

16



1 2

y

x

z

Figure 4: The domain Ω in the model problem, divided into two subdomains, with a coil in
the first subdomain.
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Figure 5: Convergence curves for the case σ1 = σ2 = 1, mesh T2 (dash-dotted: the multi-
plicative solver, solid: the two-level solver, dashed: BiCGSTAB).
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Figure 6: Convergence curves for the cases σ1 = 1, σ2 = 0 (left) and σ1 = 0, σ2 = 1
(right), mesh T2 (dash-dotted: the multiplicative solver, solid: the two-level solver, dashed:
BiCGSTAB).

Table 2: The CPU time (sec) of the multiplicative iterative solver for different meshes and
conductivity values σ1, σ2.

(σ1, σ2) (1,1) (0,0) (1,10) (1,0.1) (1,0) (10,1) (0.1,1) (0,1)

T1 4 3 5 5 5 4 5 6
T2 64 53 92 93 118 51 93 119
T3 767 544 1101 1457 1879 590 1545 1702

Next, we examine the performance of the two-level and multiplicative solver for different
meshes and the conductivity values σ1, σ2 (see Tables 2 and 3). It is clear that the performance
strongly depends on the conductivity values, especially when the mesh gets finer.

To gain more insight in the convergence behavior of the two-level and multiplicative solvers
we list the number of iterations done by the solvers in Tables 4–6. We see that on fine meshes
the work in the multiplicative solver is dominated by the inner iterations with respect to
the subspace V1 = Hh(rot; Ω; 1) (Table 4), whereas the number of the inner iterations with
respect to the kernel (Table 5) does not grow as the mesh gets finer. A similar trend is
observed for the two-level solver: the work in the solver is dominated by the inner iterations
with respect to the subspace Hh(rot; Ω; 2) (we report the number of the inner iterations only
with respect to this subspace, see Table 6). The convergence of both the two-level and the
multiplicative solver deteriorates as the mesh gets finer, and this deterioration is more visible
for the two-level solver.

In the experiments with the multiplicative solver we observed that BiCGSTAB may fail
in the course of the inner iterations with respect to the subspace V1 = Hh(rot; Ω; 1). This
can be cured by replacing BiCGSTAB with GMRES, which is, however, expensive. It turned
out that neglecting the failure in the inner iterations and going on with the outer iterations
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Table 3: The CPU time (sec) of the two-level iterative solver SNh(rot;Ω;2)(A, b, x0, ν) for dif-
ferent meshes and conductivity values σ1, σ2.

(σ1, σ2) (1,1) (0,0) (1,10) (1,0.1) (1,0) (10,1) (0.1,1) (0,1)

T1 6 3 3 8 8 5 8 10
T2 122 56 118 196 215 71 205 269
T3 2651 1005 1674 6957 7224 1364 5774 7022

Table 4: Total number of the inner BiCGSTAB iterations done by the multiplicative solver in
the inner solver calls with respect to the subspace Hh(rot; Ω; 1) (line y1 = S1(P T

1 AP1, g1, γ1)
in Figure 3) for different meshes and conductivity values σ1, σ2.

(σ1, σ2) (1,1) (0,0) (1,10) (1,0.1) (1,0) (10,1) (0.1,1) (0,1)

T1 277 457 206 569 567 124 578 589
T2 627 315 622 1183 1541 305 1436 1703
T3 1157 376 1264 2791 2884 661 3037 4310

Table 5: Total number of the inner BiCGSTAB iterations done by the multiplicative solver in
the inner solver calls with respect to the subspace Nh(rot; Ω; 2) (line y2 = S2(P T

2 AP2, g2, γ2)
in Figure 3) for different meshes and conductivity values σ1, σ2.

(σ1, σ2) (1,1) (0,0) (1,10) (1,0.1) (1,0) (10,1) (0.1,1) (0,1)

T1 133 56 241 206 235 245 181 177
T2 132 39 157 214 219 137 163 173
T3 145 38 255 198 204 98 294 260

Table 6: Total number of the inner BiCGSTAB iterations done by the two-level solver
SNh(rot;Ω;2)(A, b, x0, ν) in the inner solver calls with respect to the subspace Hh(rot; Ω; 2) (line
z = S(A, ri−1/2, γ) in Figure 2) for different meshes and conductivity values σ1, σ2.

(σ1, σ2) (1,1) (0,0) (1,10) (1,0.1) (1,0) (10,1) (0.1,1) (0,1)

T1 217 115 156 356 376 91 356 387
T2 781 165 481 823 897 201 1028 1176
T3 1192 260 789 2381 2831 322 4309 2237
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Table 7: The CPU time (sec) of the multiplicative iterative solver accelerated by GCR(10)
for different meshes and conductivity values σ1, σ2.

(σ1, σ2) (1,1) (0,0) (1,10) (1,0.1) (1,0) (10,1) (0.1,1) (0,1)

T1 4 3 4 4 4 4 4 4
T2 54 44 61 75 157 45 77 84
T3 726 500 1116 1487 1710 603 1307 1689

is better for the overall performance.
One iteration of the multiplicative solver can be seen as an action of a special variable

preconditioner. This leads to an idea to combine the solver with a Krylov subspace iterative
method allowing for a variable preconditioner, such as GCR or GMRES. [21, 23] or FGMRES
[24].

We have tried to accelerate the multiplicative solver by combining it with the GCR method
(this yields a variant of the GMRES. method [21]). It turned out that an efficient way to
do this is to apply the projections with respect to the subspaces V1 = Hh(rot; Ω; 1) and
V2 = Nh(rot; Ω; 2) alternately, so that the first projection is done at odd outer iterations
while the second at even iterations. The CPU times for this preconditioned GCR(10) method
are presented in Table 7. Comparing Tables 2 and 7, we see that the GCR acceleration hardly
leads to an improvement in the overall performance. This suggests that the multiplicative
scheme has a potential as a powerful stand-alone solver.

10 Conclusions

We have designed an efficient iterative solver for linear systems resulting from the edge fi-
nite element discretization of the frequency domain Maxwell equations. The key idea is to
combine the projection with respect to the kernel of the rotor operator with a projection
with respect to lower order finite elements. This combination can naturally be done in the
framework of domain decomposition methods. The kernel projection is necessary for conver-
gence, whereas the use of lower order elements through the hierarchical basis yields further
significant reduction in the CPU time and a much faster convergence. We have also shown
that the multiplicative solver can be combined with the Krylov subspace techniques which
allow for a variable preconditioner (GMRES., FGMRES).
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