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Abstract

A numerical maximum likelihood (ML) estimation procedure is developed for the constrained parameters of multinomial distri-
butions. The main difficulty involved in computing the likelihood function is the precise and fast determination of the multinomial
coefficients. For this the coefficients are rewritten into a telescopic product. The presented method is applied to the ML estimation
of the Zipf–Mandelbrot (ZM) distribution, which provides a true model in many real-life cases. The examples discussed arise from
ecological and medical observations. Based on the estimates, the hypothesis that the data is ZM distributed is tested using a chi-square
test. The computer code of the presented procedure is available on request by the author.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Analysis of data sets arising from a multinomial distribution is a frequently studied topic in a wide range of appli-
cations. In many cases, one has to test the validity of several models which are proposed to describe the investigated
structure. Practically, based on an observation, one has to fit the parameters arising from the proposed model and,
afterwards, a goodness-of-fit test should be performed.

A natural way to use this procedure is to apply a maximum likelihood (ML) estimation for the unknown parameter,
and then, based on Fisher’s classical theorem, the goodness of fit can be tested using the chi-square statistics (Lehmann,
1997). In spite of this simple draft, in the course of implementing the scheme we are confronted with some difficulties:
the essential problem is the numerical treatment of the ML method. Big samples and multidimensional parameter sets
lead us to considerable maximization problems. In our case, the likelihood function (l�) should be computed with a
high precision since it is very small and, therefore, tiny errors can result in considerably unsharp estimates after the
maximization procedure.As an application, we investigate the ML estimation for the parameters of the Zipf–Mandelbrot
(ZM) distributions in detail and describe the fitting procedure to data sets arising from some ecological observations.
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In an early work (Zipf, 1949), Zipf proposed a probability distribution to describe the frequencies of word occurrences
in linguistics. This model has been modified by Mandelbrot, who applied it to observations in economical studies
(Mandelbrot, 1977a,b) focusing on the description of the income distribution; a further generalization can be found
in Zornig and Altmann (1995). For other applications of the ZM model to linguistics we refer to Egghe (1999) and
Meadow et al. (1993).

Nowadays, the main field of the applications of the ZM model is related to biology. Scientists observed that, in many
ecological communities, the frequencies of each species can also be related to these kinds of distributions (see Frontier,
1985, and the references therein). A great deal of medical observations (for example, the spreading of diseases (Sabatier
et al., 1998) and mortality statistics (Li and Yang, 2002)) can also be connected to this model.

Recently, analysis of complex systems like the Internet (Huberman et al., 1998) or DNS molecules (Kuznetsov, 2002)
have produced data sets which seem to be well characterized in the framework of Zipf’s law or the ZM distribution.
In light of the broad occurrence of data structures related to the ZM distribution in real-life situations (see also
http://www.nslij-genetics.org/wli/zipf/), an effective fitting procedure and an appropriate test for the goodness of fit
may be of great importance.

There are several attempts and suggestions in the literature about how to estimate the parameters of the ZM distribu-
tion, but none of the authors presented a procedure for the ML estimation. For a detailed review on the existing results,
we refer to Rousseau (2002) and Wilson (1991).

The outline of the paper is as follows. After stating our problem mathematically, we provide the proposed numerical
treatment of the ML estimation for the parameters of a constrained multinomial distribution. Then, we apply it to
parameter estimation in the ZM model using concrete ecological/medical observations. The goodness of fit will also
be checked by performing a chi-square test.

We also demonstrate the power of our method compared with some conventional techniques.

2. Mathematical formalization

For ease of the presentation, we use terms such as population or species in this section.
The proposed model for the distribution of the population is given as a family of probability distributions{

p� = (
p�,1, p�,2, . . . , p�,r

)
, � ∈ � ⊂ Rk

}
,

where p�,j gives the probability of the occurrence of the jth species in the population. Taking a random sample
x = (n1, n2, . . . , nr ) of size n from this population, with nj being the frequency of the jth species, we obtain that x
is multinomially distributed with the parameters (n, p�). Our aim is to estimate �. Moreover, we intend to control the
goodness of fit for the obtained estimate �̂ by a hypothesis testing procedure.

Proposition 1. Using the notations above we obtain the likelihood equation for the sample x:

l�(x) = n!
n1!n2! . . . nr !

r∏
i=1

p
ni

�,i
, (1)

which gives the probability of the observed sample supposed that it arises from a p�-distributed population.

The ML estimate �̂ of � is the maximum site of the function l : � → l�(x). Several methods have been proposed to
numerically deal with the related maximization problem whenever there is no known explicit formula for �̂.

A conventional method to obtain �̂ involves the application of the EM algorithm (McLachlan and Krishnan, 1997).
This algorithm is rather general and special procedures have been developed for treating maximization problems related
to ML estimates (also with constraints). For a broad overview and further literature, we refer the reader to Jamshidian
(2004).

Here, we propose an alternative method which is easy to implement: the numerical treatment of the maximization
problem can be facilitated by expanding (1) into a telescopic product and calculating the multinomial coefficients in
this way.
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Lemma 1. Using the notations

nj = n −
j−1∑
i=1

ni and p
j

� = 1 −
j−1∑
i=1

p�,i

the likelihood equation (1) can be rewritten as follows:

l�(x) =
r−1∏
j=1

B
p�,j /p

j

�
nj

(
nj

)
,

where B
p
N(k) =

(
N
k

)
pk(1 − p)N−k denotes the kth member of the binomial distribution with the parameters (N, p).

Proof. We proceed by induction. For r = 2 the product consists of only one component, namely

B
p�,1
n1+n2

(n1) = n!
n1!n2!p

n1
�,1p

n2
�,2

with p�,1 + p�,2 = 1 and n1 + n2 = n, which proves the lemma in this case.
Assuming that the lemma is proved for r, we apply it in the second step for the r-tuple (n1, n2, . . . , nr−1, nr + nr+1)

and the related (discrete) probability distribution
(
p�,1, p�,2, . . . , p�,r−1, p�,r + p�,r+1

)
as follows:

l�(x) = n!
n1!n2! . . . nr+1!

r+1∏
i=1

P
ni

�,i

= (nr + nr+1)!
nr !nr+1! · p

nr

�,r
p

nr+1
�,r+1(

p�,r + p�,r+1
)nr+nr+1

× n!
n1!n2! . . . nr−1!(nr + nr+1)! · (

p�,r + p�,r+1
)nr+nr+1

r−1∏
i=1

p
ni

�,i

= (nr + nr+1)!
nr !nr+1!

(
p�,r

p�,r + p�,r+1

)nr
(

p�,r+1

p�,r + p�,r+1

)nr+1 r−1∏
j=1

B
p�,j /p

j

�
nj

(
nj

)

= B
p�,r /p

r
�

nr (nr) B
p�,r+1/p

j

�
nr+1 (nr+1)

r−1∏
j=1

B
p�,j /p

j

�
nj

(
nj

) =
r+1∏
j=1

B
p�,j /p

j

�
nj

(
nj

)
. (2)

This proves the lemma for r + 1 and we are done. �

In order to apply the representation in Lemma 1 for developing a fast and precise ML estimation algorithm, we

need to have a subroutine which provides the terms B
p�,j /p

j

�
nj

(
nj

)
effectively. Then a (numerical) maximization process

serves the (approximation of the desired) ML estimate �̂.

3. Application

We demonstrate the effectiveness of the computational procedure (based on Lemma 1) by testing the hypothesis that
some data sets arise from the ZM distribution defined as follows.

Definition 1. A random variable X is ZM distributed (X ∼ ZMb,c) if for some b, c ∈ R

P(X = i) = a

(b + i)c
for i = 1, 2, . . . , r , (3)

where a = (∑r
i=1 (b + i)−c

)−1.
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Qualitatively, data sets arising from ZM distributed populations exhibit fast decreasing profile; sometimes the last
observations are just ignored. Formally, (3) makes also sense for non-integer i, in this context the function f : R+ → R,
f (x) = a/(b + x)c is called ZM curve.

Many efforts have been made to provide an estimation for the parameters of the ZM distribution. One can use
momentum methods based on some of the first observations (Zornig and Altmann, 1995), or in an other study (Piqueira
et al., 1999), the authors apply only a least-square fitting procedure and propose the parameters of the fitted ZM-like
curve to be b̂ and ĉ. One realizes immediately the weakness of this latter approach by the exhibited instability and
horrible growing of the “fitted parameters” b̂ and ĉ. In the fitting problem alone, one frequently considers “log” or
“log–log” scales which translates the problem into that of a linear fitting.

We formalize first the problem in the framework introduced in Section 2: we investigate the case when the family of
probability distributions is given by

p(b,c) =
{(

p(b,c),1, p(b,c),2, . . . , p(b,c),r

) : (b, c) ∈ R2
}

with

p(b,c),i = a

(b + i)c
, i ∈ {1, 2, . . . , r}.

An observation is identified with the vector x = (n1, n2, . . . , nr ), where n1 + n2 + · · · + nr = n which consists of
the observed frequencies of the species. For the likelihood function one should know the number of the species in
the whole population whenever they have not been observed. “How many species there are?”, as it is usually asked.
A scale of methods has been elaborated to give a meaningful estimate (Chao, 1984; Colwell and Coddington, 1994;
Palmer, 1990, 1991); for a comparison of its performance, we refer to Papp et al. (1997). In practice, one should use a
particular estimate according to the origin and the structure of the data: in the present situation, some non-parametric
methods can be proposed. In this way, the observation x should be enlarged with some zeros, such that its length is the
estimated number of species.

Although we do not estimate the number of species, we point out that the estimate in our second example is robust
in the sense that, through assuming more species in the population (i.e., more than observed), the estimate (b̂, ĉ) does
not change substantially.

A further problem arises, when we try to find a correspondence between the observed frequencies {ni}ri=1 and the
probabilities

{
p�,i

}r

i=1 in the model. To solve this, we state the following:

Lemma 2. Assume that for some indices 1� i < j �r the inequalities p�,i �p�,j and ni �nj hold. Then

n!
n1!n2! . . . nr !p

n1
�,1 . . . p

ni

�,i
. . . p

nj

�,j
. . . p

nr

�,r
� n!

n1!n2! . . . nr !p
n1
�,1 . . . p

nj

�,i
. . . p

ni

�,j
. . . p

nr

�,r
.

Proof. Since pi �pj we obtain that

p
ni

�,i
p

nj

�,j
= p

ni−nj

�,i
p

nj

�,i
p

nj −ni

�,j
p

ni

�,j
=

(
p�,i

p�,j

)ni−nj

p
nj

�,i
p

ni

�,j
�p

nj

�,i
p

ni

�,j

which proves the lemma. �

In the ML procedure, one has to find the probabilities
{
p�,i

}r

i=1 such that the likelihood function (1) is maximal.
According to Lemma 2, for any parameters b, c and probabilities p�,1 �p�,2 � · · · �p�,r the likelihood function is
the largest possible if the frequencies in the observation are ordered also decreasingly: n1 �n2 � · · · �nr . Using
Proposition 1, the explicit form of the likelihood function is

lb,c(x) = n!
n1!n2! . . . nr !

r∏
i=1

(
a

(b + i)c

)ni

, (4)

which can be maximized numerically using the formula in Lemma 1.
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Fig. 1. ML estimate for the data set (5): we plotted the piecewise linear interpolation of the fitted ZM curve based on the estimate b̂ = 4.743 and
ĉ = 4.124. The observed data set is depicted with the ♦ symbols.

4. Numerical results

4.1. Parameter estimation

In the first example, we refer to an ecological observation (Papp, 1992) on the diversity of fly species in a certain
territory. The observation is represented by the vector

x = [145 96 35 29 20 11 4 4 4 3 3 2 2 1 1 1 1 1]. (5)

The ML estimate of b and c has been executed with MATLAB based on the telescopic expansion in Lemma 1. In course
of the numerical computation of the likelihood function, we made use of the built-in binomial distribution function
binopdf.m and the maximization subroutine fmins.mwhich needs also an initial value (as an input parameter). For
the details of these subroutines we refer to Loader (2002) and http://www.mathworks.com/access/helpdesk_r13/help/
techdoc/ref/fmins.html.

The code is available on request by the author.
Fig. 1 shows the result of the parameter estimation together with the observed data set: we presented a linear

interpolation (between some integers) of the ZM curve based on the ML estimate: b̂ = 4.743 and ĉ = 4.124. In the
maximization procedure, we chose initially b0 = 1 and c0 = 3. For a better visual outcome we did not add zeros to the
observation (which could represent the non-observed species).

The second example arises from medical statistics resulting from a study on cancer diseases of rats (Lang, 1992),
where

x = [902 393 221 131 91 76 53 51 49 48 42 32 28 18

16 14 13 13 10 9 8 7 6 6 6 6 6 5 5 4 4 4 4 4

3*ones(1,11), 2*ones(1,14), ones(1,50)] (6)

using the short notation of MATLAB. In this case we obtained the estimate: b̂ = 0.619, ĉ = 1.747. The related ZM
curve along with the observation is shown in Fig. 2. In the maximization procedure we chose initially b0 = 0.1 and
c0 = 3.

Based on the size of the observation, we expect that some of the species in the population are not represented in this

study. Therefore, we also computed
(
b̂, ĉ

)
assuming 1, 2, 5, 10 and 20 non-observed species, respectively. The results

are shown in Table 1.
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Fig. 2. ML estimate for the data set (6): we plotted the piecewise linear interpolation of the fitted ZM curve based on the estimate b̂ = 0.619 and
ĉ = 1.747. The observed data set is depicted with the ♦ symbols.

Table 1
ML estimate for the data set (6) involving non-observed species represented by zero in the sample

b̂ ĉ l
b̂,ĉ

(x) Number of zeros

0.6193 1.7469 3.6 × 10−77 0
0.6246 1.7496 2.1 × 10−77 1
0.6300 1.7522 1.19 × 10−77 2
0.6455 1.7599 2.47 × 10−78 5
0.6699 1.7719 2.19 × 10−79 10
0.7137 1.7933 3.35 × 10−81 20

4.2. Goodness of fit

The goodness of fit is investigated using the chi-square test (Lehmann, 1997). This is justified since
(
b̂, ĉ

)
is the

ML estimate. For a discussion of this topic, we refer to Berkson (1980). In case of observation (5), we performed the
chi-square test such that the last 5 observations have been contracted into a new one and we performed in the same
way with the preceding 3, 2 and again 2 observations such that we obtained

x = [145 96 35 29 20 11 8 7 7 5].

Here, the resulting chi-square statistic is �=9.557 with the degrees of freedom 10−3=7. Therefore, we should accept
the hypothesis that the data set (4.2) is ZM distributed with the parameters b̂ = 4.743 and ĉ = 4.124.

In the second case, we modify (6) in the way that we omit the observations with the frequencies less than 5. Then we
obtain � = 30.57 for the chi-square test statistic, with the degrees of freedom 29 − 3 = 26. In this way, we accept the
hypothesis that the observation is arising from a ZM distributed population with the parameters b̂ = 0.619, ĉ = 1.747.

To summarize, the present investigation (using parameter estimation and hypothesis testing) confirms the validity of
the ZM model.

4.3. Comparison with an approximation

In this subsection, we point out the power of the method developed in this paper. We compare it with a quite
straightforward approximation for the likelihood function.
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Fig. 3. Result of the parameter estimation using (8): the data set (5) and a piecewise linear interpolation of the fitted ZM curve obtained by ML
estimation using the approximation in (8).

Since the values of a multinomial distribution function consist of many factorials (with quite big numbers, depending
on the observation), it seems to be handy to apply the Stirling formula as an approximation. We use the following simple
version:

n! ∼
(n

e

)n√
2�n. (7)

For improving the sharpness of the approximation, one could use further terms on the right-hand side of (7). This,
however, does not have any effect on the maximization procedure since the values ni are fixed in the computations.
For the same reason, we may also omit the constant

√
2�n in (7) and obtain the following approximation of the

log-likelihood function:

log lb,c(x) = log

[
n!

n1!n2! . . . nr !
r∏

i=1

(
a

(b + i)c

)ni
]

= log n! −
r∑

i=1

log ni ! +
r∑

i=1

ni(log a − c log(b + i)). (8)

We also implemented this approximation in course of the numerical computation of the ML estimate. Results for the
first and second observation are shown in Figs. 3 and 4, respectively.

In the first case (using the same input parameters in the maximization), the chi-square statistics was � = 101.4. In
the second case, we started the maximization with the input parameters (0.5, 2) (nearly to the exact one) and obtained
� = 189.7. These show clearly the inconvenience of the classical approximation.

5. Discussion

Based on the numerical experiments, we propose that the direct method developed here provides an effective proce-
dure for computing multinomial coefficients. This makes it possible to obtain the ML estimates that we pointed out in
the case of the ZM model.

The method should be improved in some ways. First, during the estimation, we can proceed only in the case of
n�3000. In order to force this condition, we could reduce the order of the data, e.g. by taking the annual income per
thousand dollars or measure the ten thousands of inhabitants in an economical and demographical analysis, respectively.
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Fig. 4. Result of the parameter estimation using (8): the data set (6) and a piecewise linear interpolation of the fitted ZM curve obtained by ML
estimation using the approximation in (8).

This method is a remedy for the problem from a practical point of view (Marsili and Zhang, 1998), but, mathematically,
it is hardly acceptable.

Another crucial question emerges while testing the hypothesis in Section 4.2. While using the chi-square test, it is
generally suggested that observations should be grouped in such a way that each of the groups contains at least five
elements. Since it was not the case in the presented examples, we omitted the low-frequency observations during the
test. Indeed, these low-frequency observations do not really reflect the theoretical frequencies of the species.
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