The Joys of Graph Transformation

Arend Rensink
Department of Computer Science, University of Twente
P.O.Box 217, 7500 AE, The Netherlands
rensi nk@s. ut went e. nl

February 9, 2005

Abstract

We believe that the technique of graph transformation sféevery natural way to
specify semantics for languages that have dynamic allmeaind linking structure; for
instance, object-oriented programming languages, batlafgguages for mobility. In
this note we expose, on a rather informal level, the reasonthis belief. Our hope
in doing this is to raise interest in this technique and scegeie more interest in the
fascinating possibilities and open questions of this area.

1 Graph Transformation Is Easy

Transformation means changing (literally: shaping) orieglinto another. In the case
of graph transformation, obviously, the things being cleehgre graphs. A fundamental
assumption in studying such changes is that they are ndtampbut controlled by some
guiding principles, and that these principles can be cepltimrules A graph transfor-
mation rule (often called a production rule) describésgna of change that will transform
certain graphs — those to which the rule is applicable — inters, in a specific way
encoded in the rule. A set of production rules is usuallyeth#l production system; graphs
that are subjected to transformation are often called hagts.

For us, the interest in this arises from the fact that graptmsbe used to model just
about any discrete structure — with lesser or greater easad-that many kinds of dy-
namic changes in such structures lend themselves quiteafigtio a description by graph
production rules. This is in particular true of the semant€ object-oriented systems: it
is our firm belief that graph transformations are a very ratigchnique to specify the se-
mantics of such systems (see also 9dct. 4). (It should bdanedtthat this is not the only,
and indeed historically not the original, reason to be edtrd in graph transformation:
another motivation is to characterise graph structureb@end product of a sequence of
transformations guided by a given set of rules. As a very Ermagample, the class of all
connected graphs can be characterised in this way. In thgxtoit is not so much the
process of change as its result that is of primary interest.)

Although there are many ways to define graph production ralésules have certain
basic things in common. They always specify changes in at{vely) small sub-structure,
and the change always consists of modifications to that subtsre, such as taking away
parts from it or adding parts to it. For the rule to apply, thstfiequirement is that the host
graph actually contains a sub-structure of the right kimdfaict, if it contains more than
one such sub-structure, the rule is applicable in diffeveys.

This is, of course, a very general description; in practicere have turned out to be
many different useful ways to specify sub-structures arahgks. In the past this has led
to strong opinions about the relative merits of the variechhiques. Fortunately, the
purpose of this paper is not to categorise these approafcingkdt, the handbook]21] is a

__________ ZZ-",.‘__'.____/;,,«;"_'-_____.‘N. -
head->{Egi]—newt->{cai]-nox

wval val val
_________________ A.“_:..i__‘?_____J ______,«;___i.?_,_';'___J

Figure 1: Two graphs with a matching

good source); rather, we want to illustrate the ease witltlvgraph transformation can be
used and understood. For this purpose we will concentratmenvery simple, formalism,
which we do not claim to be superior in any formal way but whiel do believe to be
easily understandable. The approach has been implemengetbbl, called GROOVE,
which can be downloadedat t p: /7 gr oove. st . net | (see also[[17]); all examples in
this paper have been produced using the tool.

We will now give some formal definitions. First of all we defitte concept of a graph. For
this purpose we assume a known set of lahelsels, which contains names with which we
will label the edges of our graphs.

Definition 1 (graph) A graph overlLabels is a tuple (Nodes, Edges, src, tgt, lab), where
Nodes andEdges C Nodes x Labels x Edges are finite sets.

Thus, an edge € Edges is a triple(v, a, w) consisting of a source nodec(e) = v, a label
lab(e) = a, and a target nodegt(e) = w. If src(e) = tgt(e) we calle a self-edge If

G is a graph then we uge.Nodes andG.Edges to indicate its components. Note that the
definition rules does not allow different edges with the samace nodes, labels and target
nodes. IfG.Nodes C H.Nodes andG.Edges C H.Edges, we callG a subgraphof H; we
indicate this byG C H. We now define what it means for one graph to match another.

Definition 2 (graph matching) Let G, H be graphs. A matching d@ in H is given by a
functionnodeMap: G.Nodes — H.Nodes, such that

(v,a,w) € G.Edges implies(nodeMap(v), a, nodeMap(w)) € H.Edges .

We writenodeMap: G— H to denote thattodeMap is a matching ofs in H. We also extend
nodeMap pointwise to edges; i.e.,

nodeMap(e) = (nodeMap(src(e)), lab(e), nodeMap(tgt(e))) .

Example 3 Fig. [shows two graphs, with the notational convention tladils shown
on nodes are shorthand for self-edges with those labels. |&hd&and graph shows a
linked-list structure, consisting dfell-labelled nodes (or, more accurately, nodes with
Cell-labelled self-edges) linked mext-labelled edges. The right hand side graph shows
another graph over the same label set. Furthermore, theedatrows indicate the node
map of a matching of the right hand side graph in the left hadd graph. The edge map is
not depicted but can be constructed uniquely from the noge(again taking into account
that the node label€ell and4 on the left hand side actually stand for self-edges).

Definition 4 (production rule) A production rule is a tupléLhs, Rhs) of graphs. The rule
is applicableto a graphG if there is a matching ofhs into G.

http://groove.sf.net

head next—» Cell —next-»cell| !
|
val

|
val |

m 5

Figure 2: A production rule, and the result of its applicatio Fig.[1

T
:

To define the application of a rul@g hs, Rhs) precisely, we identify the sets of elements
scheduled to be deleted and those scheduled to be creafetiows:

Del.Nodes = Lhs.Nodes\ Rhs.Nodes

Del.Edges = Lhs.Edges\ Rhs.Edges
New.Nodes = Rhs.Nodes\ Lhs.Nodes
New.Edges = Rhs.Edges)\ Lhs.Edges .

When we apply a rule tG, the elements that are lrhs but not inRhs are deleted fronG
(or rather, their images under the matching) and elemeatstie inRhs but not inLhs are
added (or rather, fresh images are created for them). Hawegs are complicated by
two effects:

e The matching may be non-injective; in particular, there may; € Del.Nodes and
vo € Lhs.Nodes \ Del.Nodes such thanodeMap(vi) = nodeMap(vs);

e The matching may be non-surjective on the incident edges abde sched-
uled to be deleted; in particular, there may be € Del.Nodes and e €
G.Edges \ nodeMap(Del.Edges) such thatG.src(e) = nodeMap(v) or G.tgt(e) =
nodeMap(v). (Such an edgeis often called alangling edgg

These problems are resolved by specifying that deletioraydwwins out: that is,
nodeMap(v;) ande in the scenarios above will both be deleted fr@m This can have
unexpected effects, as the example below will show.

Example 5 Fig.[d shows a graph production rule, where the left hand side right hand
side are combined into one graph, with the following notadlcconventions:

e Del.Nodes andDel.Edges are depicted as thin, dashed (blue) nodes and edges;
e New.Nodes andNew.Edges are depicted as wide (green) nodes and edges;
e All other nodes and edges are in the intersectiohtefandRhs.

In other wordshs consists of the thin (continuous and dashed) nodes and eahgkhs
consists of the continuous (thin and wide) nodes and edges.

Intuitively, the rule in Fig[R specifies thatdalabelled edge is to be deleted, together
with its target node, and &-labelled edge is to be created to a new node. However, the
only matching ofLhs in the left hand graph of Fidd1 maps both rule nodes to the same
graph node; moreover, this graph node also has an incomirtgedge, about which the
rule says nothing. The result is that the node is deletedh itgtincomingval-edge; even
more curiously, thé&-edge that was just created is deleted as well, but the noatenths
also just created is preserved. The result is also showngiZFi

The following algorithm defines how to apply a graph produetiule (Lhs, Rhs) to a host
graphG, given a matchingodeMap. The resulting transformed graph is denotted

1. ExtendnodeMap to a total functionnodeMap, from Lhs.Nodes U Rhs.Nodes by
adding fresh images (not ié.Nodes) for all elements ofNew.Nodes;

2. Construct a grapK = (nodeMap, (Rhs.Nodes), nodeMap, (Rhs.Edges));

head .
| [List] - head -»Celi- - -next “»cen] |

! I

e e o R T R T S Y
val val val }::>;

| |

W oo i
L

| |

| head next3m cell| ! | List head »cell !

|

! val val | val |

|

| o s B ‘
L

Figure 3: Rule for deleting the head element of a list, witb &pplications

3. Construct such that

H.Nodes = K.Nodes\ nodeMap(Del.Nodes)
H.Edges = (K.Edges\ nodeMap(Del.Edges))
N K.src™!(H.Nodes) N K.tgt~* (H.Nodes) .

It should be noted that the complications identified abowaflicts between preservation
and deletion, and dangling edges) may also be resolved ifiemeadit manner, namely by
strengthening the conditions under which a rule is considléay be applicable (see DEF. 4)
so that these cases are automatically excluded. In factdhgion presented above is
the one followed in the so-callesingle-pushout approactvhereas thalouble-pushout
approachstrengthens the application condition instead — BEE[6fdr2d thorough dis-
cussion. The latter has the advantage that the grpdasd H in the construction above
always coincide; in other words, the construction of thagfarmed graph becomes easier.

Example 6 Fig.[d shows a more useful rule than the one in Elg. 2: it dedéke first cell

in a list, provided this is not the last one. The figure alsovehi@n application of this
rule to the list graph of Fig[1l. On the left, the image of thetchang in the host graph
is emphasised. In this case, sindew.Nodes is empty, the extended mappingdeMap,
used in the construction above equatsieMap; consequently, th& in the construction
equals the host graph with one additioriehd-edge. To obtain the target graph, the first
Cell-node with its incident edges (including the danglirdredge, which is not explicitly
mentioned in the rule) is removed frdfn In the resulting graph, the same rule is applicable
once more, resulting in the second transformation in theréighn the final graph, now, the
rule is no longer applicable since no matching from the lefindh side exists: the first cell
in the list no longer has a successor. Below (E3. 10) we wilxshow to define a second
rule that takes care of removing the last remaining cell,lezhmaking sure that this is only
applicable when appropriate.

2 Graph Transformation Is Logical

The existence of a matching of a gra@lin another grapii can be interpreted as a condi-
tion onH, namely that the structure described®gan be found somewhere in it. This is
for instance used in the applicability condition we havertdiin Def[#: in order to apply
a rule, a matching from its left hand side in the host graphtrexist. Unfortunately, the
kind of properties we can express in this way is limited: eSa#ly, they can only state the
existencef nodes and edges.

Figure 4. The graph properties of E¥. 7 as nested graphs

Example 7 Here are some examples of useful properties that are noteeial, in the
sense above:

e Negative conditions: for instance, the property that a giZell-node doesothave
an outgoingnext-edge. This would be useful to define a rule, complementatheto
one in Fig[B, that deletes the only remaini@gll-node from a list.

e Invariants: for instance, the property that dkll-nodes have an outgoingl-edge.
This is a typical property that one would want to verify on aayi system.

A much more powerful way of specifying graph propertiedl, lstised on the same principle
of graph matching, is obtained mestingthe graphs to be matched inside each other and
alternating existential and universal quantors for eagkllef nesting. Two examples,
expressing precisely the properties of Bx. 7, are showng'dZFbeIost

Symbolically, such nested structures can be understooxistertial or universal for-
mulae,exist or univ, respectively, in the following grammar @nd.J are finite sets an#,
Q; fori € I andR; for j € J are “property graphs”):

exist(P) = ViEI EQZ univi(Qi) (P - Qz)
univ(P) n= Ao, VR;existj(R;) (P CRj) .

This grammar should be read as follows. Each fornfoiten (eitherexist or univ) is pa-
rameterised with a property graph which corresponds to the structure that has already
been matched in some outer formula (i.e., within whiafin is a sub-formula). Each next
level quantifies over a super-graph Bf meaning that it requires the existence of addi-
tional structure in the host graph (in the casexxd$t) or states a universal property over
all instances of such additional structure (in the casendf). The semantics is defined by
the following rules, wheren: P — G stands for the matching already established for the
parameter grapR in the host graplg:

m = exist(P) :& therearg € I,n: Q; — G such thaim C n andn = univ;(Q;)
m = univ(P) & forallj € J,n:R; — G, if m C nthenn = exist;(R;) .

(The notationm C n, wherem: P — G andn: Q — G with P C Q, means that we can
createn from m by adding images (i) for the nodes ifQ.Nodes\ P.Nodes.) It should be
remarked that the sefsand.J may be empty)/ 0 is logically equivalent tdT and A 0 to
tt. As a consequence, a sub-formuRy exist;(R;) whereexist; = \/) actually expresses
the non-existencef the structurer; in the host graph. An example of this is found in the
left hand side condition of Fif] 4: the inn&kquantified structure is in fact forbidden.

The rules above define under what circumstances a formugdigdied by amatching
In the end, however, we want to use such formulae to specdpesties ofgraphs For
this purpose, we use the one-to-one correspondence begragims and matchings of the
empty property graphhere denoted, into it: that is, we equate a host graitwith (the

1This representation as nested graphs is essentially teatsténtial graphss studied in, e.g LT20.P8, 7]. We
have worked out an alternative, more elegant but much mangplicated, representation as tree-shaped diagrams
in the category of graphs iR TIL8].

Figure 5: Nested graph property with an existential disfiomc

unique) matchingn:) — G. To be precise, we define, for arbitrary formufaen () (either
exist(()) or univ(0)):

GEform & m:0—GEform .

Example 8 Another, more involved example of a nested graph propedivisn in Fig [5.
This expresses that every cell either has a predecessor theifiead element of a list,
in which case, moreover, the list does not haveeaipty-self-edge. The graph of Fifl 1
satisfies this property: it allows three matchings of theeonmost (universally quantified)
graph, one of which can be extended to a matching of the bd#gistentially quantified)
inner graph, where, moreover, the innermost (universallggified) graph, consisting of
theempty-edge, is absent; the other two outermost matchings cantba@sd to matchings
of the top (existentially quantified) inner graph.

Clearly, with these nested graphs we can express much strpngperties than with single
matchings. The following is a consequence of the work ontent&l graphs, and also
follows from [18]:

Theorem 9 Nested graphs, interpreted as graph properties in the wdiynelé above, are
as expressive as first order logic with binary relations (ithout equality).

The restriction to logic without equality is actually quitefortunate, since it prevents
us from doing any kind otounting There are many useful properties that involve, for
instance, the uniqueness of nodes with a certain propertyn$tance, the fact that (in our
list example)Cell-nodes are unshared, i.e., have at most one predecessalows from
Th.[that this and similar properties cannot be express#ttie nested graphs presented
above. There are several possible ways to lift this regirict

e Limit the matchings allowed in DeEl4 to injective ones onlfhis is a definition
often seen in the graph transformation literature: altiatighay cost a (in the worst
case super-exponential) blowup in the number of rules reduo model a particular
behaviour, in many practical examples it seems quite redden

o Extend the subgraph relation betwemand theQ; andR; in the grammar oéxist
anduniv to (non-injective) matchings;: P—Q; resp.n;: P—R;. This is the solution
presented in[[18], at the cost of additional technical caxity. A consequence is
that the resulting structure cannot be depicted as a nestpth gny more.

e Introduce special edges in the property graphs that stamnithéoequality of nodes.
We present this solution below.

Negative application conditions. The idea of using some form of nesting to enhance
the control over rule applications is far from new: it wasatésed first in [14] for a single
level of nesting (resulting in so-called negative applmatonditions) and extended in]15]

sl
LARRNRNE B

cellz :

Tunre !

Figure 6: Deletion of the last remaining element from a list

to a second level of nesting (so-called conditional appticaconditions). The idea is to
regard the LHS hs of a rule(Lhs, Rhs) as the starting point of a formuBLhs univ(Lhs).
Any matching that is discovered to satisfy the sub-formula(Lhs) gives rise to a rule
application.

Example 10 Fig.[d shows a production rule for deleting the head eleméatlist in case
this is also the final element, i.e., if it has no outgoiregt-edge. This involves a negative
application condition, here depicted as a nested univesgatgraph (without further sub-
conditions, so that the universal property works as a negatondition). As a consequence,
this rule is not applicable in the list graph of Fig. 1, butstapplicable to the final (bottom
right hand) graph of FiglI.

In addition to the explicit bounding box for the negative diion, in Fig.[6 we have
also distinguished the relevant subgraph by using very wéttessely dashed (red) lines.
In future examples of rules with negative application ctiods we will actually leave
out the bounding boxes: each connected sub-graph drawrese tivide, closely dashed
lines implicitly stands for a universal sub-formula withdurther sub-formulae, which is
therefore works as a negative condition.

Equality and regular expressions. So far we have used ordinary graph morphisms as
matchings. We now strengthen the type of properties we cpresg by using a differ-
ent class of labels iR, which should not be matched by single edge&ddut rather by
(possibly empty) paths through. We will useH.Paths to denote the set of such paths.
Formally:

H.Paths = {vj-a;-va - -a,_1-v,, € H.Nodes:(Labels-H.Nodes)* |
V1 <i<mn:(vya;,vip1) € H.Edges} .

If p € G.Paths for some graplG, we uselab(p) to stand for the sequence of labelspin
src(p) for the first node anegt(p) for the last node ip; hence, ifp = vi-a;-va - - ap—1-vy,
thensrc(p) = vy, lab(p) = a1 - - - a,—1 andtgt(p) = v,,.

Definition 11 (path expression language)A path expression languagwer Labels is a
pair (Exprs, sat), whereExprs is a set of path expressions withbels C Exprs, andsatC
Labels™ x Exprs a satisfaction relatiorbetween sequences of labelslisbels and path
expressions, such that for alle Labels:

ssata <= s=a .

If (s,x) €sat for some label sequenses Labels* and path expressione Exprs we say
thats satisfiesc; we usually denote this in infix notation, asat x. The definition specifies
that a path expression that is actually an elemertabtls (recall thatLabels C Exprs) is
satisfied only by itself. A prime example of a path expres$émyuage is that aegular
expressionsRegExprs, generated by the following grammar:

x n= = | a|x}x|x-x]|x".

ﬁhead.next*.val

fffff

Figure 7: Nested graph properties with path expressions

(where= stands for the empty sequence.) Satisfaction is defineduas: us

ssat= & s=¢
ssata & s=a
ssat xj|xa < 1 sat xj OFsg sat xo
ssat x; -Xo & dsy,so € Labels™ : s =s; - 59,51 sat x;, 5o sat X

ssatx* & dsy,...,s, € Labels":s=s;---5,,V1 <i<mn:s;satx .

For instance, both sat next*, next sat next* andnext-next sat @—*, and bothl sat 1/2|3
and2 sat 1|2|3. We generalise the notion of matching to graphs over pathesspns as
follows:

Definition 12 (path matching) Given a path expression languagé&xprs,sat) over
Labels, a path matching of a grapR over Exprs (i.e., where the labels i are actually
path expressions) into a graghoverLabels is a functionnodeMap: P.Nodes — G.Nodes
such that for all(v, x, w) € P.Edges:

Jp € G.Paths : src(p) = nodeMap(v), lab(p) sat x, tgt(p) = nodeMap(w) .

Example 13 Fig.[d shows two nested graph properties. The property ofetfaddand side
is an invariant, expressing that eve€gll-node has a unique predecessor. Note that the
—-labelled edge specifies that its source and target node atehd by the same node of
the host graph, i.e., that the matching is non-injectivelwse nodes.

The right hand side is an existential property, expressireg from alist-node there is
a Cell-node without successor, and moreover, that no reachalilecge has aval-edge to
a node with self-edge 1, 2 or 3. For instance, in the initiap(teft hand) graph of Fidl3,
this property is not fulfilled because the 2-labelled nodlesinnected to the list; but once
we have deleted the firgtell-node (bottom left) the property holds, as indicated by the
emphasised part of the graph in Hg. 7.

It should be clear from this example that path expressiohamce the expressive power of
nested graph properties. On the one hand we can now staterflesmbout node equality,
using=-labelled edges; hence we have gained (among other thingstility to count
nodes. On the other hand, the Kleene star enables us toyspadifs of arbitrary length,
which implies that we can state properties about transiigsure and connectivity; this
takes us outside standard first-order logic. Thus, we hawdaftowing result (compare
Th.[@):

Theorem 14 Nested graphs with path expressions, interpreted as grapbepties in the
way defined above, are properly more expressive than firgrdodic with binary relations
and equality.

In order to use this expressive power in graph transformatiowe extend the definition of
a rule (Def[#) so thakths andRhs are graphs oveExprs rather thanLabels. However,
this only makes sense for that part of the rule that contrasapplicability: it is not clear

head.next* hext
!°'

|
|
|
|
: head.next*val et
|
\
|
|

tmentm

(it} —hean—>{Cell|—nex next-»/Cotl]
|

val val—val :

J I

|
|

B & o

,,,,,,,,,,,,,,,,,,, 1 L

Figure 8: Production rule with path expressions and an egiin

what it would mean ifDel. Edg or New.Edges are Exprs-labelled. Instead, for the edges
scheduled to be added or deleted we want to use

Definition 15 (production rule with path expressions) A production rule with path ex-
pressions is a tupléLhs, Rhs) of graphs overExprs, wherelab(e) € Labels for all
e € Del.EdgesUNew.Edges. The rule isapplicableto a graphG if there is a path matching
of Lhs into G.

The application of a production rule with path expressiantghe same as for ordinary
production rules, thanks to the fact that the deleted anatedenodes and edges take their
labels fromLabels.

Example 16 Fig. [shows a production rule, essentially consisting & tiested graph
property of Fig[T as its left hand side. The right hand sidecifies that the unconnected
node identified in the LHS should be appended to the list.

3 Graph Transformation Is Difficult

We have advertised graph transformation as a techniquéstbasy to grasp, powerful and
(in certain application domains) natural. Why, then, is teichnique not part of the tool kit
of more formal methods researchers?

We believe that part of the answer to this question is: bexthesarea of graph trans-
formation is perceived to be difficult, and to be centred oaggions of a very theoretical
nature. And there is certainly some justification for thisliieg. A sizeable fragment of the
literature on graph transformation treats the subject cerpabstract level, in a categorical
setting; for those not familiar or even averse to categoepity, this can be a great barrier
to appreciating the joys of graph transformation. In thisspective, it is almost certainly
a mistake in public relations to use terms like “Single Pugh&pproach” to refer to an
intuitively straightforward technique: it suggests thatorder to apply the technique, one
has to know what a pushout is, whereas we believe that thisipletely irrelevant in most
cases.

This is not to deny that category theory is a marvellous waghstract away from
differences in the particular kinds of graphs that one iagfarming (typed or untyped,
with binary or hyperedges, flat or hierarchical, with or witi attributes, to name some
choices), and there is much to be gained from lifting soméeffeneral issues involved in
any kind of transformation (or rewriting) to this abstraetél. For those interested in such
theoretical issues we briefly discuss some of them.

Independence of transformations (see, e.gl] [6.111]). This refers to thesgion if two
transformations have overlapping or conflicting effectserifistance, because one

transformation removes a node or edge that the other rexjunieder to be applica-
ble. If such conflicts do not occur, the transformations aleedindependentThis
may have important consequences: For instance, in thextasfteystem verifica-
tion, it may be unnecessary to compute all transformatiwas é a full state space
exploration. Inop. cit. this problem is studied on the level of properties of the cat-
egories involved, so that it does not have to be done agaiallfdifferent types of
graphs.

Constraints and conditions on graphs and graph transformations (sse, €.gl,[114.]115, 9,
[24)). In Sect P we have shown a fairly straightforward wafotonulate properties of
our graphs, but again, one would prefer not to re-invent theetfor each particular
type of graph. There are two places where properties of grplaty a special role in
the framework of graph transformation: iagariantsthat one would like to hold on
all graphs, or aspplication conditionsghat control the applicability of rules. lop.
cit. these types of properties and their interrelation are studi

Compositionality of graph production systems (see, elg.] [13]). In proceg=bah termi-
nology, graph transformations defineegluction semanticeach state “reduces” to
the next without interference from the environment — in otlverds, graph trans-
formations define a “closed world semantics” in which all gaments of the system
being modelled have to be included in the model.opm cit. it is studied how the
transformation framework can be enriched with contextngdrimation, so that the
behaviour of a complete system can instead be modelled dietbkeof individual
components, which can be put together afterwards.

4 Graph Transformation Wants You!

Although the field of graph transformation stems from theitweigg of the 70s and so is, to
computer science standards, downright venerable, itscapipin to behavioural modelling
and in particular behavioural verification is relativelyww. In this contribution we hope
to have given you a taste of how it works and an impression wfihoould be applied in
that area, but there are many open issues. We list a few oftieeen with some references;
we believe all of these areas to be worthy of further invedidn.

Specification. In Sect[1 we have called graph transformations a naturahtgque for the
specification of semantics for dynamic changes, on paatidnlobject-oriented sys-
tems. One paper in which this has been worked out in concestd fbr a relatively
large fragment of Java i§][5]; another approach is takehlinvi®o (essentially)
define a special object-based language with a graph tramafmm semantics. How-
ever, we are yet far removed from a discipline in which therdédin of such a
semantics can be easily and systematically written down sergilly an EBNF
standard for behavioural semantics.

Verification. Starting with a graph production system, one can generateairesponding
transition system, essentially by computing all rule aggilons recursively. This
opens up the way for extending existing methods for testiggioa or model check-
ing to graph transformation-based systems. Some studidssctund in[[BLT, 25];
there are, however, major open problems in dealing with thrachic nature of the
states (which cannot be captured by a fixed state vector)th&ninteresting option
is to extend assertional reasoning to graph productiosrtie theory of graph prop-
erties mentioned in Sell 3 lays down at least the termirydlogvhich this problem
may be addressed, but the connection to predicate tranafiomyet has to be tack-
led. Yet another option is to regard a graph production syste an extended Petri
net and transfer techniques from that area, as seen, €[§.2h

10

Abstraction. In the context of the verification issue, we would especibily to address

abstraction, as an approximative technique. We believaytiaphs offer a very clean
setting to study state abstractions; this brings us in takref staticshapeanalysis
a la Sagiv et al[T24,23] and abstract interpretation. A fireposal was described
in [L8). Abstraction of a different kind, using principlesofn Petri net unfoldings,
have also been proposed in [3, 4].

Compositionality. In Sect[B we have briefly referred to the general theory fonmosi-

tionality that has recently been developed. However, tliskwiakes the reduction
semantics as a starting point and derives contextual rcdes that. We believe that,
instead, it can be quite natural to start off with transfatiorarules that explicitly

take context into account, and whose effect may include ¢neliag and receiving
of (sub)graphs. For instance, in the context of the runniagrele on lists (e.g.,
Ex.[18), one may imagine a rule that appends an object “redéivom some other
component of the system; the identity of the object may bemanicated through
some parameterisation mechanism in the style of Struc@patational Semantics.
As far as we are aware, this combination of ideas from gragisformation and
process algebra has not been considered at all so far.

As a consequence of the predominance of category theory ah miuthe graph literature
research, it is also obligatory to place this paper withendategorical framework. What we
have defined, on a set-theoretic level, is an instance ofitiggespushout approach, which
cannot be formulated easily in the double pushout approattereason essentially being
the fact that we do not allow so-callgrarallel edgesor in other words, that our edges
do not have an identity of their own. From the point of view loé talgebraic framework,
this is a real drawback: much of the theory referred to ab@gies only in the double
pushout approach. The reason why we have nevertheless eat definitions as we did
is twofold: it makes for an easier technical presentatian mbore importantly, we like to
equate edges to binary relations. In that light it does ndters@nse for edges to have an
identity themselves.

References

(1]

(2]

(3]

(4]
(5]
(6]

(7]
(8]

P. Baldan, A. Corradini, and B. Konig. A static analyseshnique for graph transformation
systems. In K. Larsen and M. Nielsen, edito@)ncur 2001: Concurrency Theqryolume
2154 ofLNCS pages 381-395. Springer-Verlag, 2001.

P. Baldan, A. Corradini, and B. Konig. Verifying finitgetate graph grammars: An unfolding-
based approach. In P. Gardner and N. Yoshida, edi@woecurrency Theory (CONCURjol-
ume 3170 oLNCS pages 83-98. Springer-Verlag, 2004.

P. Baldan, B. Konig, and B. Kodnig. A logic for analyzirapstractions of graph transformation
systems. In R. Cousot, edit@tatic Analysisvolume 2694 of NCS pages 255-272. Springer-
Verlag, 2003.

P. Baldan, B. Konig, and I. Sturmer. Generating testesafor code generators by unfolding
graph transformation systems. In Ehrig et[all[10], pages-209.

A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Traasihg java into graph transformation
systems. In Ehrig et al_T10], pages 383-389.

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckehd M. Lowe. Algebraic approaches
to graph transformation, part I: Basic concepts and doub&hput approach. In Rozenberg
[210], chapter 3, pages 163—-246.

F. Dau. The Logic System of Concept Graphs with Negatimtume 2892 o£. NCS Springer-
Verlag, 2003.

F. L. Dotti, L. Foss, L. Ribeiro, and O. M. dos Santos. Yiestion of distributed object-based
systems. In E. Najm, U. Nestmann, and P. Stevens, edfors)al Methods for Open Object-
based Distributed Systems (FMOODSplume 2884 ofLNCS pages 261-275. Springer-
Verlag, 2003.

11

9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Coastts and application conditions:
From graphs to high-level structures. In Ehrig etfall [1@lg@es 287-303.

H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozepleglitors. Second International Con-
ference on Graph Transformatipmolume 3256 oL NCS Springer-Verlag, 2004.

H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesigk-tevel replacement categories and
systems. In Ehrig et al_T10], pages 144-160.

H. Ehrig, R. Heckel, M. Korff, M. Léwe, L. Ribeiro, A. Wgner, and A. Corradini. Algebraic
approaches to graph transformation, part II: Single pushpproach and comparison with dou-
ble pushout approach. In Rozenbergl[21], pages 247-312.

H. Ehrig and B. Kodnig. Deriving bisimulation congrusas in the dpo approach to graph rewrit-
ing. In I. Walukiewicz, editorFoundations of Software Science and Computation Strugture
(FOSSACS)olume 2987 of NCS pages 151-166. Springer-Verlag, 2004.

A. Habel, R. Heckel, and G. Taentzer. Graph grammark négative application conditions.
Fundamenta Informatica®6(3/4):287-313, 1996.

R. Heckel and A. Wagner. Ensuring consistency of coon#l graph grammars — a constructive
approach. In A. Corradini and U. Montanari, editodsint COMPUGRAPH/SEMAGRAPH
Workshop on Graph Rewriting and Computati@nlume 2 ofElectronic Notes in Theoretical
Computer Sciencélsevier Science Publishers B.V., 1995.

A. Rensink. Canonical graph shapes. In D. A. Schmiditoed®rogramming Languages and
Systems — European Symposium on Programming (ESOBjne 2986 of NCS pages 401—
415. Springer-Verlag, 2004.

A. Rensink. The GROOVE simulator: A tool for state spgemeration. In J. Pfalz, M. Nagl,
and B. Bohlen, editordypplications of Graph Transformations with Industrial Beince (AG-
TIVE), volume 3062 oL.NCS pages 479-485. Springer-Verlag, 2004.

A. Rensink. Representing first-order logic using gsaphn H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editohsternational Conference on Graph Transformations
(ICGT), volume 3256 of NCS pages 319-335. Springer-Verlag, 2004.

A. Rensink,A. Schmidt, and D. Varro. Model checking graph transfoiiora: A comparison
of two approaches. In H. Ehrig, G. Engels, F. Parisi-Presiend G. Rozenberg, editors,
International Conference on Graph Transformations (ICGU9lume 3256 ofLNCS pages
226-241. Springer-Verlag, 2004.

D. D. Roberts. The existential graphSomputers and Mathematics with Applicatipfs639—
663, 1992.

G. Rozenberg, editorHandbook of Graph Grammars and Computing by Graph Transferm
tion, volume I: Foundations. World Scientific, Singapore, 1997.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysoblems in languages with de-
structive updatingACM Trans. Prog. Lang. Sys20(1):1-50, Jan. 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shapeyaimbia 3-valued logicACM Trans.
Prog. Lang. Syst24(3):217-298, May 2002.

G. Taentzer and A. Rensink. Ensuring structural camsts in graph-based models with type
inheritance. InFundamental Approaches to Software Engineering (FASECS. Springer-
Verlag, 2005.

D. Varro. Automated formal verification of visual mdig languages by model checking.
Journal of Software and Systems ModelliB{):85—-113, 2004.

M. Wermelinger. Conceptual graphs and first-orderdodn International Confence on Con-
ceptual Structuressolume 954 oLLNAI, pages 323-337. Springer-Verlag, 1995.

12

	Graph Transformation Is Easy
	Graph Transformation Is Logical
	Graph Transformation Is Difficult
	Graph Transformation Wants You!

