
The Joys of Graph Transformation

Arend Rensink
Department of Computer Science, University of Twente

P.O.Box 217, 7500 AE, The Netherlands
rensink@cs.utwente.nl

February 9, 2005

Abstract

We believe that the technique of graph transformation offers a very natural way to
specify semantics for languages that have dynamic allocation and linking structure; for
instance, object-oriented programming languages, but also languages for mobility. In
this note we expose, on a rather informal level, the reasons for this belief. Our hope
in doing this is to raise interest in this technique and so generate more interest in the
fascinating possibilities and open questions of this area.

1 Graph Transformation Is Easy

Transformation means changing (literally: shaping) one thing into another. In the case
of graph transformation, obviously, the things being changed are graphs. A fundamental
assumption in studying such changes is that they are not arbitrary but controlled by some
guiding principles, and that these principles can be captured in rules. A graph transfor-
mation rule (often called a production rule) describes akind of change that will transform
certain graphs — those to which the rule is applicable — into others, in a specific way
encoded in the rule. A set of production rules is usually called a production system; graphs
that are subjected to transformation are often called host graphs.

For us, the interest in this arises from the fact that graphs can be used to model just
about any discrete structure — with lesser or greater ease — and that many kinds of dy-
namic changes in such structures lend themselves quite naturally to a description by graph
production rules. This is in particular true of the semantics of object-oriented systems: it
is our firm belief that graph transformations are a very natural technique to specify the se-
mantics of such systems (see also Sect. 4). (It should be mentioned that this is not the only,
and indeed historically not the original, reason to be interested in graph transformation:
another motivation is to characterise graph structures as the end product of a sequence of
transformations guided by a given set of rules. As a very simple example, the class of all
connected graphs can be characterised in this way. In that context it is not so much the
process of change as its result that is of primary interest.)

Although there are many ways to define graph production rules, all rules have certain
basic things in common. They always specify changes in a (relatively) small sub-structure,
and the change always consists of modifications to that sub-structure, such as taking away
parts from it or adding parts to it. For the rule to apply, the first requirement is that the host
graph actually contains a sub-structure of the right kind; in fact, if it contains more than
one such sub-structure, the rule is applicable in differentways.

This is, of course, a very general description; in practice,there have turned out to be
many different useful ways to specify sub-structures and changes. In the past this has led
to strong opinions about the relative merits of the various techniques. Fortunately, the
purpose of this paper is not to categorise these approaches (for that, the handbook [21] is a

1

Figure 1: Two graphs with a matching

good source); rather, we want to illustrate the ease with which graph transformation can be
used and understood. For this purpose we will concentrate onone, very simple, formalism,
which we do not claim to be superior in any formal way but whichwe do believe to be
easily understandable. The approach has been implemented in a tool, called GROOVE,
which can be downloaded athttp://groove.sf.net (see also [17]); all examples in
this paper have been produced using the tool.

We will now give some formal definitions. First of all we definethe concept of a graph. For
this purpose we assume a known set of labelsLabels, which contains names with which we
will label the edges of our graphs.

Definition 1 (graph) A graph overLabels is a tuple〈Nodes, Edges, src, tgt, lab〉, where
Nodes andEdges ⊆ Nodes× Labels × Edges are finite sets.

Thus, an edgee ∈ Edges is a triple(v, a, w) consisting of a source nodesrc(e) = v, a label
lab(e) = a, and a target nodetgt(e) = w. If src(e) = tgt(e) we call e a self-edge. If
G is a graph then we useG.Nodes andG.Edges to indicate its components. Note that the
definition rules does not allow different edges with the samesource nodes, labels and target
nodes. IfG.Nodes ⊆ H.Nodes andG.Edges ⊆ H.Edges, we callG a subgraphof H; we
indicate this byG ⊆ H. We now define what it means for one graph to match another.

Definition 2 (graph matching) Let G, H be graphs. A matching ofG in H is given by a
functionnodeMap: G.Nodes → H.Nodes, such that

(v, a, w) ∈ G.Edges implies(nodeMap(v), a, nodeMap(w)) ∈ H.Edges .

We writenodeMap: G→H to denote thatnodeMap is a matching ofG in H. We also extend
nodeMap pointwise to edges; i.e.,

nodeMap(e) = (nodeMap(src(e)), lab(e), nodeMap(tgt(e))) .

Example 3 Fig. 1 shows two graphs, with the notational convention thatlabels shown
on nodes are shorthand for self-edges with those labels. Theleft hand graph shows a
linked-list structure, consisting ofCell-labelled nodes (or, more accurately, nodes with
Cell-labelled self-edges) linked bynext-labelled edges. The right hand side graph shows
another graph over the same label set. Furthermore, the dotted arrows indicate the node
map of a matching of the right hand side graph in the left hand side graph. The edge map is
not depicted but can be constructed uniquely from the node map (again taking into account
that the node labelsCell and4 on the left hand side actually stand for self-edges).

Definition 4 (production rule) A production rule is a tuple〈Lhs, Rhs〉 of graphs. The rule
is applicableto a graphG if there is a matching ofLhs into G.

2

http://groove.sf.net

Figure 2: A production rule, and the result of its application to Fig. 1

To define the application of a rule〈Lhs, Rhs〉 precisely, we identify the sets of elements
scheduled to be deleted and those scheduled to be created, asfollows:

Del.Nodes = Lhs.Nodes \ Rhs.Nodes

Del.Edges = Lhs.Edges \ Rhs.Edges

New.Nodes = Rhs.Nodes \ Lhs.Nodes

New.Edges = Rhs.Edges \ Lhs.Edges .

When we apply a rule toG, the elements that are inLhs but not inRhs are deleted fromG
(or rather, their images under the matching) and elements that are inRhs but not inLhs are
added (or rather, fresh images are created for them). However, things are complicated by
two effects:

• The matching may be non-injective; in particular, there maybev1 ∈ Del.Nodes and
v2 ∈ Lhs.Nodes \ Del.Nodes such thatnodeMap(v1) = nodeMap(v2);

• The matching may be non-surjective on the incident edges of anode sched-
uled to be deleted; in particular, there may bev ∈ Del.Nodes and e ∈
G.Edges \ nodeMap(Del.Edges) such thatG.src(e) = nodeMap(v) or G.tgt(e) =
nodeMap(v). (Such an edgee is often called adangling edge.)

These problems are resolved by specifying that deletion always wins out: that is,
nodeMap(v1) ande in the scenarios above will both be deleted fromG. This can have
unexpected effects, as the example below will show.

Example 5 Fig. 2 shows a graph production rule, where the left hand sideand right hand
side are combined into one graph, with the following notational conventions:

• Del.Nodes andDel.Edges are depicted as thin, dashed (blue) nodes and edges;

• New.Nodes andNew.Edges are depicted as wide (green) nodes and edges;

• All other nodes and edges are in the intersection ofLhs andRhs.

In other words,Lhs consists of the thin (continuous and dashed) nodes and edgesandRhs

consists of the continuous (thin and wide) nodes and edges.
Intuitively, the rule in Fig. 2 specifies that a4-labelled edge is to be deleted, together

with its target node, and a5-labelled edge is to be created to a new node. However, the
only matching ofLhs in the left hand graph of Fig. 1 maps both rule nodes to the same
graph node; moreover, this graph node also has an incomingval-edge, about which the
rule says nothing. The result is that the node is deleted, with its incomingval-edge; even
more curiously, the5-edge that was just created is deleted as well, but the node that was
also just created is preserved. The result is also shown in Fig. 2.

The following algorithm defines how to apply a graph production rule〈Lhs, Rhs〉 to a host
graphG, given a matchingnodeMap. The resulting transformed graph is denotedH.

1. ExtendnodeMap to a total functionnodeMap1 from Lhs.Nodes ∪ Rhs.Nodes by
adding fresh images (not inG.Nodes) for all elements ofNew.Nodes;

2. Construct a graphK = (nodeMap1(Rhs.Nodes), nodeMap1(Rhs.Edges));

3

Figure 3: Rule for deleting the head element of a list, with two applications

3. ConstructH such that

H.Nodes = K.Nodes \ nodeMap(Del.Nodes)

H.Edges = (K.Edges \ nodeMap(Del.Edges))

∩ K.src−1(H.Nodes) ∩ K.tgt−1(H.Nodes) .

It should be noted that the complications identified above (conflicts between preservation
and deletion, and dangling edges) may also be resolved in a different manner, namely by
strengthening the conditions under which a rule is considered to be applicable (see Def. 4)
so that these cases are automatically excluded. In fact, thesolution presented above is
the one followed in the so-calledsingle-pushout approachwhereas thedouble-pushout
approachstrengthens the application condition instead — see [6, 12]for a thorough dis-
cussion. The latter has the advantage that the graphsK andH in the construction above
always coincide; in other words, the construction of the transformed graph becomes easier.

Example 6 Fig. 3 shows a more useful rule than the one in Fig. 2: it deletes the first cell
in a list, provided this is not the last one. The figure also shows an application of this
rule to the list graph of Fig. 1. On the left, the image of the matching in the host graph
is emphasised. In this case, sinceNew.Nodes is empty, the extended mappingnodeMap1

used in the construction above equalsnodeMap; consequently, theK in the construction
equals the host graph with one additionalhead-edge. To obtain the target graph, the first
Cell-node with its incident edges (including the danglingval-edge, which is not explicitly
mentioned in the rule) is removed fromK. In the resulting graph, the same rule is applicable
once more, resulting in the second transformation in the figure. In the final graph, now, the
rule is no longer applicable since no matching from the left hand side exists: the first cell
in the list no longer has a successor. Below (Ex. 10) we will show how to define a second
rule that takes care of removing the last remaining cell, while making sure that this is only
applicable when appropriate.

2 Graph Transformation Is Logical

The existence of a matching of a graphG in another graphH can be interpreted as a condi-
tion onH, namely that the structure described byG can be found somewhere in it. This is
for instance used in the applicability condition we have defined in Def. 4: in order to apply
a rule, a matching from its left hand side in the host graph must exist. Unfortunately, the
kind of properties we can express in this way is limited: essentially, they can only state the
existenceof nodes and edges.

4

∃
∀

∃

∀

Figure 4: The graph properties of Ex. 7 as nested graphs

Example 7 Here are some examples of useful properties that are not existential, in the
sense above:

• Negative conditions: for instance, the property that a given Cell-node doesnothave
an outgoingnext-edge. This would be useful to define a rule, complementary tothe
one in Fig. 3, that deletes the only remainingCell-node from a list.

• Invariants: for instance, the property that allCell-nodes have an outgoingval-edge.
This is a typical property that one would want to verify on a given system.

A much more powerful way of specifying graph properties, still based on the same principle
of graph matching, is obtained bynestingthe graphs to be matched inside each other and
alternating existential and universal quantors for each level of nesting. Two examples,
expressing precisely the properties of Ex. 7, are shown in Fig. 4 below.1

Symbolically, such nested structures can be understood as existential or universal for-
mulae,exist or univ, respectively, in the following grammar (I andJ are finite sets andP,
Qi for i ∈ I andRj for j ∈ J are “property graphs”):

exist(P) ::=
∨

i∈I ∃Qi univi(Qi) (P ⊆ Qi)

univ(P) ::=
∧

j∈J ∀Rj existj(Rj) (P ⊆ Rj) .

This grammar should be read as follows. Each formulaform (eitherexist or univ) is pa-
rameterised with a property graphP, which corresponds to the structure that has already
been matched in some outer formula (i.e., within whichform is a sub-formula). Each next
level quantifies over a super-graph ofP, meaning that it requires the existence of addi-
tional structure in the host graph (in the case ofexist) or states a universal property over
all instances of such additional structure (in the case ofuniv). The semantics is defined by
the following rules, wherem: P → G stands for the matching already established for the
parameter graphP in the host graphG:

m |= exist(P) :⇔ there arei ∈ I, n: Qi → G such thatm ⊆ n andn |= univi(Qi)

m |= univ(P) :⇔ for all j ∈ J, n: Rj → G, if m ⊆ n thenn |= existj(Rj) .

(The notationm ⊆ n, wherem: P → G andn: Q → G with P ⊆ Q, means that we can
createn from m by adding images (inG) for the nodes inQ.Nodes\P.Nodes.) It should be
remarked that the setsI andJ may be empty:

∨
∅ is logically equivalent toff and

∧
∅ to

tt. As a consequence, a sub-formula∀Rj existj(Rj) whereexistj =
∨
∅ actually expresses

thenon-existenceof the structureRj in the host graph. An example of this is found in the
left hand side condition of Fig. 4: the inner,∀-quantified structure is in fact forbidden.

The rules above define under what circumstances a formula is satisfied by amatching.
In the end, however, we want to use such formulae to specify properties ofgraphs. For
this purpose, we use the one-to-one correspondence betweengraphs and matchings of the
empty property graph, here denoted∅, into it: that is, we equate a host graphG with (the

1This representation as nested graphs is essentially that ofexistential graphsas studied in, e.g., [20, 26, 7]. We
have worked out an alternative, more elegant but much more complicated, representation as tree-shaped diagrams
in the category of graphs in [18].

5

∀∀

∃

∃

Figure 5: Nested graph property with an existential disjunction

unique) matchingm: ∅→G. To be precise, we define, for arbitrary formulaeform(∅) (either
exist(∅) or univ(∅)):

G |= form :⇔ m: ∅→ G |= form .

Example 8 Another, more involved example of a nested graph property isgiven in Fig. 5.
This expresses that every cell either has a predecessor or isthe head element of a list,
in which case, moreover, the list does not have anempty-self-edge. The graph of Fig. 1
satisfies this property: it allows three matchings of the outermost (universally quantified)
graph, one of which can be extended to a matching of the bottom(existentially quantified)
inner graph, where, moreover, the innermost (universally quantified) graph, consisting of
theempty-edge, is absent; the other two outermost matchings can be extended to matchings
of the top (existentially quantified) inner graph.

Clearly, with these nested graphs we can express much stronger properties than with single
matchings. The following is a consequence of the work on existential graphs, and also
follows from [18]:

Theorem 9 Nested graphs, interpreted as graph properties in the way defined above, are
as expressive as first order logic with binary relations (butwithout equality).

The restriction to logic without equality is actually quiteunfortunate, since it prevents
us from doing any kind ofcounting. There are many useful properties that involve, for
instance, the uniqueness of nodes with a certain property; for instance, the fact that (in our
list example)Cell-nodes are unshared, i.e., have at most one predecessor. It follows from
Th. 9 that this and similar properties cannot be expressed with the nested graphs presented
above. There are several possible ways to lift this restriction.

• Limit the matchings allowed in Def. 4 to injective ones only.This is a definition
often seen in the graph transformation literature: although it may cost a (in the worst
case super-exponential) blowup in the number of rules required to model a particular
behaviour, in many practical examples it seems quite reasonable.

• Extend the subgraph relation betweenP and theQi andRj in the grammar ofexist
anduniv to (non-injective) matchingsmi: P→Qi resp.nj : P→Rj. This is the solution
presented in [18], at the cost of additional technical complexity. A consequence is
that the resulting structure cannot be depicted as a nested graph any more.

• Introduce special edges in the property graphs that stand for the equality of nodes.
We present this solution below.

Negative application conditions. The idea of using some form of nesting to enhance
the control over rule applications is far from new: it was described first in [14] for a single
level of nesting (resulting in so-called negative application conditions) and extended in [15]

6

∃

∀

Figure 6: Deletion of the last remaining element from a list

to a second level of nesting (so-called conditional application conditions). The idea is to
regard the LHSLhs of a rule〈Lhs, Rhs〉 as the starting point of a formula∃Lhs univ(Lhs).
Any matching that is discovered to satisfy the sub-formulauniv(Lhs) gives rise to a rule
application.

Example 10 Fig. 6 shows a production rule for deleting the head element of a list in case
this is also the final element, i.e., if it has no outgoingnext-edge. This involves a negative
application condition, here depicted as a nested universalsub-graph (without further sub-
conditions, so that the universal property works as a negative condition). As a consequence,
this rule is not applicable in the list graph of Fig. 1, but it is applicable to the final (bottom
right hand) graph of Fig. 3.

In addition to the explicit bounding box for the negative condition, in Fig. 6 we have
also distinguished the relevant subgraph by using very wide, closely dashed (red) lines.
In future examples of rules with negative application conditions we will actually leave
out the bounding boxes: each connected sub-graph drawn in these wide, closely dashed
lines implicitly stands for a universal sub-formula without further sub-formulae, which is
therefore works as a negative condition.

Equality and regular expressions. So far we have used ordinary graph morphisms as
matchings. We now strengthen the type of properties we can express by using a differ-
ent class of labels inP, which should not be matched by single edges ofG but rather by
(possibly empty) paths throughG. We will useH.Paths to denote the set of such paths.
Formally:

H.Paths = {v1·a1·v2 · · · an−1·vn ∈ H.Nodes·(Labels·H.Nodes)∗ |
∀1 ≤ i < n : (vi, ai, vi+1) ∈ H.Edges} .

If p ∈ G.Paths for some graphG, we uselab(p) to stand for the sequence of labels inp,
src(p) for the first node andtgt(p) for the last node inp; hence, ifp = v1·a1·v2 · · · an−1·vn

thensrc(p) = v1, lab(p) = a1 · · · an−1 andtgt(p) = vn.

Definition 11 (path expression language)A path expression languageover Labels is a
pair 〈Exprs, sat〉, whereExprs is a set of path expressions withLabels ⊆ Exprs, andsat⊆
Labels∗ × Exprs a satisfaction relationbetween sequences of labels inLabels and path
expressions, such that for alla ∈ Labels:

s sat a ⇐⇒ s = a .

If (s, x) ∈sat for some label sequences ∈ Labels∗ and path expressionx ∈ Exprs we say
thats satisfiesx; we usually denote this in infix notation, ass sat x. The definition specifies
that a path expression that is actually an element ofLabels (recall thatLabels ⊆ Exprs) is
satisfied only by itself. A prime example of a path expressionlanguage is that ofregular
expressions, RegExprs, generated by the following grammar:

x ::= = | a | x|x | x · x | x∗ .

7

∀

∃

∃∀

∀

∀

∃

Figure 7: Nested graph properties with path expressions

(where= stands for the empty sequence.) Satisfaction is defined as usual:

s sat = :⇔ s = ε

s sat a :⇔ s = a

s sat x1|x2 :⇔ s1 sat x1 or s2 sat x2

s sat x1 · x2 :⇔ ∃s1, s2 ∈ Labels∗ : s = s1 · s2, s1 sat x1, s2 sat x2

s sat x∗ :⇔ ∃s1, . . . , sn ∈ Labels∗ : s = s1 · · · sn, ∀1 ≤ i ≤ n : si sat x .

For instance, bothε sat next∗, next sat next∗ andnext·next sat @−∗, and both1 sat 1|2|3
and2 sat 1|2|3. We generalise the notion of matching to graphs over path expressions as
follows:

Definition 12 (path matching) Given a path expression language〈Exprs, sat〉 over
Labels, a path matching of a graphP overExprs (i.e., where the labels inP are actually
path expressions) into a graphG overLabels is a functionnodeMap: P.Nodes→ G.Nodes

such that for all(v, x, w) ∈ P.Edges:

∃p ∈ G.Paths : src(p) = nodeMap(v), lab(p) sat x, tgt(p) = nodeMap(w) .

Example 13 Fig. 7 shows two nested graph properties. The property on theleft hand side
is an invariant, expressing that everyCell-node has a unique predecessor. Note that the
=-labelled edge specifies that its source and target node are matched by the same node of
the host graph, i.e., that the matching is non-injective on these nodes.

The right hand side is an existential property, expressing that from aList-node there is
a Cell-node without successor, and moreover, that no reachable cell node has aval-edge to
a node with self-edge 1, 2 or 3. For instance, in the initial (top left hand) graph of Fig. 3,
this property is not fulfilled because the 2-labelled node still connected to the list; but once
we have deleted the firstCell-node (bottom left) the property holds, as indicated by the
emphasised part of the graph in Fig. 7.

It should be clear from this example that path expressions enhance the expressive power of
nested graph properties. On the one hand we can now state properties about node equality,
using=-labelled edges; hence we have gained (among other things) the ability to count
nodes. On the other hand, the Kleene star enables us to specify paths of arbitrary length,
which implies that we can state properties about transitiveclosure and connectivity; this
takes us outside standard first-order logic. Thus, we have the following result (compare
Th. 9):

Theorem 14 Nested graphs with path expressions, interpreted as graph properties in the
way defined above, are properly more expressive than first order logic with binary relations
and equality.

In order to use this expressive power in graph transformations, we extend the definition of
a rule (Def. 4) so thatLhs andRhs are graphs overExprs rather thanLabels. However,
this only makes sense for that part of the rule that controls the applicability: it is not clear

8

Figure 8: Production rule with path expressions and an application

what it would mean ifDel.Edg or New.Edges areExprs-labelled. Instead, for the edges
scheduled to be added or deleted we want to use

Definition 15 (production rule with path expressions) A production rule with path ex-
pressions is a tuple〈Lhs, Rhs〉 of graphs overExprs, where lab(e) ∈ Labels for all
e ∈ Del.Edges∪New.Edges. The rule isapplicableto a graphG if there is a path matching
of Lhs into G.

The application of a production rule with path expressions is the same as for ordinary
production rules, thanks to the fact that the deleted and created nodes and edges take their
labels fromLabels.

Example 16 Fig. 8 shows a production rule, essentially consisting of the nested graph
property of Fig. 7 as its left hand side. The right hand side specifies that the unconnected
node identified in the LHS should be appended to the list.

3 Graph Transformation Is Difficult

We have advertised graph transformation as a technique thatis easy to grasp, powerful and
(in certain application domains) natural. Why, then, is this technique not part of the tool kit
of more formal methods researchers?

We believe that part of the answer to this question is: because the area of graph trans-
formation is perceived to be difficult, and to be centred on questions of a very theoretical
nature. And there is certainly some justification for this feeling. A sizeable fragment of the
literature on graph transformation treats the subject on a very abstract level, in a categorical
setting; for those not familiar or even averse to category theory, this can be a great barrier
to appreciating the joys of graph transformation. In this perspective, it is almost certainly
a mistake in public relations to use terms like “Single Pushout Approach” to refer to an
intuitively straightforward technique: it suggests that,in order to apply the technique, one
has to know what a pushout is, whereas we believe that this is completely irrelevant in most
cases.

This is not to deny that category theory is a marvellous way toabstract away from
differences in the particular kinds of graphs that one is transforming (typed or untyped,
with binary or hyperedges, flat or hierarchical, with or without attributes, to name some
choices), and there is much to be gained from lifting some of the general issues involved in
any kind of transformation (or rewriting) to this abstract level. For those interested in such
theoretical issues we briefly discuss some of them.

Independenceof transformations (see, e.g., [6, 11]). This refers to the question if two
transformations have overlapping or conflicting effects — for instance, because one

9

transformation removes a node or edge that the other requires in order to be applica-
ble. If such conflicts do not occur, the transformations are called independent. This
may have important consequences: For instance, in the context of system verifica-
tion, it may be unnecessary to compute all transformations even in a full state space
exploration. Inop. cit. this problem is studied on the level of properties of the cat-
egories involved, so that it does not have to be done again forall different types of
graphs.

Constraints and conditions on graphs and graph transformations (sse, e.g., [14, 15, 9,
24]). In Sect. 2 we have shown a fairly straightforward way toformulate properties of
our graphs, but again, one would prefer not to re-invent the wheel for each particular
type of graph. There are two places where properties of graphs play a special role in
the framework of graph transformation: asinvariantsthat one would like to hold on
all graphs, or asapplication conditionsthat control the applicability of rules. Inop.
cit. these types of properties and their interrelation are studied.

Compositionality of graph production systems (see, e.g., [13]). In process algebra termi-
nology, graph transformations define areduction semantics: each state “reduces” to
the next without interference from the environment — in other words, graph trans-
formations define a “closed world semantics” in which all components of the system
being modelled have to be included in the model. Inop. cit. it is studied how the
transformation framework can be enriched with contextual information, so that the
behaviour of a complete system can instead be modelled on thelevel of individual
components, which can be put together afterwards.

4 Graph Transformation Wants You!

Although the field of graph transformation stems from the beginning of the 70s and so is, to
computer science standards, downright venerable, its application to behavioural modelling
and in particular behavioural verification is relatively young. In this contribution we hope
to have given you a taste of how it works and an impression of how it could be applied in
that area, but there are many open issues. We list a few of themhere, with some references;
we believe all of these areas to be worthy of further investigation.

Specification. In Sect. 1 we have called graph transformations a natural technique for the
specification of semantics for dynamic changes, on particular in object-oriented sys-
tems. One paper in which this has been worked out in concrete detail for a relatively
large fragment of Java is [5]; another approach is taken in [8], who (essentially)
define a special object-based language with a graph transformation semantics. How-
ever, we are yet far removed from a discipline in which the definition of such a
semantics can be easily and systematically written down — essentially an EBNF
standard for behavioural semantics.

Verification. Starting with a graph production system, one can generate the corresponding
transition system, essentially by computing all rule applications recursively. This
opens up the way for extending existing methods for test generation or model check-
ing to graph transformation-based systems. Some studies can be found in [8, 19, 25];
there are, however, major open problems in dealing with the dynamic nature of the
states (which cannot be captured by a fixed state vector). Another interesting option
is to extend assertional reasoning to graph production rules: the theory of graph prop-
erties mentioned in Sect. 3 lays down at least the terminology in which this problem
may be addressed, but the connection to predicate transformation yet has to be tack-
led. Yet another option is to regard a graph production system as an extended Petri
net and transfer techniques from that area, as seen, e.g., in[1, 2].

10

Abstraction. In the context of the verification issue, we would especiallylike to address
abstraction, as an approximative technique. We believe that graphs offer a very clean
setting to study state abstractions; this brings us in the realm of staticshapeanalysis
á la Sagiv et al. [22, 23] and abstract interpretation. A first proposal was described
in [16]. Abstraction of a different kind, using principles from Petri net unfoldings,
have also been proposed in [3, 4].

Compositionality. In Sect. 3 we have briefly referred to the general theory for composi-
tionality that has recently been developed. However, this work takes the reduction
semantics as a starting point and derives contextual rules from that. We believe that,
instead, it can be quite natural to start off with transformation rules that explicitly
take context into account, and whose effect may include the sending and receiving
of (sub)graphs. For instance, in the context of the running example on lists (e.g.,
Ex. 16), one may imagine a rule that appends an object “received” from some other
component of the system; the identity of the object may be communicated through
some parameterisation mechanism in the style of StructuralOperational Semantics.
As far as we are aware, this combination of ideas from graph transformation and
process algebra has not been considered at all so far.

As a consequence of the predominance of category theory in much of the graph literature
research, it is also obligatory to place this paper within the categorical framework. What we
have defined, on a set-theoretic level, is an instance of the single-pushout approach, which
cannot be formulated easily in the double pushout approach —the reason essentially being
the fact that we do not allow so-calledparallel edges, or in other words, that our edges
do not have an identity of their own. From the point of view of the algebraic framework,
this is a real drawback: much of the theory referred to above applies only in the double
pushout approach. The reason why we have nevertheless set upour definitions as we did
is twofold: it makes for an easier technical presentation, but more importantly, we like to
equate edges to binary relations. In that light it does not make sense for edges to have an
identity themselves.

References
[1] P. Baldan, A. Corradini, and B. König. A static analysistechnique for graph transformation

systems. In K. Larsen and M. Nielsen, editors,Concur 2001: Concurrency Theory, volume
2154 ofLNCS, pages 381–395. Springer-Verlag, 2001.

[2] P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars: An unfolding-
based approach. In P. Gardner and N. Yoshida, editors,Concurrency Theory (CONCUR), vol-
ume 3170 ofLNCS, pages 83–98. Springer-Verlag, 2004.

[3] P. Baldan, B. König, and B. König. A logic for analyzingabstractions of graph transformation
systems. In R. Cousot, editor,Static Analysis, volume 2694 ofLNCS, pages 255–272. Springer-
Verlag, 2003.

[4] P. Baldan, B. König, and I. Stürmer. Generating test cases for code generators by unfolding
graph transformation systems. In Ehrig et al. [10], pages 194–209.

[5] A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating java into graph transformation
systems. In Ehrig et al. [10], pages 383–389.

[6] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches
to graph transformation, part I: Basic concepts and double pushout approach. In Rozenberg
[21], chapter 3, pages 163–246.

[7] F. Dau. The Logic System of Concept Graphs with Negation, volume 2892 ofLNCS. Springer-
Verlag, 2003.

[8] F. L. Dotti, L. Foss, L. Ribeiro, and O. M. dos Santos. Verification of distributed object-based
systems. In E. Najm, U. Nestmann, and P. Stevens, editors,Formal Methods for Open Object-
based Distributed Systems (FMOODS), volume 2884 ofLNCS, pages 261–275. Springer-
Verlag, 2003.

11

[9] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints and application conditions:
From graphs to high-level structures. In Ehrig et al. [10], pages 287–303.

[10] H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors.Second International Con-
ference on Graph Transformation, volume 3256 ofLNCS. Springer-Verlag, 2004.

[11] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement categories and
systems. In Ehrig et al. [10], pages 144–160.

[12] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic
approaches to graph transformation, part II: Single pushout approach and comparison with dou-
ble pushout approach. In Rozenberg [21], pages 247–312.

[13] H. Ehrig and B. König. Deriving bisimulation congruences in the dpo approach to graph rewrit-
ing. In I. Walukiewicz, editor,Foundations of Software Science and Computation Structures
(FOSSACS), volume 2987 ofLNCS, pages 151–166. Springer-Verlag, 2004.

[14] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application conditions.
Fundamenta Informaticae, 26(3/4):287–313, 1996.

[15] R. Heckel and A. Wagner. Ensuring consistency of conditional graph grammars – a constructive
approach. In A. Corradini and U. Montanari, editors,Joint COMPUGRAPH/SEMAGRAPH
Workshop on Graph Rewriting and Computation, volume 2 ofElectronic Notes in Theoretical
Computer Science. Elsevier Science Publishers B.V., 1995.

[16] A. Rensink. Canonical graph shapes. In D. A. Schmidt, editor, Programming Languages and
Systems — European Symposium on Programming (ESOP), volume 2986 ofLNCS, pages 401–
415. Springer-Verlag, 2004.

[17] A. Rensink. The GROOVE simulator: A tool for state spacegeneration. In J. Pfalz, M. Nagl,
and B. Böhlen, editors,Applications of Graph Transformations with Industrial Relevance (AG-
TIVE), volume 3062 ofLNCS, pages 479–485. Springer-Verlag, 2004.

[18] A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors,International Conference on Graph Transformations
(ICGT), volume 3256 ofLNCS, pages 319–335. Springer-Verlag, 2004.

[19] A. Rensink,Á. Schmidt, and D. Varró. Model checking graph transformations: A comparison
of two approaches. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors,
International Conference on Graph Transformations (ICGT), volume 3256 ofLNCS, pages
226–241. Springer-Verlag, 2004.

[20] D. D. Roberts. The existential graphs.Computers and Mathematics with Applications, 6:639–
663, 1992.

[21] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph Transforma-
tion, volume I: Foundations. World Scientific, Singapore, 1997.

[22] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with de-
structive updating.ACM Trans. Prog. Lang. Syst., 20(1):1–50, Jan. 1998.

[23] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM Trans.
Prog. Lang. Syst., 24(3):217–298, May 2002.

[24] G. Taentzer and A. Rensink. Ensuring structural constraints in graph-based models with type
inheritance. InFundamental Approaches to Software Engineering (FASE), LNCS. Springer-
Verlag, 2005.

[25] D. Varró. Automated formal verification of visual modeling languages by model checking.
Journal of Software and Systems Modelling, 3(2):85–113, 2004.

[26] M. Wermelinger. Conceptual graphs and first-order logic. In International Confence on Con-
ceptual Structures, volume 954 ofLNAI, pages 323–337. Springer-Verlag, 1995.

12

	Graph Transformation Is Easy
	Graph Transformation Is Logical
	Graph Transformation Is Difficult
	Graph Transformation Wants You!

