
ELSEVIER Theoretical Computer Science 166 (1996) 101-146

Theoretical
Computer Science

Transformations of CLP modules

Sandro Etal le a, Maur iz io Gabbr ie l l i b'*

a D.I.S.L Universit5 di Genova, Via Dodecaneso 35, 16146 Genova, Italy
b Dipartimento di Informatica, Universith di Pisa, Corso Italia 40, 56125 Pisa, Italy

Received January 1995; revised August 1995
Communicated by G. Levi

Abstract

We propose a transformation system for Constraint Logic Programming (CLP) programs and
modules. The framework is inspired by the one of Tamaki and Sato (1984) for pure logic pro-
grams. However, the use of CLP allows us to introduce some new operations such as splitting
and constraint replacement. We provide two sets of applicability conditions. The first one guar-
antees that the original and the transformed programs have the same computational behaviour,
in terms of answer constraints. The second set contains more restrictive conditions that ensure
compositional#y: we prove that under these conditions the original and the transformed modules
have the same answer constraints also when they are composed with other modules. This result
is proved by first introducing a new formulation, in terms of trees, of a resultants semantics for
CLP. As corollaries we obtain the correctness of both the modular and the nonmodular system
w.r.t, the least model semantics.

1. Introduction

As shown by a number of applications, programs transformation is a powerful

methodology for the development and optimization of large programs. In this field,

the unfold/fold transformation rules were first introduced by Burstall and Darlington

[9] for transforming declaratively clear functional programs into equivalent, more com-

plex and efficient ones, and then adapted to logic programs both for program synthesis

[10, 17], and for program specialization and optimization [25]. Soon later, Tamaki and

Sato [37] proposed an elegant framework for the transformation of logic programs based

"~ This work has been carried out while both the authors were visiting the Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, The Netherlands. The research of the first author has been partially supported
by the ERCIM Fellowship Program. The research of the second author has been supported by the EC/HCM
network EUROFOCS under grant n. ERBCHBGCT930496. A preliminary, shorter version of this paper
appeared as [11].
* Corresponding author. E-mail: gabbri@di.unipi.it.

0304-3975/96/$15.00 @ 1996--Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00148-4

102 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

on unfold/fold rules. Their system was proven to be correct w.r.t, the least Herbrand
model semantics [37] and the computed answer substitution semantics [24].

The system was then extended by Seki [34] to logic programs with negation, in
particular he provided new, more restrictive applicability conditions which guarantee
that the system preserves also the finite failure set and the perfect model semantics of
stratified programs. Since then serious research effort has been devoted to proving its
correctness w.r.t, the various semantics available for normal programs. For instance, the
new system was then adapted by Sato to full first-order programs [33]. Related work
has been done by Maher [29], Gardner and Shepherdson [16], Aravidan and Dung [2],
Seki [35], Bossi and Cocco [5] and Bensaou and Guessarian [3]. Among these papers
only [3, 29] treated the case of Constrain Logic Programming. We defer to Section 7
a comparison of these approaches with ours.

All the (unfold/fold) transformation systems proposed so far for logic programming

and for CLP, with the only exception of [29], assume that the entire program is avail-
able at the time of transformation. This is often an unpractical assumption, either
because not all program components have been defined, or because for handling the
complexity a large program has been broken into several smaller modules. Indeed,
the incremental and modular design is by now a well-established software-engineering
methodology which helps to verify and maintain large applications. Modularity has
received a considerable attention also in the field of logic programming, as the recent
survey [8] shows.

Adhering to the above mentioned methodology, we consider here CLP programs
as a combination of separate modules. Each module partially defines some predicates,
and different modules are combined together by a simple composition operator which
essentially consists of union of program clauses.

Now, a transformation system for modules requires ad-hoc applicability conditions:
when we transform P into p1 we do not just want P and PI to have the same ob-
servable behaviour (e.g. the same answer constraints); we want them to have the same
observable behaviour whatever the context in which they are employed.

When this condition is satisfied we say that P and U are observationally congruent.

In this paper, we develop a transformation system for the optimization of CLP
modules. This is accomplished in two steps. First, we generalize the unfold/fold system
of Tamaki and Sato [37] to CLP programs. The full use of CLP allows us to introduce
some new operations, such as splitting and constraint replacement, which broaden the
range of possible optimizations. In this first part we also define new applicability
conditions for the folding operation which avoid the use of substitutions and which are
simpler than the ones used previously.

Afterwards, we define a (compositional) transformation system for modules. This is
obtained by adding some further applicability conditions, which we prove sufficient to
guarantee that the transformed module is observationally congruent to the original one.
This system allows us to transform independently the components of an application,
and then to combine together the results while preserving the original meaning of the
program in terms of answer constraints. This is useful when a program is not completely

s. Etalle, M. Gabbriellil Theoretical Computer Science 166 (1996) 101-146 103

specified in all its parts, as it allows us to optimize on the available modules. When
a new module is added, we can just compose it (or its transformed version) with the

already optimized parts, being sure that the composition of the transformed modules
and the composition of the original ones have the same computational behaviour in

terms of answer constraints.

This result is proved by using a new formulation, in terms of trees, of a resultants

semantics which models answer constraints and is compositional w.r.t, union of pro-

grams. From a particular case of the main theorem it follows that the transformation
system for non-modular programs also preserves the computational behaviour of pro-

grams. Finally, since the least model (on the relevant algebraic structure) can be seen
as an abstraction of the compositional semantics, we obtain as a corollary that the least

model is also preserved.

The paper is organized as follows. The next section contains some preliminaries
on CLP programs. In Section 3 we introduce the notion of module and we formal-

ize the resultants semantics for CLP by using trees. Section 4 provides the defini-

tion of the transformation system. In Section 5 we add the applicability conditions

needed to obtain a modular system and we state the main correctness result. In Sec-
tion 6 we show that the system of Tamaki-Sato can be embedded into ours. As

a consequence, the conditions given in Section 5 can also be added to those de-
fined in [37] in order to obtain a modular unfold/fold system for pure logic pro-

grams. Section 7 concludes by comparing our results with those contained in two
related works. The proof of the main technical result of the paper is deferred to the
Appendix.

2. Preliminaries: C L P programs

The Constraint Logic Programming paradigm CLP(X) (CLP for short) has been
proposed by Jaffar and Lassez [18, 19] in order to integrate a generic computational

mechanism based on constraints with the logic programming framework. The advan-

tages of such an integration are several. From a pragmatic point of view, CLP(JO allows
one to use a specific constraints domain X and a related constraint solver within the

declarative paradigm of logic programming. From the theoretical viewpoint, CLP pro-
vides a unified view of several extensions of pure logic programming (e.g. arithmetics,
equational programming) within a framework which preserves the existence of equiv-
alent operational, model-theoretic and fixpoint semantics [18]. Indeed, as discussed in
[29], most of the results which hold for pure logic programs can be lifted to CLP in
a quite straightforward way.

The reader is assumed to be familiar with the terminology and the main results on
the semantics of (constraint) logic programs. In this subsection we introduce some
notations we will use in the sequel and, for the reader's convenience, we recall some
basic notions on constraint logic programs. Lloyd's book and the survey by Apt [1, 28]

provide the necessary background material for logic programming theory. For constraint

104 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

logic programs we refer to the original papers [18, 19] by Jaffar and Lassez and to the
recent survey [20] by Jaffar and Maher.

The CLP framework was originally defined using a many-sorted first-order language.
In this paper, to keep the notation simple, we consider a one sorted language (the
extension of our results to the many sorted case is immediate). We assume programs
defined on a signature with predicates 2; consisting of a pair of disjoint sets containing
function symbols and predicate symbols. The set of predicate symbols, denoted b y / / ,
is assumed to be partitioned into two disjoint sets: Ho (containing predicate symbols
used for constraints) which contains also the equality symbol "=", and/ /u (containing
symbols for user definable predicates). All the following definitions will refer to some

given S, He and Hu.
The notations ? and J2 will denote a tuple of terms and of distinct variables re-

spectively, while/} will denote a (finite, possibly empty) conjunction of atoms. The
connectives "," and [] will often be used instead of "A" to denote conjunction.

A pr imi t ive constraint is an atomic formula p(t l tn) where the ti's are terms
(built from 2; and a denumerable set of variables) and p E Ho. A constraint is a first
order formula built using primitive constraints. A CLP rule is a formula of the form

H +-- c D B 1 , . . . , B n .

where c is a constraint, H (the head) and B1 ,Bn (the body) are atomic formulas
which use predicate symbols from Hu only. When the body is empty we will omit

the connective a. A goal (or query), denoted by c:zB1 Bn, is a conjunction of
a constraint and atomic formulas as before. A CLP program is a finite set of CLP

rules.
The semantics of CLP programs is based on the notion of structure. Given a sig-

nature with predicates S, a S-structure (structure for short) @ consists of a set (the
domain) D and an assignment that maps function symbols in 2; and predicate symbols

in Hc to fimctions and relations on D respecting arities.
A ~-interpretation is an assignment that maps each predicate symbol in Ha to a

relation on the domain of the structure. A ~-interpretation I is called a ~ - m o d e l of a
CLP program P if all the clauses of P evaluate to true under the assignment of relations
and function provided by I and by N. We recall that there exists [19] the least ~ -
model of a program P which is the natural CLP counterpart of the least Herbrand

model for logic programs.
Given a structure ~ and a constraint c, @ ~ c denotes that c is true under the

interpretation for constraints provided by ~. Moreover if 0 is a valuation (i.e. a map-
ping of variables on the domain D), and @ ~ cO holds, then 0 is called a ~-so lu t ion

of c (cO denotes the application of 0 to the variables in e).
Here and in the sequel, given the atoms A, H, we write A = H as a shorthand for:

- al = tl A . . . A an = t,, if, for some predicate symbol p and natural n, A --=
p(a l an) and H =-p (t l tn) (where = denotes syntactic equality)

- fa lse , otherwise.

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 105

This notation readily extends to conjunctions of atoms. We also find convenient to
use the notation 3_e ~b from [20] to denote the existential closure of the formula q5
except for the variables 2 which remain unquantified.

The operational model of CLP is obtained from SLD resolution by simply substi-
tuting ~-solvability for unifiability. More precisely, a derivation step for a goal G :

cobB1 ,Bn in the program P results in the goal

CO A (B i = H) A cDB1 , B i - I , B , Bi+I ,Bn

provided that B i is the atom selected by the selection rule and there exists a clause in
P standardized apart (i.e. with no variables in common with G) H ~ c[]B such that
(co A (Bi = H) A e) is ~-satisfiable, that is, ~ ~ 3 (co A (B~ = H) A c).

A derivation via a selection rule R of a goal G in the program P is a finite or
infinite sequence of goals, starting in G, such that every next goal is obtained from the
previous one by means of a derivation step where the atom is selected according to
R. A derivation is successful if it is finite and its last element is a goal of the form c,
i.e. consisting only of a constraint. In this case, 3-va,(a) c is called the answer con-
straint. I In what follows a derivation of a goal G whose last goal is Gi in the program
P will be denoted by

G~ G.

Finally, by naturally extending the usual notion used for pure logic programs, we

say that a query c s C is an instance of the query d_q) iff for any solution 7 of c there
exists a solution 6 of d such that 6'7 - /) 3 .

3. Modular CLP programs

Following the original paper of O'Keefe [31], the approach to modular programming
we consider here is based on a metalinguistic program composition mechanism. This
provides a formal background to the usual software engineering techniques for the
incremental development of programs.

Viewing modularity in terms of metalinguistic operations on programs has several
advantages. In fact it leads to the definition of a simple and powerful methodology
for structuring programs which does not require to extend the CLP theory (this is not
the case if one tries to extend CLP programs by linguistic mechanisms richer than
those offered by clausal logic). Moreover, metalinguistic operations are quite powerful,
indeed the typical mechanisms of the object-oriented paradigm, such as encapsulation
and information hiding, can be realized by means of simple composition operators [4].

1 We follow here the more recent terminology used in [20]. In the original papers [18, 19] a derivation step
was defined by rewriting in parallel all the atoms of the goal. As far as successful derivation are concerned
the two formulations are equivalent. Moreover in [18, 19] the answer constraint was considered c (without
quantification).

106 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

Here, in order to keep the presentation simple, we follow [6] and say that a module
M is a CLP program P together with a set Op(M) of predicate symbols specifying
the open predicates.

Definition 3.1 (Module). A CLP module M is a pair (P, Op(M)) where P is a CLP
program and Op(M) is a set of predicate symbols.

The idea underlying the previous definition is that the open predicates, specified in
Op(M), behave as an interface for composing M with other modules. The definition of
open predicates could be partially given in M and further specified by importin9 it from
other modules. Symmetrically, the definitions of open predicates may be exported and
used by other modules. A typical practical example is a deductive database composed
of two modules, in which the first one J contains the intensional part in the form
of some rules which refer to an unspecified extensional part. This latter is defined in
the second module eg which contains facts (unit clauses) describing the basic relations.
In this case the extensional predicates which are defined in g are exported to J ,
which in turn imports them when composing the two parts. Further definitions for the
extensional predicates can be incrementally added to the database by adjoining new

modules.
To simplify the notation, when no ambiguity arises we will denote by M also the

set of clauses P. To compose CLP modules we again follow [6] and use a simple
program union operator. We denote by Pred(E) set of predicate symbols which appear
in the expression E.

Definition 3.2 (Module composition). Let M = (P, Op(M)) and N : (Q, Op(N)) be

modules. We define

M q3 N = (P U Q, Op(M) U Op(N))

provided that Pred(P) n Pred(Q) C_ Op(M) N Op(N) holds. Otherwise M ® N is unde-

fined.

So, when composing M and N, we require the common predicate symbols to be
open in both modules. As previously mentioned, more sophisticated compositions (like
encapsulation, inheritance and information hiding) can be obtained from the one defined
above by suitably modifying the treatment of the interfaces (essentially by introducing

reuamings to simulate hiding and overriding).
Now, in order to define the correctness of our transformation systems, we need to fix

the kind of module's (and program's) equivalence that we want to establish between
a program and its transformed version.

Since the result of a CLP computation is an answer constraint, it is natural to say
that two programs are observationally equivalent to each other iff they produce the
same answer constraints (up to logical equivalence in the structure N) for any query.
This concept is formalized in the following Definition.

S. EtalIe, M. Gabbriellil Theoretical Computer Science 166 (1996) 101-146 107

Definition 3.3 (Program's equivalence). Let PbP2 be CLP programs. We say that P1

and P2 are (observationally) equivalent,

P1 ~ P2,

iff, for any query Q and for any i , j E [1,2], if there exists a derivation Q ~ ci then
Pj

there exists a derivation Q -~ cj such that @ ~ 3-Vat(Q) ci ~ ~-Var(Q) cj.

This notion is satisfactory when programs are seen as completely defined units.

However, the relation ~ is far too weak when considering modules. For instance,

consider the following:

Example 3.4. Consider the modules M1 : (P1, {P}) and M2: (P2, {P}) where P1 is

q(X) +-- t r u e D p (X) .

p(X) ~ X=a.

While P2 is

q(X) +-- X=a~p(X).

p(X) +-- X=a.

It is easy to see that P1 ~ P2. However, if we compose these two modules with
M : (P , (p}) where P is the program

p(X) +- X=b.

we have that M1 ®M and M2 ®M have quite different behaviour, in particular M1 ®M

M z O M .

The notion of equivalence which we need when transforming CLP modules has
to take into account also the contexts given by the ® composition. In other words,

we have to strengthen ~ to obtain a congruence w.r.t, the ® operator. Therefore the
following.

Definition 3.5 (Module's congruence). Let M1 and M2 be CLP modules. We say that

M1 is (observationally) congruent to M2,

M1 ~c M2

iff Op(M1) = Op(M2) and for every module N such that M1 ® N and M2 ® N are
defined, M1 G N ~ M2 ® N holds.

So M1 ~c M2 iff they have the same open predicates and, for any query, they produce
the same answer constraints in any O-context. By taking N as the empty module we

immediately see that if M1 ~c M2 then M1 ~ M2.
This notion of equivalence and of congruence are used to define the correctness of

our transformation system.

108 S. Etalle. M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146

Definition 3.6 (Correctness). We say that a transformation for CLP programs (mod-
ules) is correct iff it maps a program (a module) into an ~ - (~c-) equivalent one.

3.1. A compositional semantics f o r C L P modules

The correctness proofs for our transformation system will be carried out by showing
that the system preserves a semantics (borrowed from [13]) which models answer

constraints and is compositional w.r.t. ®. This implies that it is also correct w.r.t. ~c,

in the sense that if two modules have the same semantics then they are ~c-equivalent.
From this property it follows the desired correctness result. Basically, the semantics

we are going to use is a straightforward lifting to the CLP case of the compositional

semantics defined in [6] for logic programs. The aim of [6] was to obtain a semantics
compositional w.r.t, union of programs. In this respect it is easy to see that the standard

semantics, such as the least ~-model and the computed answer semantics, are not

compositional w.r.t, e ; consider for instance the modules M1 and M2 in Example 3.4:
they have the same least ~-model, where M1 ® M and M2 ® M do not (the same

reasoning applies for the answer constraint semantics of [14]). Following an idea first
introduced in [15], compositionality was then obtained by choosing a semantic domain

based on clauses. As we discuss below the resulting semantics tums out to model the

notion of "resultant", hence its name.
In order to define the semantic domain, we use the following equivalence relation,

which, intuitively, is a generalization to the CLP case of the notion of variance.

Definition 3.7. Let ell : A1 +-- Cl 5/~1 and cl2 : A2 +-- C2 D/~2 be two clauses. We
write Cll ~ cl2 iff for any i , j E [1,2] and for any @-solution 0 of ci there exists
a ~-solution 7 of cj such that AiO -- A j7 and BiO and /~j7 are equal as multisets.
Moreover, given two programs P and P ' we say that P - P ' iff P' is obtained by

replacing some clauses in P for ~-equivalent ones.

Notice that, in the previous definition, the body of a clause is considered as a

multiset. Considering bodies of clauses as sets instead of multisets would not allow us
to model correctly answer constraints, since adding a duplicate atom to the body of a
clause can augment the set of computed constraints. For instance, if we consider the

programs Q I :

q(X,Y) +-true

r(X,Y) +-- X=a.

r(X,Y) +-- Y=b.

and Q2:

q(X,Y) +-true

r(X,Y) +- X=a.

r(X,Y) +- Y=b.

Dr(X,Y) ,r(X,Y).

~r(X,Y).

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 109

The query q(X,Y) has the computed answer constraint X = a A Y = b in Q1 and not

in Q2.
The following lemma shows that the equivalence relation _~ is correct w.r.t, the

congruence relation ~e.

Lemma 3.8 (Gabbrielli [13]). Let M = (P, zc} and M ' = (P',Tc} be two modules with
the same set of open predicates. I f P ~- P' then M ~ M'.

We are now able to define the semantic domain. For the sake of simplicity, we will

denote the _~-equivalence class of a clause c by c itself.

Definition 3.9 (Denotation). Let ~r be a set of predicate symbols and let cg be the set of
the ___-equivalence classes of the CLP clauses in the given language. The interpretation
base cg~ is the set {A +- cD/} 6 c~] Pred(B) C_ ~}. A denotation is any subset of cg~.

The following is the definition of the resultant semantics as it was originally given
in [6] for pure logic programs and applied to CLP in [13].

Definition 3.1t) (Resultants Semantics for CLP). Let M = (P, Op(M)} be a module.
Then we define

(9(M) = {p(x) +-- e[ziB E 6~Op(M) I there exists a derivation trueD p (2) P~ c ~ B }.

I f there exists a derivation cD~i ~ dDB, then the formula cD~i ~- dD/} is called a

computed resultant for the query cc~A in P. It can be shown that computed resultants
for generic queries can be obtained by combining together resultants for simple queries

of the form true[]p(2). Therefore (9(M) is expressive enough to characterize all the
resultants computable in P. In particular, (9(M) models also the answer constraints
computed in M, since these can be obtained from resultants of the form c DA +- d.

The compositionality of previous semantics w.r.t. ® is proved in [13]. From such a
result follows the correctness of (9 w.r.t. ~c, stated by the following proposition.

Proposition 3.11 (Correctness, Gabbrielli [13]). Let M = (P, Op(M)} and
(Q, Op(N)} be modules such that Op(M) = Op(N).
I f (9(M) = (9(N) then M ~c N.

N =

In the particular case Op(M) = @, i.e. when all the predicates are completely defined,

(9(M) coincides with the answer constraint semantics which is correct and fully abstract
w.r.t. ~ (see [14]).

Example 3.12. Consider again the modules M1 and 2142 of Example 3.4. Then

(9(M1) = {p(X) + - X = a, q(X) ~--- X = a, q(X) +--- truec~p(X)}.
(9(M2) = {p(X) ~ - X = a, q (X) +-- X = a, q (X) +-- X = a ~ p (X) } .

110 S. Etalle, M. Gabbriellil Theoretical Computer Science 166 (1996) 101-146

So the fact that M1 and M2 are not observationally congruent is reflected by the fact
that (P(M1) ¢ (P(M2).

3.2. Resultants semantics via trees

We now provide a new, altemative formulation of the resultant semantics in terms
of proof trees. This particular notation will be used to prove the correctness re-

sults.

We assume known the usual notion of finite labelled tree and the related terminology.
Given a finite labelled tree rooted in the node N, we say that T' is an immediate subtree

of T if T' is the subtree of T which is rooted in a son of N.

Definition 3.13 (Partial proof tree). Let A be an atom. A partial proof tree for A is
any finite labelled tree T satisfying the following conditions:

1. The root node of T is labelled by a pair (A = Ao ; Ao ~ CA pAl An) such that
A0 and A have the same predicate symbol.

2. Each immediate subtree Tj of T is a partial proof tree for a distinct Aj with 1 ~<j ~< n.

3. All the clauses used in the labels of T do not share variables pairwise and have no
variables in common with the atom in the 1.h.s (left-hand side) of the label equation

in the root node.

We call label equation and label clause of the node N, the left- and the right-hand

side of the label of N, respectively. Moreover, if A i is an atom in the body of the label
clause of the root of T and Ti is an immediate subtree of T which is a partial proof
tree for A/, we say that Tg is attached to A i. Using this notation, condition 2 can be
restated as follows: "no two immediate subtrees of T are attached to the same atom of

the label clause of the root (and therefore, of any) node". Finally, we say that T is a
tree in P, if the label clauses of all its nodes are (variants of) clauses of the program

P.
Notice that, according to previous definition, there might be some Aj in the bodies

of label clauses with no subtrees attached to them. We call them the elements of the

residual as specified below.

Definition 3.14. Let T be a partial proof tree.
• The residual of a node in T having the clause label Ao +--- cA:~A1 An, is the

multiset consisting of those Aj's, 1 <<.j<.n, that do not have an immediate subtree
attached to.

• The residual of T is the multiset resulting from the (multiset) union of the residuals

of its nodes.

In order to establish the connection between the resultants semantics and partial

proof-trees, we introduce now in a natural way the notion of resultant of partial proof
trees.

s. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 111

Definition 3.15. Let T be a partial proof tree. We call the 9lobal constraint of T
the conjunction of all the label equations together with the constraints of all the label

clauses of the nodes of T.

Definition 3.16. Let T be a partial proof tree of A. Let c be its global constraint and

F1 Fk be its residual. I f c is satisfiable we call the clause A ~-- cDF1, . . . ,Fk the

resultant of T.

In the sequel we are interested in those partial trees whose residuals consist ex-

clusively of only open atoms and whose global constraint is satisfiable. Therefore the

following definition:

Definition 3.17. Let n be a set of predicate symbols. We call n-atom any atom A such

that Pred(A) E n. A n-tree is a partial proof tree T such that

1. the residual of T contains only n-atoms,
2. the global constraint of T is satisfiable.

We can now establish the relation between open trees and the resultant semantics.

Proposition 3.18 (Correspondence). Le t M = (P, O p (M)) be a module. Then A ~-

c D P E C (M) i f f there exists a 7r-tree o f A in P with A ~- c 'DP ' as resultant such

that A +-- c D P ~- A ~-- c' •P' and n = Op(M).

ProoL Straightforward. []

4. A transformation system for CLP

In this section we define a transformation system for optimizing constraint logic

programs. The system is inspired by the unfold/fold method proposed by Tamaki
and Sato [37] for pure logic programs. Here, the use of constraint logic programs

allows us to introduce some new operations which broaden the possible optimiza-
tions and to simplify the applicability conditions for the folding operation

in [37].
Before we begin to define the transformation method, it is important to notice that all

the observable properties of computations we refer to are invariant under _~. Moreover,
as we formally prove later, such a replacement does not affect the applicability and
the results of the transformations. Therefore we can always replace any clause cl in

a program P by a clause cl ' , provided that cl ' ~- cl. This operation is often useful
to clean up the constraints, and, in general, to present a clause in a more readable
form.

We start from some requirements on the original (i.e. initial) program that one wants

to transform. Here we say that a predicate p is defined in a program P, if P contains
at least one clause whose head has predicate symbol p.

112 S. Etalle, ML Gabbrielli/ Theoretical Computer Science 166 (1996) I01-146

Definition 4.1 (lnithll program). We call a CLP program P0 an initial program if the
following two conditions are satisfied:

(I1) P0 is partitioned into two disjoint sets Pnow and Pore,

(12) the predicates defined in Pnow do not occur in Pore nor in the bodies of the clauses

in/°new.

Following this notation, we call new predicates those predicates that are defined

in Pnew. We also call transformation sequence a sequence of programs P0 Pn, in
which P0 is an initial program and each Pi+l, is obtained from Pi via a transformation
operation.

Our transformation system consists of five distinct operations. In order to illustrate
them throughout this section we will use the following working example. To simplify
the notation, when the constraint in a goal or in a clause is true we omit it. So the
notation H ~--/} actually denotes the CLP clause H ~-- trueDB.

Example 4.2 (Computing an average). Consider the following CLP(91) program 2

AVERAGE computing the average of the values in a list. Values may be given in dif-

ferent currencies, for this reason each element of the list contains a term of the form
(Currency , Amount). The applicable exchange rates may be found by calling predi-
cate exchange_ra t e s , which will retum a list containing terms of the form

(Currency , Exchange_Rate), where Exchange_Rate is the exchange rate relative
to Currency. AVERAGE consists of the following clauses:

average(List, AV) ~-

Av is the average of the list List

cl: average(Xs, Av) ~-Len > 0AAv*Len = Sum []

exchange_rates (Rates),
/ .

~welghted_sum(Xs, Rates, Sum),

len (Xs, Len).

weighted_sum(List, Rates, Sum)e-

Sum is the sum of the values in the list List

and each amount is multiplied first by the exchange rate corresponding
to its currency

weighted_sum([] , 0).

weighted_sum([(Currency, Amount) l Rest], Rates, Sum)+-

Sum = Amount*Value + Sum' []

member ((Currency, Value> ,Rates) ,

2 CLP(91) [22] is the CLP language obtained by considering the constraint domain 9t of arithmetic over
the real numbers.

S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146 113

weighted_sum(Rest, Rates, Sum ~).

len(List, Len) +-

Len is the length of the list List

len([], 0).

len([HIRest], Len) +--Len = Len'+l ~ fen(Rest, Len').

together with the usual definition for member. Notice that the definition of average

needs to scan the list Xs twice. This is a source of inefficiency that can be fixed via

a transformation sequence.

The first transformation we consider is the unfolding. This operation is basic to all

the transformation systems and essentially consists in applying a derivation step to an

atom in the body of a program clause, in all possible ways. As previously mentioned,

all the observable properties we consider are invariant under reordering of the atoms

in the bodies of clauses. Therefore the definition of unfolding, as well as those o f the

other operations, is given modulo reordering o f the bodies. To simplify the notation,

in the following definition we also assume that the clauses o f a program have been

renamed so that they do not share variables pairwise.

Definition 4.3 (Unfolding). Let cl: A +--- cDH,~2 be a clause in the program P, and

{//1 ~- cl zB1 Hn ~- cn DB,} be the set o f the clauses in P such that cA ci A (H =
Hi) is @-satisfiable. For i E [1,n], let cl~ be the clause

A +- c A ci A (H = H i) D B i , K

Then unfoldin9 H in cl in P consists o f replacing el by ' ' {cl I c l , } in P.

In this situation we also say that {H1 +- cl c/}1 H~ ~ en D/},} are the unfoMing

clauses.

Example 4.2 (Part 2). The transformation strategy which we use to optimize AVERAGE

is often referred to as tupling [32] or as procedural join [26]. First, we introduce a

new predicate a v l defined by the following clause:

avl (List, RATES, AV, LEN)+-

AV is the average of the list L i s t , and LEN is its length

c2: av l (XS , RATES, AV, LEN)+--LEN>0AAV*LEN--SUM

e x c h a n g e _ r a t e s (RATES),

we igh ted_sum(Xs , RATES, SUM),

l en (XS , LEN).

a v l differs from a v e r a g e only in the fact that it reports also the list of exchange rates

and the length o f the list Xs. Notice that av l , as it is now, needs to traverse the list
twice as well.

! 14 S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146

Now let P0 be the initial program consisting of AVERAGE augmented by e2 and
assume that a v l is the only new predicate. We start to transform P0 by performing

some unfolding operations. First we unfold weighted_sum(XS, RATES, SUM) in the

body of e2. The resulting clauses, after having cleaned up the constraints and renamed
some variables, are the following ones:

avl([] , Rates, Average, Len) +- Len > 0 A Average*Len = 0 []

exchange_rates (Rates),

len([], Len).

avl([(Currency,Amount) IRest],Rates, Average, Len)+-

Len > O AAverage*Len = Amount*Value+Sum' []

exchange_rates (Rates),

member((Currency, Value>, Rates),

weighted_sum(Rest, Rates, Sum'),

len([(Currency,Amount) IRest] , Len).

Furthermore, in the above clauses we unfold the atoms l e n ([] , Len) and
l en ([(Cur rency ,Amoun t)] R e s t] , Len). This yields the following two clauses:

c3: avl([], Rates, Average, O)+-0 > OAAverage*O = 0 []

exchange_rates (Rates).

c4: avl([(Currency,Amount) IRest], Rates, Average, Len)+-

Len > 0 ALen = Len'+l A Average*Len = Amount*Value+Sum'

exchange_rates (Rates),

member (<Currency, Value> ,Rates) ,

weighted_sum(Rest, Rates, Sum ') ,

len(Rest, Len').

Notice that the constraint in the body of clause c3 is unsatisfiable. For this reason

c3 could be removed from the program; to do that we need the following operation.

Definition 4.4 (Clause removal) . Let cl : H ~-- c[]B be a clause in the program P. If

~ 3 c

Then we can remove cl from the program P, obtaining the program P~ = P \ { c l } .

Note 4.5. In [32] we find the definition of a clause deletion operation for pure logic
programs which in CLP terms can be expressed as follows: if cl : H ~-- cDB is a

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 115

clause in P such that query cD/} has a finitely failed tree in P then w e 3 c a n remove
cl from P. Obviously, if ~ ~ 73 c then the goal cDA has a (trivial) finitely failed tree;
therefore each time that we can apply the clause removal operation we can also apply

the clause deletion of [32]. However, clause removal is only apparently more restrictive
than clause deletion, since by combining it with the unfolding operation we can easily

simulate the latter. Indeed, if cD/} has a finitely failed tree in P then, by a suitable

sequence of unfoldings we can always transform the clause A +-- c[]B, in such a way
that the set of resulting clauses is either empty or contains only clauses whose con-

straints are unsatisfiable. So using clause removal, we can then (indirectly) remove cl

from the program. We prefer to use clause removal rather than clause deletion, because
when we will move to the context of modular CLP programs the first operation will

remain unchanged while the latter will require some specific applicability conditions.

We now introduce the splitting operation. Here, just like for the unfolding operation,
the definition is given modulo reordering of the bodies of the clauses and it is assumed
that program clauses do not share variables pairwise.

Definition 4.6 (Split t ing). Let cl : A +-- c ~ H , k be a clause in the program P, and

{H1 +-- cl []/~1 Hn +-- cn~Bn} be the set of the clauses in P such that c A c i A (H =

Hi) is @-satisfiable. For i 6 [1,n], let cl~ be the clause

.4 +-- c A ci A (H = Hi)[]H,I£

If, for any i , j 6 [1,n], i # j , the constraint (Hi = Hj) A ci A cj is unsatisfiable then
splitting H in cl in P consists of replacing cl by {cl{ cl~} in P.

In other words, the splitting operation is just an unfolding operation in which we do

not replace the atom H by the bodies of the unfolding clauses. The condition that for
no two distinct i , j (Hi = Hi) A ci A cj is satisfiable is easily seen needed in order to
obtain ~ equivalent programs. Indeed, consider for instance the program Q

q(X, Y)+--p(X, Y)

p (a , W).

p(Z, b).

I f we split p (X, Y) in the body of the first clause we obtain the program Q', which
after cleaning up the constraints consists of the following clauses:

q (a , Y) + - - p (a , Y)

q(X, b) + - - p (X , b)

p (a , W).

p(Z, b).

3 The definition of finitely failed tree for CLP is the obvious generalization of the one for pure logic programs.

116 S. Etalle. M. Gabbrielli l Theoretical Computer Science 166 (1996) 101-146

Now Q ~ Q' since the query q(X, Y) has in Q' the computed answer {X = a,Y = b},
while such an answer is not obtainable in Q.

Note 4.7. We should mention that an operation called splitting has also been defined
in a technical report of Tamaki and Sato [36]. However, the operation described here
is substantially different from theirs. In CLP terms the splitting operation defined in
[36] can be expressed as follows. If el : H +- c a B is a clause and d a constraint then
splitting el via d consists in replacing el by the two clauses {H ~ c A dc/~, H +-

c A ~d[]B}. This operation preserves the minimal Y-model (which corresponds to
semantics used in [36]) but is does not produce ~ equivalent programs. Indeed, if we
consider the program P = {p (X).} then by splitting its only clause w.r.t, the constraint
X=a we obtain the program P' = {p(X) +-- X=a., p(X) ~-- X ¢ a.}. Clearly P ' ~ P,
since the query p (X) returns the answer constraint X=a in P' only.

Example 4.2 (Par t 3). By applying the splitting operation to l e n (R e s t , U) in clause
c4 we obtain the following two clauses:

c5: avl([(Currency,Amount>] ,Rates, Average, Len) *-

Len > 0 A Len = I A Average*Len = Amount*Value+Sum' []

exchange_rates (Rates).

member((Currency, Value>, Rates),

weighted_sum ([], Rates, Sum'),

fen([], 0).

c6 : avl ([<Currency, Amount>, J] Rest] ,Rates,Average,Len) *-

Len > 0ALen = Len'+iALen' = Len''+IA

Average*Len = Amount*Value+Sum' []

exchange_rates (Rates).

member (<Currency, Value>, Rates),

weighted_sum([JIRest] , Rates, Sum'),

len([JIRest], Len').

In clause c6 we can now remove the superfluous constraint (by replacing c6 for a
-~-equivalent clause) Len' = Len' '+ l , and in c5 we can do some cleaning up and
we can unfold both weighted_sum([] ,Rates ,Sum') and l e n ([] ,0). After these
operations we end up with the following clauses:

c7: avl([(Currency,Amount>] ,Rates, Average, I) ~-

Average = Amount*Value []

exchange_rates (Rates).

member ((Currency, Value), Rat e s).

S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146 117

c8: avl([(Currency,Amount},JIRest], R a t e s , Average, Len) ~-

Len > 0 ALen = Len'+l A Average*Len = Amount*Value+Sum' []

exchange_rates(Rates).

member(<Currency, Value},Rates),

weighted_sum([JlRest], Rates, SumS),

len([JIRest], Len').

In order to be able to perform the folding operation on clause c8 we need now
a last, preliminary operation: the constraint replacement. In fact, as we will discuss
later, to apply such a folding, c8 should contain also the constraint Len'>0. Clearly,

adding Len '>0 to the body of c8 cannot be done via a simple cleaning-up of the
constraints, as it transforms c8 in a clause that is not ~-equivalent. However, no-
tice that the variable Len ' in the atom l e n ([J l R e s t] , L e n ') (in the body of c8)

represents the length of the list [J l R e s t] which obviously contains at least one ele-

ment. Indeed, every time that c8 is used in a refutation its internal variable Len ' will

eventually be bounded to a numeric value greater than zero. We can then safely add
the redundant constraint Len '>0 to body of c8. This type of operation is formalized

by the following definition of constraint replacement. Notice that this operation relies
on the semantics of the program (in the previous specific case, on the fact that if

l e n ([J l K e s t] , L e n ') succeeds in the current program with answer constraint c then
c is equivalent to c A Len' > 0).

Definition 4.8 (Constraint Replacement). Let cl : H ~-- clDB be a clause of a
~ p

program P and let c2 be a constraint. If, for each successful derivation true[]B ~
d,

b ~--Var(H) C1 A d +-+ ~-Var(H) C2 A d

holds, then replacing cl by c2 in cl consists in substituting cl by H ~- c2E/~
in P.

Constraint replacement has some similarities with the refinement operation as de-
fined by Marriott and Stuckey in [30]. Refinement allows us to add a constrain c

to a program clause H ~-- Cl m/}, provided that (for a given set of initial queries
of interest) for any answer constraint d of Cl c~/~, ~ ~ d --~ c holds, i.e. c is re-

dundant in d. Clearly this case is covered by our definition. However, the similar-
ities between this paper and [30] end here. In [30], refinement, together with two

other operations, is used to define an optimization strategy which manipulates ex-
clusively the constraints of the clauses and which is devised to reduce the over-

head of the constraint solver in presence of the fixed left-to-right selection rule, thus
providing a kind of optimization technique totally different from the one here
considered.

118 S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146

Example 4.2 (Part 4). By per~rming a constrai~ replacement of

Len > 0 ALen = L e n ' + l A Average*Len = Amount*Value+Sum'

by

Len > 0 ALen = Len'+l A Average*Len = Amount*Value+Sum' ALen' > 0

we can add the constraint Len ' >0 to the body of clause c8, thus obtaining the clause

c9: avl([(Currency,Amount),JIRest], Rates, Average, Len) +--

Len > 0ALen = Len'+lA

Average*Len =Amount*Value+Sum' ALen' > 0 []

exchange_rates(Rates).

member((Currency, Value),Rates),

weighted_sum([JIRest], Rates, SumS),

len([JIRest], Len').

As we said before, the applicability conditions for the constraint replacement oper-
ations are satisfied because each time that the query l e n ([J l R e s t] , L e n ') suc-
ceeds in the current program the variable Len ' is constrained to a value greater than

zero.

We are now ready for the folding operation. This operation is a fundamental one,

as it allows us to introduce recursion in the new definitions. Intuitively, folding can
be seen as the inverse of unfolding. Here, we take advantage of this intuitive idea in

order to give a different formalization of its applicability conditions which we hope

will be more easily readable than those existing in the literature.
As in [37], the applicability conditions of the folding operations depend on the

history of the transformation, that is, on some previous programs of the transformation
sequence. Recall that a transformation sequence is a sequence of programs obtained by
applying some operations of unfolding, clause removal, splitting, constraint replacement
and folding, starting from an initial program Po which is partitioned into Pnew and

Pold.
As usual, in the following definition we assume that the folding (d) and the folded

(cl) clause are renamed apart and, as a notational convenience, that the body of the
folded clause has been reordered so that the atoms that are going to be folded are

found in the leftmost positions.

Definition 4.9 (Folding). Let P0, . . . ,Pi ,

cl : A +--- cA Df2,J be a clause in Pi,

d : D +- CD DIYI be a clause in Pnew.

i/> 0, be a transformation sequence. Let also

S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146 119

If CA []K is an instance of true ~ITI and e is a constraint such that Var(e) C_ Var(D) U

Var(cl) , then folding f2 in cl via e consists of replacing cl by

cl I" A +-- cA A eGD, J

provided that the following three conditions hold:

(F1) (i) " I f we unfold D in cF usin 9 d as unfoldin 9 clause, then we obtain el back"

(modulo ~) ,

or, equivalently,

(ii) @ ~ 3_Var(A,J, ft) CA A e A cz) ~ 3_Var(A,Z£r) CA A (I2I = K)

(F2) "d is the only clause o f Pnew that can be used to unfold D in cl '" ,

i.e. there is no clause b : B ~-- cBs£ in Pnow such that b 7£ d and cA A e A

(D = B) A cB is @-satisfiable.

(F3) "No self-foldin9 is allowed ", i.e.

(a) either the predicate in A is an old predicate;

(b) or cl is the result of at least one unfolding in the sequence Po Pi.

Here, the constraint e acts as a bridge between the variables of d and cl. For this

reason in the sequel we will often refer to it as bridge constraint. Moreover d and el

will be referred to as the folding and folded clause, respectively.

Conditions (F1) and (F2) ensure that the folding operation behaves, to some extent,
as the inverse of the unfolding one; the underlying idea is that if we unfolded the atom

D in cF using only clauses from Pnew as unfolding clauses, then we would obtain cl

back. In this context condition (F2) ensures that in Pnew there exists no clause other
than d that can be used as unfoldin9 clause.

We now show that (Fl(i)) and (Fl(i i)) are equivalent to each other. First notice

that the folding and the folded clause are assumed to be standardized apart, so D has
no variables in common with A, cA, k and J . From this and the fact that CA _zK is an
instance of trueDI2I, it follows that each solution of CA can be extended to a solution
of CA A (H = /~) . Hence

cl " A ~-- CA~I{ ,J ~ A +-- cA A ([7[= ~2)Dff2,j.

Now, because of the constraint H = / { , in the r.h.s, of the above formula, we also
have that

cl _~ A~--cAA(£r=~?)[]B, j . (1)

On the other hand, if we unfold el I using d as unfolding clause, as a result we get the
following clause:

/ ~ 1 ~

cl II " A +-- CA A e A (D = D I) A CDDH , J

where d ~ D I i ~ i
• ~-- c D DH is an appropriate renaming of d. Here, by the standardiza-

tion apart and the fact that Var(e) C_ Var(D) U Var(el) , the variables of cD, 121 which

120 S. Etalle, M. Gabbriellil Theoretical Computer Science 166 (1996) 101 146

do not occur in D, do not occur anywhere else in this clause, so, by making ex-
with co and H~ with /~. Therefore we have plicit (D = D'), we can identify c o

that

c l " ~-- A ~ cA A e A cD~I2I, J . (2)

From (1) and (2) it follows immediately that

c l " ~- c l iff 3_Var(A,y,l: 0 cA A e A co +-* ~-Var(A,J , I t) CA /~ (f ir = I(~)"

This proves that condition (Fl(i)) is equivalent to (Fl(ii)). Of course, the former is
more useful when we are transforming programs "by hand", while the latter is more
suitable for an automatic implementation of the folding operation.

Here it is worth noticing that the folding clause is always found in P0 and usually
does not belong to the "current" program, therefore in practice "undoing" a fold via
an unfolding operation is usually not possible.

Finally, we should mention that the purpose of (F3) is to avoid the introduction of
loops which can occur if a clause is folded by itself. This condition is the same one
that is found in Tamaki-Sato's definition of folding for logic programs.

Example 4.2 (P a r t 5) . We can now fold

exchange_rates(Rates), weighted_sum([JlRest], Rates, Sum'),

len([JIRest], Len')

in c9, using c2 as folding clause. In this case, the bridge constraint e has to be

XS = [JIRest] ARATES = Rates A LEN = Len' A AV = Sum'/Len'

In the resulting program, after cleaning up the constraints, the predicate av l is defined

by the following clauses:

c7: avl([(Currency,Amount)],Rates, Average, 1)+-

Average = Amount*Value []

exchange_rates(Rates),

member((Currency, Value),Rates).

ci0: avl([(Currency,Amount),J]Rest], Rates, Average, Len) +-

Len > 0ALen = Len'+lA

Average*Len = Amount*Value+(Average'*Len') ALen' > 0

avl([JIRest],Rates, Average',Len'),

member((Currency, Value),Rates).

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 121

Notice that, because of this last operation, the definition of a v l is now recursive and
it needs to traverse the list only once. Here, checking (F1) is a trivial task: what we

have to do is to unfold c i0 using c2 as unfolding clause, and check that the resulting

clause is _~-equivalent to c9.
Finally, in order to let also the definition of a v e r a g e enjoy of these improvements,

we simply fold weighted_sum(Xs, Rates, Sum), len(Xs, Len) in the body of cl,

using c2 as folding clause. The bridge constraint e is now

Xs = XSARATES = RatesAAV = AvALEN = Len

and the resulting clause is, after the cleaning-up

cll: average(List, Av) +-Len>O] avl(List, Rates, Av, Le n) .

Again, we could eliminate the constraint Len > 0 in the body of c i i , by applying

a constraint replacement operation. In any case, the transformed version of the pro-
gram AVERAGE, consisting of the clauses c i i , c7, c l0 together with the definition

of member, contains a definition of a v e r a g e which needs to scan the list only once.

The transformation system given by the previous five operations is correct w.r.t. ~,

i.e. any transformed program together with a generic query Q will produce the same
answer constraints of the original one. This is the content of the following result, which
follows from the more general one contained in Section 5.

Theorem 4.10 (Correctness). I f Po P~ is a transformation sequence then
(a) Po ~ P,,.
(b) The least ~-models of Po and P. coincide.

Proof. Statement (a) is proven in Section 5 as a Corollary of Theorem 5.4. The fact
that (a) implies (b) is proven in [13].

4.1. Invariance of the applicability conditions

As previously mentioned, we often substitute a clause in a program by an -~- equi-
valent one in order to clean up the constraints. The correctness of this operation w.r.t.
the ~c congruence is stated in Lemma 3.8. We now show that this operation is correct
also in the sense that it does not affect the applicability and the result (up to ~_) of
the previously defined operations. This is the content of the following proposition.

Proposition 4.11. Let Po ,Pn and P~ P~ be two transformation sequences, such
that, for i C [0. . .n] , Pi ~- P~. I f Pn+x is a program obtained from P~ via a transfor-
mation operation, then there exists a program P~+I which can be obtained from P~
via the same transformation operation and such that

Pn+l ~- P~+l.

122 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

P r o o L In case that the operation used to obtain Pn+l from Pn was either an unfolding, a
clause removal, a splitting, or a constraint replacement, this result follows immediately
from the operation's definitions, so we only have to take care of the folding operation.
We adopt the same notation used in Definition 4.9, so we let
- cl : A +-- CA c]f2,j be the folded clause, in Pn,

- d : D +-- CDC]I2I be the folding clause, in Pnew(CP0).
- e be the bridge constraint, Var(e) C Var(D) U Var(cI),

- cl ' : A +--- CA A eDD, J be the result of the folding operation.
Moreover, let
- cl* : A* ~ c] D/£*,J* be the clause of Pn corresponding to cl in Pn,

- d* : D* +-- @ c~H* be the clause of P~ corresponding to d in P0.
Now let e* be a constraint such that Var(e*) C Var(D*) U Var(cl*) such that
- c l* ' : A * + - - c] A e * c] D * , J * ~ - c I ' : A ~ - - C A A e D D , J

We now only have to show that if the applicability conditions of the folding operation
are satisfied (by el, d and e) in Pn, then they are also satisfied (by cl*, d* and e*) in
P~. To this end, the only delicate step is taken care of by the following observation.

Observation 1. Referring to the program Pn, the clauses cl and d, and the constraint

e, CA:Z~2 is an instance o f trueDIYI and (F1) holds iff eA[]K is an instance o f cDc]I2I

and (F1) holds.

Proof. (If) This is trivial, as if cA ,Jk is an instance of eD DH then it is also an instance

of true ~IYI.
(Only if) The discussion after Definition 4.9 shows that, if cA Dk is an instance of

true D I2I and (F1) holds, then we have the following equivalences:

cl : A +-- cA DK, J

~-A +--CA A (H = K)D/£ ,J

--~A *-- cA A(/~ = /~)DH, , J

~- A +-- cA A e A cDcsITI, J .

This implies that cA D/(is an instance of cA A e A CD [3/~, which in turn is by definition
an instance of CD DIrI. This concludes the proof of the Observation. []

This Observation shows that there is no loss of generality in modifying the appli-
cability conditions of the folding operation Definition 4.9 by replacing the condition
"ca cz/£ is an instance of true DI2I '' for "cA D/£ is an instance of el)[]/:7". Now, from the
definitions of instance and of -~ it is immediate to verify that the following facts hold:
(1) If CASE is an instance of CDaIZI then e~iDk* is an instance of e b D H .
(2) if (F1)A(F2)A(F3) are satisfied (by cl, d and e) in Pn, then they are also satisfied

(by el*, d* and e*) in P*.
This concludes the proof of the proposition. []

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) i01 146 123

5. A transformation system for CLP modules

Theorem 4.10 shows the correctness of the transformation system when viewing each
CLP program as an autonomous unit. However, as pointed out in the introduction, an
essential requirement for programming-in-the-large is modularity: A program should
be structured as a composition of interacting modules. In this framework Theorem 4.10
falls short from the minimal requirement since it does not guarantee that a module P

will be transformed into a congruent one U.
Transforming CLP modules requires then a strengthening of (some of) the applica-

bility conditions given in the previous section. In what follows, we discuss such modi-
fications considering the various operations one by one. Recall that the open predicates
of a module M are the ones specified on Op(M). Similarly, in the sequel we call open

atoms those atoms whose predicate symbol belongs to Op(M). Moreover, we assume
that the transformed version of a module has the same open predicates as the original

one.

Unfolding. In order to preserve the compositional equivalence, for the unfolding oper-
ation we need the following additional applicability condition:
(01) The unfolding cannot be applied to an open atom.

This condition is clearly needed, for instance, consider the module M0 consisting
of the single clause {c l : p ~-- q.} and where Op(Mo) = {q}. Since 340 contains
no clause whose head unifies with q, unfolding q in c l will return an empty module

341 = (0. Obviously M0 and M1 are not observationally congruent.

Clause Removal. This operation may be safely applied to modules withoutthe need of

any additional condition.

Splitting. Being closely connected to the unfolding operation, the splitting one requires
the same kind of precautions when is applied to a modular program. Namely we need
the following condition:
(02) The splitting operation may not be applied to an open atom.

The example used to show the need for condition (O1) for the unfolding operation
can be applied here to demonstrate the necessity of (02) .

Constraint replacement. This operation is the most delicate one: in order to apply
it to modules we need to restate completely its applicability conditions. As a simple
example showing the need of such a change, let us consider the following module M0:

c l : p(X) +-- t rueDq(X) .

q (a) .

where Op(Mo) = {q}. The only answer constraint to the query q(X) in M0 is X = a.
Therefore, if we refer to the applicability conditions of Definition 4.8, we could add

124 S. Etalle, M. Gabbriellil Theoretical Computer Science 166 (1996) 101-146

the constraint X = a to the body of c 1 thus obtaining MI:

c2: p(X)+--X=a [] q(X).

q(a) .

Once again M0 and M1 are not congruent. In fact, for N = ({q(b) . }, {q}), the query

p(b) succeeds in M0 ® N and fails in M1 ® N.

Definition 5.1 (Constraint replacement for modules). Let cl : H +- cl s/} be a clause

of a module M and let c2 be a constraint. I f

(03) For each derivation trueDB ~ d s D such that /) is either empty or contains
only open atoms, we have that

H +--cl Ad:~I) ~ H +--c2Ad[]D

then replacing cl by c2 in cl consists in substituting cl by H +-- c2 D/~ in M.

In order to compare this definition with the corresponding one for nonmodular pro-

grams notice that the applicability conditions of Definition 4.8 can be restated as fol-

lows. We can replace cl with c2 in the body of cl : H +-- cl DB if, for each successful

derivation truesB ~ d we have that

H + - - - c l A d ~-- H + - c 2 A d .

Now it is clear that the difference lies in the fact that here we cannot just refer to the

successful derivations true DE P~* d, but we also have to take into account those partial

derivations that end in a tuple of open atoms, whose definition could eventually be

modified. It follows immediately that when the set of open atoms is empty, Definitions

4.8 and 5.1 coincide, while if Op(M) # 0 then this definition is more restrictive than

the previous one.

Folding. Finally, we consider the folding operation. In order to preserve the compo-

sitional equivalence the head of the folding clause cannot be an open atom. This is

shown by the following simple example. Consider the initial module M0:

e l : p +-- q.

c2: r +-- q.

where we assume Op(Mo) = {p} and Mnew = {p +- q}. Since r is an old atom, we
can fold q in c2 using c l as folding clause. The resulting module MI is

c5: p +- q.

c4: r + - p .

Again M0 and MI are not observationally congruent. Indeed, if we compose them with

the module N = ({p. }, {p}), we have that the query r succeeds in MI ® N, but fails
in M0 • N. Since the new predicates are the only ones that can be used in the heads

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 125

of folding clauses, we can express this additional applicability condition for folding as

follows:

(04) No open predicate is also a new predicate.

It is worth noticing that open atoms may still be folded. Below (Example 4.2, part

6), we report an example of such a case.

Using the additional applicability conditions introduced above, we can define now the

transformation sequence for CLP modules (for short, modular transformation sequence).

Definition 5.2 (Modular transformation sequence). Let M0 = (P0, Op(Mo)} be a mod-

ule and Po , Pn be a transformation sequence. We say that Mo ,M~ is a mod-

ular transformation sequence iff Mi = (Pi, Op(Mo)} for i E [0,n] and the conditions

(O1),. . . , (04) are satisfied by all the operations used in P0 Pn.

As expected, for a modular transformation sequence we can prove a correctness

result stronger than the one contained in Theorem 4.10. Indeed, the system transforms
a module into a congruent one.

This result is based on the following theorem which contains the main technical

result of the paper and shows that any modular transformation sequence preserves the
resultants semantics.

Theorem 5.3. Let Mo ,M~ be a modular transformation sequence. Then

O(Mo) = O(Mn).

Proof. See the Appendix.

From the previous theorem and the correctness result for the resultants semantics we

can now easily derive the correctness of a modular transformation sequence.

Theorem 5.4 (Correctness of the modular transformation sequence). Let Mo M~ be

a modular transformation sequence, then

Mo ~cMn

Proofi Immediate from Theorem 5.3 and Proposition 3.11. []

In other words, for any module N such that M0 • N is defined, M= ® N is also

defined 4 and a generic query has the same answer constraints in M0 • N and Mn ® N.

From previous result we also obtain Theorem 4.10 of previous section.

Theorem 4.10. I f Po Pn is a transformation sequence, then,

Po ~ Pn.

4 The fact that Mn O N is also defined follows immediately from the fact that M0 and M, contain definitions
for the same predicate symbols.

126 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

Proof. Note that when Op(Po) is empty, conditions (O1) , . . . , (O4) are trivially sat-

isfied by any transformation sequence. Since ~ can be seen as the particular case of

~c applied to modules with an empty set of open predicates, the thesis follows from
Theorem 5.4. []

Example 4.2 (Part 6). Program AVERAGE can be used in a modular context. Indeed, if
we consider that the exchange rates between currencies are typically fluctuating ratios,
it comes natural to assume e x c h a n g e _ r a t e s as an open predicate which may refer to
some external "information server" to access always the most up-to-date information.

In this context, it is easy to check that all the transformations we performed satisfied

(O1) , (04) . Therefore Theorem 5.4 guarantees that the final program will behave
exactly as the initial one, even in this modular setting.

6. From LP to CLP

It is well-known that pure logic programming (LP for short) can be seen as a

particular instance of the CLP scheme obtained by considering the Herbrand constraint

system. This is defined by taking as structure the Herbrand universe and interpreting
as identity the only predicate symbol for constraints "=". So it is natural to expect that
an unfold/fold transformation for LP can be embedded into one for CLP. Indeed, in

this section we show that the transformation system we propose is a generalization to

the CLP (and modular) case of the unfold/fold system designed by Yamaki and Sato

[37] for LP. As a consequence, conditions (O1) and (0 4) can be used also in the LP

case to transform a module into a congruent one.

We introduce the system of Tamaki and Sato by first considering the unfold operation
for LP. Again, we assume that the clauses are standardized apart and we give the
following definition modulo reordering of the bodies.

Definition 6.1 (Unfoldin9 for LP). Let cl: A +-H,K be a clause of a logic program
P, and let {//1 ~ /~1 Hn +--/~n) be the set of clauses of P whose heads unify with
H, by mgu's {01 0n). For i E [1,n] let el~ be the clause

(A +-- Bi,K)Oi

{cll,. . . ,eln} in P. Then unfoldin9 H in cl in P consists of replacing cl by ~ t

Also in the LP case the notions of folding operation and of transformation sequence
are defined in a mutually recursive way. So, in the sequel we use the same definition
of initial program as before. However, since clause removal, splitting and constraint
replacement are new operations which were not in [37], we call now LP transformation
sequence a sequence of LP programs Po,...,Pn, in which P0 is an initial program and
each Pi+i, is obtained from Pi either via an unfolding or via a folding operation 5.

5 However, we should mention that in [37] also a more general replacement operation is taken into consid-
eration, but this operation is beyond the scope of this paper.

S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146 127

Now we also need some extra preliminary notions. Given a substitution 0 =

{ X l / t l Xn/tn} we denote by Dom(O) the set of variables {xl xn}, and by Ran(O)
the set of variables appearing in {h , . . . , tn}, if Ran(O) = (3 we say that 0 is grounding.

Finally we denote by Var(O) the set Dora(O) U Ran(O).
We are now ready to give the definition of the folding operation for LP. Again, here

we assume that the folding and the folded clause are renamed apart and that the body

of the folded clause has been reordered (as in Definition 4.9).

Definition 6.2 (Folding for LP, Tamaki and Sato [37]). Let Po Pi, i>~O, be an

LP transformation sequence and

cl : A ~- K,J . be a clause in Pi,

d : D ~--/J. be a clause in Pnew.

Let also f = Var(tt) \ Var(D) be the set of local variables of d. I f there exists a sub-

stitution z such that Dom(z) = Var(d), then folding ~2 in cl via z consists of replacing
el by cI r : A +-- Dz, J, provided that the following conditions hold:
(LP1)/~r~ = K;

(LP2) For any x, y C
• xz is a variable;
• xv does not appear in A, J, Dz;
• i f x ~ y t h e n x z ~ y z ;

(LP3) d is the only clause in Pnew whose head is unifiable with Dz;
(LP4) one of the following two conditions holds:

1. the predicate in A is an old predicate;
2. cl is the result of at least one unfolding in the sequence P0 Pi.

Concerning the unfolding operation, it is easy to see that Definition 6.1 is the LP
counterpart of Definition 4.3. In fact, an LP clause is itself a CLP rule (with an

empty constraint) and well-known results [27] imply that two terms s and t have an
mgu iff the equation s = t is satisfiable in the Herbrand constraint system. There-

fore, given a logic program P, we can unfold P according to Definition 6.1 iff we
can unfold P according to Definition 4.3. Clearly, the results of the two operations
are syntactically different, since substitutions are used in the first case whereas con-

straints are employed in the second one. However, again by using standard results
of unification theory, it is easy to check that the different results are -~ equiva-
lent.

On the other hand, when considering the folding operation, the similarities be-
tween Definitions 6.2 and 4.9 are less immediate. Therefore we now formally prove
that, whenever the folding operation for LP programs is applicable also the folding
operation for CLP programs is, and the result of this latter operation is -~-equi-
valent to the result of the operation in LP. This is summarized in the
following.

128 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

Theorem 6.3. I f Po is a logic program and Po P~ is an L P transformation se-

quence then there exists a C L P transformation sequence P~ P~ such that, f o r

i E [0, n], Pi ~-- P*.

Proof. In order to simplify the notation, we now define a simple mapping from LP

clauses to clauses in pure CLP. 6 Let el: p0(i'0) +- p l (t l) pn(t'n) be a clause in
LP. Then #(cl) is the CLP clause

P0(i~0) +--2~0 z t0 A3~1 = i l A " " A X n ~-- t'n D p l (; ~ l) pn(.~n),

where 20, . . . ,2~ are tuple of new and distinct variables. Obviously #(cl) ~_ cl for any

clause cl. Therefore it suffices to prove that i f P0 P . is a transformation sequence

of logic programs, then #(P0) , # (P ,) is a transformation sequence in CLP. The
proof proceeds by induction on the length of the sequence. For the the base case
(n -- 0) the result holds trivially, so we go immediately to the induction step: we

assume that Po,. . . ,P~+I is a transformation sequence in LP, that #(P0) #(Pn) is
a transformation sequence in CLP, and we now prove that #(P0) #(Pn+l) is a
transformation sequence in CLP as well.

I f Pn+l is the result of unfolding a clause cl of Pi, then it is straightforward to check

that by unfolding #(cl) in #(Pi) we obtain #(P/+I) (modulo ~_).
Now we consider the case in which P~+I is the result o f a folding operation (applied

to Pn). We prove the thesis for the simplified situation where H , k and ff consist each

of a single atom. The extension to the general case is straightforward. Let

d : a(Y) ~ b([) be the folding clause, in Pnew.

Since we are assuming that the applicability conditions of Definition 6.2 are satisfied,

by (LP1) the folded clause (in P~) can be written as follows:

cl : c(tT) +-- b([z), d(g).

The result o f the folding operation is then

cl' : c(~t) +-- a(2z), d(g).

which is a clause in P~+I.
By translating the folding and the folded clause in CLP, we obtain

g(d) - d* : a(2) *-- 2 = ~ A y = [Db(~),

#(c l) -- cl* : c(Y.) +- 2 = ~t A ~ = ['c A [c = ~sb(~) ,d([c) .

Where 2, y, Z, v? and /~ are tuples of new and distinct variables. Now, let e be the

following constraint:

e = 2 = Y z

6 Pure CLP programs are CLP programs in which the atoms in the clauses, apart from constraints, are always
of the form p(Y), where 2 is a tuple of distinct variables.

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 129

the result of the folding operation in CLP is then

cl:* : c(Z) +-- ~ = f A t? = ~ A ~: = ~ A 2 = g~Da(Y),d([c).

It is straightforward to check that #(cF) ~_ cff*. Now, it is also clear that Z = f i a t ? =

~z A/~ = g ~ b (~) is an instance o f t rueab(y) , so in order to prove the thesis we now

need to verify that if d, cl and z satisfy (LP1), (LP2) in Pn then d*, cl* and e satisfy

(F1) in #(Pn). Here the structure @ is the Herbrand structure, whose domain is the

Herbrand universe and where " = " is interpreted as the identity.

Now the condition (F1) is ~ ~ E-e,; Cle~ +-+ 3_e,; Gight where cle~ is

i f = f i A ~ = t'z A/~ = g A Y = ~ z A 2 = ~A)3 = i"

and Cright is

In both sides o f the formula we find the equations u~ = (z, /~ = g, 2 = gz, where

u),/~,2 are tuple o f fresh variable and are existentially quantified, hence we can simplify

(F1) to

~ b ? _ £ ; z ~ = f A i = i ~ A f i = (e-~ ? _ e , 2 z = u A) ~ = t ' ~ . (3)

Recall that, when considering the Herbrand structure, g is a solution of a constraint c

if g is a grounding substitution such that Dora(g) = Var(c) and ~ ~ cO.

We now show that for each solution r/ of one side o f (3) there exists a solution t/

of the other side of (3) such that t l le , ;= t/tle,)~; this will imply the thesis.

We now prove the two implications separately:

(+--) Let t/ be a solution of ff = f A y = [z. We assume that t/ is minimal, in the

sense that if l is a variable not occurring in Z = fA)~ = t'z, then 1 f~ DomO~). Since, by

standardization apart, Dora(v) rq Ran(q) = ~1, we have that Dom(tl) r] Dom(~) = 0. We

can extend t/ to t/ where Dora(t~) = D o m (q) U D o m (r) : for each l ~ Dora(z), we let

l t / be equal to l~t/. (4)

~/ is now also a solution of the left-hand side o f (3). In fact

gtf = g~t/ (by (4))

= grr/ (because t/ is an extension of t/).

Moreover

)~r/ = t'rt/~ (because rf is an extension of t/, and t/ is a solution of y = if)

= tt I' (by(4)).

Since t/ is an extension of t/, we have that J/Is,; = ~//Iz,;.

(---+) Let t/ be a solution o f Z = f A g = gz A)3 = /'. Again, we assume t/ to be
minimal (in the sense above, i.e. Dom(tl) =Var(ff = f A Y = Yv A)3 = ?)). Observe

130 X Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

that Dom(tl) N Ran(z) = Var(s'c). We now extend t / to t / in such a way that Dom(tl)
encompasses the whole Ran(z) = Var(tz) U Var(sz). Let 7 be the tuple of variables
given by Var(?)\Var(~), by (LP2) we have that 1-c is a tuple of distinct variables.
Moreover, the variables in lz do not occur anywhere else in the above formulas. So,
for each l i E l, we can let

liztl t be equal to lit I. (5)

Since q is already a solution of g = gz and q~ is an extension of r/, by (5) we have
that

Since ~/is a solution of)3 = ?, t/' is then a solution of 33 = ~z, and hence of the whole
LHS of (3), which concludes the proof. []

Theorem 6.3 allows us to apply the results of the previous section also to the
Tamaki-Sato schema, thus obtaining a transformation system for LP modules. The
following corollary show the correctness result for this case. Here we consider as LP
module a logic program P together with a set of predicate symbols n. Module com-
position and the related notions are the same as in the previous sections. Given two
logic programs P1 and P2, the concept of observational equivalence ~LP is defined as
follows:
• P1 ~LPp2 iff, for any query Q and for any i , j E [1,2], if Q has a computed answer

Oi in the program Pi then Q has a computed answer Oj in the program Pj such that

OOi =- OOj. 7
Therefore, in the LP context, the concept of module congruence is defined as follows.
Given two modules M1 and M2,
• m l ~LP ~c M2 iff Op(M1) = Op(M2) and for every module N such that M1 ® N and

M2 @ N are defined, M1 ® N ~LP M2 ® N holds.

Corollary 6.4. Let Mo : (Po, Tr) be a logic programming module, Po, . . . ,Pn be an LP
transformation sequence and for i C [1,n] let Mi be the module (Pi, re). I f conditions
(01) and (0 4) are satisfied then Mo ~LP ~C mn"

Proof. Immediate from Theorems 6.3 and 5.4. []

7. Conclusions

Among the works on program's transformations, the most closely related to this
paper are Maher's [29] and the one of Bensaou and Guessarian [3].

7 We assume here that generic mgu 's are used in the SLD derivations. If only relevant mgu ' s were allowed,
then the syntactic equality should be replaced by variance.

S. EtaIle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146 131

Maher considers several kinds of transformations for deductive database modules
with constraints (allowing negation in the bodies of the clauses) and refers to the
perfect model semantics. However, the folding operation proposed in [29] is quite
restrictive, in particular it lacks the possibility of introducing recursion. Indeed, for
positive programs, it is a particular case of the one defined here. Moreover, our notion
of module composition is more general than the one considered in [29], since the latter
does not allow mutual recursion among modules.

Recently, an extension of the Tamaki-Sato method to CLP programs has also been
proposed by Bensaou and Guessarian [3], yet there are some substantial differences

between [3] and our proposal.
Firstly, just as in the case of the operation defined in [29], also the folding defined

in [3] is very restrictive in that it lacks the possibility of introducing recursion.
Secondly, since in an unfold/fold transformation sequence we allow more operations

(namely splitting and constraint replacement), we obtain a more powerful system. For
instance, the transformation performed in Example 4.2 is not feasible with the tools
of [3]. On the other hand, since in [3] the authors define also a goal replacement
operation, there exist also some transformation which can be done with the tools of [3]
and not with ours. However, such a replacement operation does not fit in an unfold/fold
transformation sequence, in particular no folding is allowed when the transformation
sequence contains a goal replacement. For this reason a goal replacement operation as
defined in [3] has to be regarded as an issue which is orthogonal to the one of the
unfold/fold transformations, and which is also beyond the scope of this paper: We have

studied replacement operations for CLP modules in [12].
A third relevant difference is due to the fact that since modularity is not taken into

account in [3], the system introduced in that paper does not produce observationally
congruent programs. As pointed out in the introduction, this issue is particularly relevant
for practical applications.

Finally, one last improvement over [3] is that of the applicability conditions we
propose are invariant under _~-equivalence (Proposition 4.11), while the ones in [3]
are not: this means that in some cases the folding conditions of [3] may not be sat-
isfiable unless we appropriately modify the constraints of the clauses (maintaining
~-equivalence). Moreover, since the reference semantics in [3] is an abstraction (up-
ward closure) of the answer constraint semantics, the result on the correctness of the
unfold/fold system of [3] can be seen as a particular case of our Theorem 4.10.

To conclude, the contributions of this paper can be summarized as follows.
We have defined a transformation system for CLP based on the unfold/fold frame-

work of Tamaki and Sato for logic programs [37]. Here, the use of CLP allowed
us to define some new operations and to express the applicability conditions for the
folding operation without the use of substitutions. Moreover, our definition of folding
emphasizes its nature of being a quasi-inverse of the unfolding. We hope that this
will provide a more intuitive explanation of its applicability conditions. The system is
then proven to preserve the answer constraints and the least N-model of the original
program.

132 S. Etalle, M. Gabbriellil Theoretical Computer Science 166 (1996) I01 146

A definition of a modular transformation sequence is given by adding some further
applicability conditions. These conditions are shown to be sufficient to guarantee the
correctness of the system w.r.t, the module's congruence. This means that the trans-
formed version of a CLP module can replace the original one in any context, yet
preserving the computational behaviour of the whole system in terms of answer con-
straints. As previously argued, this provides a useful tool for the development of real
software since it allows incremental and modular optimizations of large programs.

Finally, the relations between transformation sequences for CLP and LP have been
discussed. By mapping logic programs into CLP programs we have shown that our
transformation system is a generalization to CLP (and to modules) of the one proposed
by Tamaki and Sato [37]. This relation allows us to prove that, under conditions (O1)
and (O4), the system by Tamaki and Sato transforms an LP module into a congruent
one.

In the literature we also find less related papers presenting methods which focus
exclusively on the manipulation of the constraint for compile-time [30] and for low-
level local optimization (in which the constraint solving is partially compiled into
imperative statements) [23,21]. These techniques are totally orthogonal to the one
discussed here, and can therefore be integrated with our method. On the other hand,
some strategies which use transformation rules for composing complex (pure) logic
programs starting from simpler pieces have been presented in [26] and further discussed
in [32]. Also these strategies could easily be extended to CLP and integrated with our
transformation rules. Transformations based on partial evaluation for structured logic
programs have been studied in [7]. These results however are quite different from ours,
since they are not concerned with CLP, use a completely different kind of program
transformation and refer to a different notion of module.

Acknowledgements

The authors want to thank K.R. Apt, A. Bossi and the referees for their helpful

comments.

Appendix A

In this appendix we first give the proof of Theorem 5.3 which shows that any
modular transformation sequence preserves the resultants semantics. The proof, quite
long and tedious, is split in two parts (partial and total correctness) and is inspired by

the one given in [24].
Throughout the Appendix we will adopt the following.

Notation. We refer to a fixed module

Mo = <Po, Op(Mo))

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 133

and to a fixed transformation sequence

Mo . . .M,.

Moreover, for notational convenience, we set

n = Op(Mo)

A.1. Partial correctness

Intuitively, a transformation is called partially correct if it does not introduce new

semantic information. In our case, partial correctness corresponds to the inclusion

(9(M0) ___ (9(114,) o f Theorem 5.3. Before proving such an inclusion we need to es-

tablish some further notation.

Definition A.1. We say that two trees T and T' are similar if they are partial proof

trees for the same atom, and they have the same resultant, modulo _~.

This is (obviously) an equivalence relation, so we can also say that two trees belong

to the same equivalence class iff they are trees of the same atom, and their resultants

are equal, modulo -~.

The next two lemmata outline some simple properties of proof trees which will be

useful in the sequel. The first one states that, given a tree T, we can replace a subtree

S with a similar subtree S', without altering the main properties of T.

Lemma A.2. Let T be a n-tree, S be a subtree o f T, and S' be a partial proof tree
similar to S and such that the clauses o f S' do not share variables with T. Then the

tree T' obtained from T by replacing S for S' is a n-tree and is similar to T.

Proof. Straightforward.

Lemma A.3. Let T be a partial proof tree of A; let also T' be the tree obtained
from T by replacing A with A' in the l.h.s, o f the label equation of the root node. I f
A' and A have the same predicate symbol, and A' does not share variables with T,
then T' is a partial proof tree of A'.

Proof. Obvious. []

In other words, a partial proof tree for A is basically also a partial proof tree for any

A' that has the same relation symbol of A. Of course this lemma gives no guarantee

that after the substitution of A with A', the global constraint of the tree will still be
satisfiable.

We need a couple o f final, preliminary results.

Remark A.4. Let P be a program and A ~-- dD/) be a resultant. Equivalent are
l ~ ! • There exists a derivation true~A f~ d'[]f)' such that A +-- d[] /) ~ A +-- d []D ;

134 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

* There exists a partial proof tree of A in P whose whose resultant is A +- d" []/)"
and such that A +- d[]/) ~ A +--- d":z/)" .

Proof. Straightforward. []

Lemma A.5 (Gabbrielli et al. [13]). Let P be a program, if, f o r dist&ct i , j E [1,k],
there exists a derivation

trueDAi ~ e i D F i

and Var(ei D P i) n Var (c j : zF j)C Var(Ai)N Var(Aj) then there also exists a derivation

P
trueDAa Ak ~ el A . . . A ekDF1 ,Fk.

We can now state the partial correctness result for the transformation system.

Proposition A.6 (Partial correctness). I f (9(Mo) = (9(Mi) then (9(Mi) D_ C(Mi+ I)

Proof. To simplify the notation, here and in the sequel we refer to P1 Pn rather

than to M 1 , . . . , M , .

In case Pi+l was obtained from Pi by unfolding or by a clause removal operation

then the result is straightforward, therefore we need only to consider the remaining

operations.
We now show that if there exists a u-tree TA of an atom A with resultant R in Pi+l,

then there exists also u-tree of A with resultant R in Pi (modulo -~). By Proposition

3.18, this will imply/the thesis. The proof is by induction on the size of a proof tree,
which corresponds to the number of nodes it contains. Let cl' be the label clause of

the root node of TA, and let us distinguish various cases.

Case 1: cl' E Pi. This is the case in which clause cl' was not affected by the

passage from Pi to Pi+l. The result follows then from the inductive hypothesis: For

each subtree S of TA (in Pi+l) there exists a similar subtree S' in Pi, so the tree
obtained by replacing each S with S' in TA is a re-tree in Pi similar to TA.

Case 2: cl' is the result o f splitting. Let el be the corresponding clause in Pi, i.e.,
the clause that was split. There is no loss in generality in assuming that the atom that
was split was the leftmost one. Therefore the situation is the following:

- cl : Ao +---CADA1,...,A,

- cl ' : Ao +- CA A(AI = B) AcBGA1 ,An
where B +- CB DJD is one of the splitting clauses, and has no variable in common with
cl. Since by condition (0 2) no open atom can be split, we have that A1 may not
belong to the residual of TA, therefore there exist a subtree TAm of TA which is attached
to A1. Let C +- e c D E be the label clause of the root node of TAx. With this notation
the global constraint of TA has the form

(A = Ao) A CA A (A1 = B) A eB A (A1 = C) A ¢C A ' " (A. 1)

S. Etalle, M. GabbrieIli/ Theoretical Computer Science 166 (1996) 101-I46 135

Now C +-- ccs /~ is also one of the clauses used to split A1; by the applicability

conditions of the splitting operation either C and B are heads (of renamings) of the
same clause, or C = B A c c A c B is unsatisfiable. Since (A.1) is satisfiable, we have that

C and B must be renamings of the heads of the same clause. Since by standardization
apart, the variables in cB and in B may not occur anywhere else in TA, as far as global

constraint of TA is concerned, the expression (A1 = B)/~ ce is already implied by the
expression (A1 = C) A cc, therefore we can eliminate (A1 = B)/~ cB from the global

constraint of TA, and obtain a tree which is similar to it; in other words, by replacing
the clause cl r with cl in the label of the root of TA, we obtain a tree TJ which is

similar to TA.

By inductive hypothesis, for each subtree TA~ of TA (and TA 1) there exists a tree T 2 Ai
in Pi+l which is similar to TAt. We can assume without loss of generality that the
clauses in each T 2 do not share variables with those in TA 1. A~

Finally, let T 2 be the tree obtained from T 1 by substituting each subtree TA, with

T 2 by Lemma A.2 we have that TA 2 is similar to TJ, and therefore to TA. Since T~ is
A i '

a ~-tree of A in Pi, the result follows.

Case 3: cF is the result o f a constraint replacement. From now on, let us call
internal constraint of a tree T, the conjunction of all the constraints in the label

clauses of T, together with the label equations of the subtrees of T. So the internal

constraint is obtained from the global constraint by removing from it the label equation
of the root node of T.

Now, let

- cF " A +-- cIDA1 ,An, and
- cl " A ~ c r A 1 An. where cl is the clause to which the replacement was applied.

Let also T~, ,TAn, be the subtrees of TA (which we suppose attached to A1,...,An,),

cA, CA,, be their internal constraints and PAt /?A,, be their residuals. With this
notation, the resultant of TA is

A +--- (A = Ao)/~ c ~/~ cat A . . . A can, sFAt FA,,,An,+I An.

By Lemma A.4, the existence of TAt , TA,, implies that for i E [1, n t] there exists a

derivation trueDAi P~+l~ CAt SPA~ (modulo --~). Since by inductive hypothesis each subtree

of TA has a similar subtree in Pi, Remark A.4 also implies that, for i E [1,nq there
exists a derivation which is equal (modulo _~) to

Pz
t rueuAi ~.* CA~ C]F A~.

By combining these derivations together (Remark A.5) we have that there exists a
derivation

P i ~ ~

t r u e s A b . . . ,An ~ CAt /~ . . . /~ CA,, EFAt FA., ,An '+l , . . . ,An. (A.2)

Now, since cl C Pi it follows that there exists a derivation

trueDA ~ (A = Ao) /~ c A eat A . . . /~ eA,, DF'At F A,,,A~' +I,. . . ,An.

136 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

From Remark A.4 it follows that there exists a g-tree SA of A in Pi whose resultant is

A ~-- (A = Ao) A e A CA1 A . . . / ~ CA,, []FA1 FA,, ,An'+I ,An.

From (A.2) and the applicability conditions for the replacement operation it follows
that the resultant of SA is --~-similar to the one of TA. Hence the thesis.

Case 4: eF is the result o f fo ld in 9. Let

- cl : Ao +--- cA[]B 1 B~n,A1 An be the folded clause (in Pi)

- d : Bo +--- @ : z B 1 , . . . , B m be the folding clause (in Pncw), so we have that

- eF : Ao +-- cA A e [] B o , A 1 , . . . , A , is the label clause of the root node of TA; Let also
- Bo,A1 ,An, be the atoms of eF that have an immediate subtree (in Pi+l) attached

to in TA; this choice causes no loss of generality, in fact, by (04) , B0 cannot be a
g-atom, and hence it cannot be part of the residual of the root node of TA.

- An,+1 An is then the residual of the root node.
So let

- TBo, T& TA,, be the immediate g-subtrees of TA.
By the inductive hypothesis, there exist re-trees
- T ~ T ~ T ~ in Pi which are similar to Tao,TAI, ,

B o ~ A I " " " ' A n t " ' ' T A n t "

Since (9(P0) = (9(Pi), from Proposition 3.18 it follows that there exists a g-tree SB0
of B0 in P0 which is similar to T~0 (in Pi). Because of the condition (F2), the label
clause of the root of Sa 0 is an appropriate renaming of d. Let

- d* : B o +-- eB,zB 1 B m be the label clause of the root node of SB0, and
- B0 = B~ is then the label equation of the root of SB0.
Moreover, let

- SB; SB;, be its immediate subtrees (in P0), which we suppose to be attached to

B1, . . ., B m,

- B m , + l ,. . . , B m is then the residual of its root node.
Let T~ be the g-tree in Pi+l U Pi U Po obtained from TA by replacing its subtrees
TBo, TAm TA,, with S~0, T ~ T ~ and let R 2 be its resultant. Since we can assume

' " " " ~ A 1 ~ " " " ' A n t

without loss of generality that the clauses in the subtrees ' SB0, T~I T~,, do not share
variables with each other and with the clauses in TA, by Lemma A.2 we have that

R ~ R 2. (A.3)

Now let us write out explicitly the resultant of R 2, s o let
- C~cst be the constraint given by the conjunction of all the global expressions of

T~A1,'", TJ,,, together with the internal constraint of Ss 7, . . . , SB~, ;
!

- /~ be the (multiset) union of the residuals of T'A~,..., T~,,, SB; , SB2,,
- B~ = C1 B*, = Cm' be the label equations of the root nodes of Ss?, . . . , SB2, ;

We have that R 2 = A +-- etot DF, Bm,+I, . . . ,Bm,An '+l , . . . ,An, where etot is

(A=Ao) /~c~/~e /X(Bo=B~) /Xc~/X = C s /XC~e~t.

S. Etalle. M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 137

By (F1), this reduces to

(A=Ao)AcAA(B~=Bo)A =Bj A =Cj A Crest. (A.4)

Now we show that we can drop the constraint B~ = Bo. First notice that since B~

is a renaming of B0, then B~ = Bo can be reduced to a conjunction of equations of
the form x = y, where x and y are distinct variables. In the case that for some x,

y, B~ = B0 implies x = y, then we have that either x = y is already implied by the

c o n s t r a i n t (A T = 1 B] = Bj) or the variables x and y do not occur anywhere else in
(A.4), nor in R 2. So (A.4) becomes

(A = Ao) A CA A = /~ ~ - /~ Crest. (A.5)

On the other hand, by replacing B] with B~- in the 1.h.s. of the label equations of

the root nodes of the trees SB~ , S~2, ' , we obtain the trees SB~ , SB~-,, which, by

Lemma A.3, are ~-trees o f B ~ , . . . , B ~ , . Now let T 3 be the ~-tree of A in PiUPo which
is constructed as follows:

- cl is the label clause of its root,

- its immediate subtrees are S~1, . . . , SB~ ' (in P0) and T'A~,..-, T'A,, (in Pi). Then the

residual of T 3 is precisely A *--C3otaP, Bm,+l,...,Bm,AW+I ,A, , where c3ot is

CA A = A ~-- A Crest.

By this, (A.5) and (A.3), we have that T 3 is similar to TA.

Finally, since C(Po) = (9(Pi), each of the trees S~- (in P0) has a similar tree in Pi,

So- by replacing each S B- with it in T 3, we obtain T4; by Lemma A.2 and the usual
J

assumption on the variables of the clauses in the Se['s, T 4 is similar to T~, and hence

to TA. Since T 4 is a tree in Pi, this proves the thesis. []

A.I.1. Total correctness

We say that a transformation sequence is complete, if no information is lost during
it, that is (9(M0)C_ (-9(Mi). When a transformation sequence is partially correct and
complete we say that it is totally correct. Before entering in the details of the proof
of total correctness, we need the following simple observation.

Remark A.7. I f cl is a clause of Pi that does not satisfy condition (F3) then the
predicate in the head of el is a new predicate, while the predicates in the atoms in the
body are old predicates.

138 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

The proof of the completeness is basically done by induction on the weight of a
tree, which is defined by the following.

Definition A.8. (weight)
• The weight of a n-tree T, w(T), is defined as follows:

- w(T) = size(T) - 1 if the predicate of A is a new predicate;

- w(T) = size(T) if the predicate of A is an oM predicate.

• The weight of a pair (atom, resultant), (A,R), w(A,R), is the minimum of the

weights of the n-trees of A in P0, that have R as resultant. (modulo _~).

In the proof we also make use of trees which have for label clause of their root a
clause of Pi but that for the rest are trees of P0. In particular we need the following.

Definition A.9. We call a tree T of atom A, descent tree in Pi U P0 if

* the clause label of its root node cl, is in Pi;
• its immediate subtrees TI , Tk are trees in P0;

• if Tb. . . ,Tk are trees of A1 ,Ak and R1,.. . ,Rk are their resultants, then

(a) w(A,R) >7 w(A1,R1) + . . . + w(Ak,Rk);
(b) w(A,R) > w(AbR1) + . . . + w(Ak,Rk) if cI satisfies (F3).

The above definition is a generalization of the definition of descent clause of [24].

Definition A.10. We call Pi weight complete iff for each atom A and resultant R, if

there is a n-tree of A in P0 with resultant R, then there is a descent tree of A with

resultant __-equivalent to R in Pi U P0.

So Pi is weight complete if we can actually reconstruct the resultants semantics of

P0 by using only descent trees in Pi U Po.
We can now state the first part of the completeness result.

Proposition A.11. I f Pi is weight complete, then (9(Mo) C_ (9(Mi).

Proof. We now proceed by induction on atom-resultant pairs ordered by the following

well-founded ordering ~-: (A,R) ~ (Ar, R ~) iff
• w(A,R) > w(A',g'); or
• w (A ,R)= w(A~,R~), and the predicate of A is a new predicate, while the one of W

is an old one.
Let A, R, be an atom and a resultant such that there exist a n-tree of A in P0 with
resultant R. Since Pi is weight complete, there exists descent tree ira of A in Pi U Po
with resultant R. Let also
- cl : Ao +--- CA DAb...An (in Pi) be the label clause of its root,
- A b . . . ,An, be those atoms of cl that have an immediate subtree attached to
- Tal TA,, be the immediate subtrees of TA (in P0) and RAt,...,RA,, be their re-
sultants.

s. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146 139

Then, since TA is a descent tree,

w(A,R) >~ w(A1,RA~) + . . . + w(An,,RA~,).

Now if w(A, R) > w(Ab RAI) + . . . + w(An,, RA,,), then (A, R) ~- (A j, RAj). Otherwise, if

w(A, R) = w(A1, RAt) + . . . + w(An,, RAo,), by condition (b) on the descent tree, we have
that cl does not satisfy (F3), by Remark A.7, this implies that the predicate of A is a

new predicate, while the predicates in A1 An, are old predicates. By the definition

of ~-, this implies that (A,R) ~- (Aj,RAj).
Hence, by the inductive hypothesis, there exist ~z-trees Tit1,..., T ~ of A1 ,An' in

Pi whose resultants are RA~ RA,, (modulo --~). As usual we assume that the clauses
in the Tit 's do not share variables with each other and with those in TA. By Lemma

A.2 the tree TJ ~, obtained from T~ by replacing each subtree T~j with T" is a ~-tree Aj
of A in Pi with resultant R. This proves the proposition. []

We are now ready to prove our total correctness theorem.

Theorem 5.3 (Total correctness). Let M0 = {P0,Op(M0)) be a module and Mo Mn
be a modular transformation sequence. Then

• O(Mo) = O(Mn).

Proof. We will now prove, by induction on i, that for i E [0, n],

• (; (M 0) = (; (M i) ,

• Pi is weight complete.
Base case. We just need to prove that P0 is weight complete.
Let A be an atom, and R be a resultant such that there is a ~-tree of A in P0 with

resultant R. Let T be a minimal ~-tree of A in P0 having R as resultant. T obviously
satisfies the condition (a) of Definition A.9. Let cl be the label clause of the root of
T, notice that cl satisfies (F3) iff its head is an old atom, just like the elements of

its body. From the definition of weight A.8 and the minimality of T, it follows that
condition (b) in Definition A.9 is satisfied as well.

Induction step. We now assume that (9(P0) = O(Pi), and that Pi is weight complete.
From Propositions A.6 and A.11 it follows that if Pi+l is weight complete then

(?(Po) ~- (9(Pi+l). So we just need to prove that Pi+l is weight complete.
Let A be an atom, and R be a resultant such that there is a ~-tree of A in P0 with

resultant R. Since Pi is weight complete, there exists a descent tree ira of A in Pi (A Po

with resultant R.

Let cl :A0 +-- cA~A1,...An be the label clause of its root. Let us assume that
A1 An, are the atoms of cI that have an immediate ~-subtree attached to in TA, let
TA~,...,TAn , be the immediate subtrees of TA and let RA1,...,R~I, , be their resultants.
By Lemma A.2 there is no loss in generality in assuming that TA~ ,TA,, are the
minimal ~-trees of A1 An, in P0 that have RA, RA., as resultants.

We now show that there exists a descent tree of A with resultant R (modulo -~)

in Pi+l U P0. We have to distinguish various cases, according to what happens to the
clause el when we move from Pi to Pi+l.

140 S. Etalle, M. Gabbrielli/Theoretical Computer Science 166 (1996) 101-146

Case 1: cl E Pi+l. That is, cI is not affected by the transformation step. Then TA is
a descent tree of A with resultant R in Pi+I tA Po.

Case 2: cl is unfolded There is no loss in generality in assuming that A1 is the
unfolded atom. In fact, by (O1), the unfolded atom cannot be a n-atom, so it cannot
belong to the residual of TA.

Now, since Pi is weight complete, there exist a descent tree TBo of A1 in Pi tA Po,

with clause d : Bo ~ eBDB1 Bm (in Pi) as label clause of the root, that has the
same resultant (modulo _~) of TA1.

Let T] be the partial tree obtained from TA by replacing TA1 with TBo. T] is a n-tree
of A in Pi U P0; let R] be its resultant, by Lemma A.2 and the usual assumption on
the variables in the clauses of the subtrees, we have that

R _~ R~. (A.6)

Let TBI , TB~, be the immediate subtrees of TB0, which we suppose attached to
B1, . . . ,Bm, , let also RB~...RBm, be their resultants. By Lemma A.2 there is no loss in
generality in assuming that TB1 , TBm, are the smallest trees of P0 in their equivalence

class.
Let Crest be the conjunction of the global constraints of TB~ TB~,, TA~,..., TA,,, and

/~ be the multiset union of their residuals; we have that

R~ ~ A +- (A = A0) A cA A (AI = B0)/~ eB A Crest []F,B~'+I Bm,An'+s An.

(a .7)

Since A s is the unfolded atom, d is one of the unfolding clauses, it follows that one
of the clauses of P;+I resulting from the unfold operation is the following clause:

el t : Ao +-- cA/~ (A1 = B0) A e~DB1 Bm,A2, . . . ,An.

Now consider the n-tree T]t of A which is built as follows:
- eF is the label clause of the root.
- TB~ , TB~,, T~: TA,, are its immediate subtrees.
Its resultant is then

R tt : A +-- (A : Ao) A CA A (As ~- B0) A cB A Crest~F, Bm,+l ,Bn,,An'+l An.

By (A.6) and (A.7) we have that the resultant of T~ ~ is R (modulo "~). Now, in order
to prove that T] ~ is a descent tree, we have to prove that conditions (a) and (b) in

Definition A.9 are satisfied. Now

w(A,RA) ~ w (A I , R A ~) + . . . + w(An,,RA,,) (since TA is a descent tree),

>/w(B1,RB~) + . . . + w(Bm,,RB m,) + w(Az,RA2) + " " -k w(An,,RA,,)

(since (TA~) is a descent tree)

Moreover, if d satisfies (F3) then, by condition (b) in Definition A.9.

w(A1,RA,) > w(B1,RB,) + . . . + w(Bm',RB~,).

s. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101 146 141

On the other hand if d does not satisfy (F3), then by Remark A.7 the predicate of Bo

and A1 must be a new predicate; again, by Remark A.7 we have that cl must satisfy

(F3). It follows that

w(A,RA) > w (A 1 , R A 1) + ' " + w(An,,RA,,).

So, in any case, we have that

w(A,RA) > w(Ta,) + .. . + w(Ta,o,) + w(T&) + " . + W(TA,,,)

This proves that TJ / is a descent tree.
Case 3: cl is removed f r o m Pi via a clause removal operation. This simply cannot

happen: the constraint of cl is a component of the global constraint of TA and since

the latter is satisfiable, so is the first one. Therefore cl cannot be removed from Pi.
Case 4: cl is split. Since no K-atom can be split, the split atom may not belong to

the residual of TA, therefore there is no loss in generality in assuming that A1 is the
split atom and that n/~> 1.

Since (9(P0) - - (9(Pi), we have that for i E [1,n ~] there exist a ~z-tree SA~ of Ai in
Pi, which is similar to TA~. Let SA be the ~z-tree obtained from ira by substituting its

subtrees T A I , TAn, with SAI SA°,. From Lemma A.2 and the usual standardization
apart of the clauses in the subtrees, it follows that SA is a ~z-tree of A in Pi and that
SA is similar to TA.

Now let (A1 ~ Bo ; d : Bo +- caEB1 Bin) be the label of the root of SA~. With
this notation, the resultant of ira (and SA) has the form

A ~ (A = Ao) A cA A (A1 = Bo)/~ ca A CrestDResidual. (A.8)

Since d is a clause of Pi it was certainly used to split A1 in Pi. Therefore in Pi+i we
find the clause

cl' • Ao +-- cA /~ (A1 = B~) A c ~ A 1 An

where d B o +-- c a DB'~, . . . , B m* is a renaming of d. Here there in no loss in generality
in assuming that the variables of d* do not occur anywhere else in the trees considered

so far. Now, let TJ be the re-tree of A in Pi+l U Po obtained by substituting cl with
cF as label clause of the root of TA. From (A.8) it follows that the resultant of TJ is
(--~ equivalent to)

A +-- (A = A0) A cA A (A1 = B0) A ca A (A1 = B~)/~ c~/~ Crest E Residual.

Since d* is a renaming of d, and since its variables do not occur anywhere else
in TJ, in the above formula the subexpression (A 1 = B~)/~ c~ is already implied by
the fact that the expression contains (A1 = B0)/~ @, and therefore it may be removed
from the constraint. So, from (A.8) it follows that T~ is similar to irA. Now, in order
to prove the thesis we only need to prove that T~ is a descent tree, i.e. it satisfies
conditions (a) and (b) of Definition A.9. This follows immediately from the fact that

the subtrees of TA and T~ are the same ones (and TA is a descent tree) and the fact
that cF satisfies (F3) iff cl does.

142 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101~46

Case 5: The constraint o f cl is replaced. The first part of this proof is similar to
the one of the previous case. Since (9(Po) = (9(Pi), we have that for i E [1,n I] there
exist a 7t-tree SAi of Ai in Pi, which is similar to TA~. Let SA be the n-tree obtained
from TA by substituting its subtrees TA1 , TA,, with SAI SAn,. From Lemma A.2
and the usual standardization apart of the subtrees it follows that SA is a zc-tree of A
in Pi and that SA is similar to TA.

Let CA1 CAn t be the intemal constraints of SA,, . . . ,SA,, and PAl,...,FA., be their
residuals. With this notation, the resultant of TA (and SA) is

A +-- (A = Ao) A CA A CA, A . . . A CA,, []FA1 if'A,, ,An'+l An.

Recall that by the assumption that the trees are standardized apart, for distinct i , j E

[1,n], we have that Var(cA~ DPA~)N Var(cAj CZff~Aj)C_ Var(Ai)A Var(Aj). Then, from the
existence of SAt , SA,, and from Remarks A.4 and A.5 it follows that there exist a
derivation

A1 An ~ ' CAm A . . . A CA,, DUAl,.. . ,FA,, ,An'+1 ,An.

NOW, let the result of the constraint replacement operation be the clause
- cl l : Ao +- etADA1 An.

From the applicability conditions of the constraint replacement operation it follows that

Ao +- (A = Ao) A CA A CA~ A .. . A CA,, DFA~ FA,, ,An'+I, . . . ,An,

~-- Ao +- (A = Ao) A e~ A CA, A . . . A CA,, CZPAI ,FA,t,An'+I An. (A.9)

Now, let TJ be the tree obtained from TA by replacing the clause label if its root, el,

with cF. Its resultant is

A +-- (A = A o) / ~ e I A /~CA1 /~ . . . / \ C A n t DFA1 ,FAnt,Ant_[_l A n

and from (A.9) it follows that TJ is similar to TA.
Now, in order to prove the thesis we only need to prove that TJ is a descent tree, i.e.,

that it satisfies conditions (a) and (b) of Definition A.9; but this follows immediately
from the fact that the subtrees of TA and TJ are the same ones (and TA is a descent
tree) and the fact that cF satisfies (F3) iff cl does.

Case 6: el is f o lded Let {A1 = C1, . . . ,A , , = C, ,} be the label equations of the
root nodes of TAI TA,,, let also Crest be the conjunction of the remaining internal
equations (label equations + clause constraints) of TA,, . . . , TA,, ; finally, let P be the
residual of TA~ TA,,. We have that

R ~ A ~-- (A = Ao) A CA A AI = Cj A Crest DF, An,+I ,An. (A.IO)
\ j=l

Now let the folding clause (in P~ew) be

d : B0 + - B1 Bm.

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 143

There is no loss in generality in assumlng that there exists an index k such that

Ak ,Ak+m are the folded atoms, so for j E [1,m], Ak+j and By are unifiable atoms.

The result o f the folding operation is then

cl I : Ao +- cA A eDA1,. . .Ak,Bo,Ak+m+b.. .An' .

Now notice that o f the atoms of cl that are going to be folded, Ak+l, . . . ,An, are the

ones that have an immediate subtree attached to in TA; these atoms correspond to

B1 Bn,-k in d (we should also consider explicitly the cases when they all have or

have not a subtree attached to, i.e., the cases in which n ~ < k or n' >~m + k. However

these are easy corollaries of the general case, so we now assume that k<<.n t < m + k) .

Now let TBo be the ~-tree of B0 in P0 built as follows:

~ . ~ (an appropriate renaming of d) is the label clause o f its _ d ' . B I o ,__ CB:ZB1, . . , B m .

root node,

- B0 = B~ is then the label equation o f its root node,

- TB,, . . . , TB,,_~ are its immediate subtrees, which are obtained, as explained in Lemma

A.3, from the trees TAk+I TA,, by replacing Ak+j with B} in the 1.h.s. of the label

equations o f their root nodes.

- B~,,_k+l ,B~m is consequently the residual of its root node.

Finally, let TJ ~ be the ~z-tree of A in Pi+l U Po which is built as follows:

- cff is the label clause if its root (and this is a clause in Pi+l).

- TA~,..., TA~_~, TBo are its immediate subtrees (in P0).
Let R" be its resultant, we have that

~ ! /
R" = A +- Ctot DF, Bn,_k+I,. . . ,Bm,Ak+m+l,... ,An (A.11)

where P is the (multiset) union of the residuals of TAt, . . . , Tik_~, TBo and ctot is

(A = Ao) A cA A e A (Bo = B~o) A c~ A

By (F1) this becomes:

(A = A o) A C A A (B o = B ;) A =

A -k = Cj A Crest.
\ j = k + 1

Aj = A -k = Cj A Crest
\ j=k+l

) B} A Aj = Cj

(A.12)

As we did in Proposition A.6, we now show that we can drop the constraint B0 = B~.

First notice that since B~ is a renaming of B0, then B0 = B~ can be reduced to a

conjunction o f equations of the form x = y, where x and y are distinct variables.

So suppose that for some x, y, B0 = B~ implies that x = y, then either x = y is
m already implied by the constraint (Aj=I Bj = Bj.), or the variables x and y do not

occur anywhere else in (A.12), nor in R".

144 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

Thus Cto t can be rewritten as follows:

(A = A o) A c ~ A B j = A A j = C j /~ _ k : C j A Crest

=1 \ j = k + l

m By making explicit the constraint (Aj=I Bj = Bj) and comparing the result with
(A.10) we see that 7J' is a zc-tree of A in Pi+l (-JPo with resultant R (modulo _~). We
now need only to prove that 7J ~ is a descent tree, i.e..it satisfies the conditions (a),
(b) of the Definition A.9.

Let RB0 be the resultant of TB0. Since d is the folding clause, the predicate of B0
must be a new predicate, while the predicates of B1,... ,Bin have to be oM predicates.
Moreover, by condition (F2), any proof tree of B0 in P0 whose global constraint is
consistent with ca A e must have (a renaming of) d as label clause of the root. By
Definition A.8 we then have that

w(Bo,R,o)<<, w(T,,) + . . . + w(T,.,_k). (A.13)

Moreover, for j E [1 ,# - k], W(TAk+:) = w(T,j), and, since TA is a descent tree and
the clause of its root node satisfies (F3), by Definition A.8 we have that

w(A,R) > w(A1,RA,) @ . . . + w(A# , TR, ,)

= w(A1,RA~) + ' " + w(Ak, RAk) + w(Ak+I,RAk+~) + " " + w(An',RA.,)

= w(A1,RA1) + " " + w(Ak,RAk) + w(TAk+I) + " " + w(Ta.,)

(by the minimality of the TAj)

= w(A1,RA,) + " " + w(Ak,RAk) + w(TB~) + ' " + W(TB~,_ k)

(by the definition of TBj)

>/w(A1,RA,) + ' " + w(Ak,RAk) + w(Bo,RBo) (b y (1 8)) .

Thus T~ ~ satisfies conditions (a) and (b) of Definition A.9. []

References

[1] K.R. Apt., Introduction to logic programming, in: J. van Leeuwen, ed., Handbook of Theoretical
Computer Science, Vol. B: Formal Models and Semantics (Elsevier, Amsterdam and The MIT Press,
Cambridge, 1990) 495-574.

[2] C. Aravidan and P.M. Dung, On the correctness of Unfold/Fold transformation of normal and extended
logic programs, Tech. report, Division of Computer Science, Asian Institute of Technology, Bangkok,
Thailand, April 1993.

[3] N. Bensaou and I. Guessarian, Transforming constraint logic programs, in: F. Turini, ed., Proc. 4th
Workshop on Logic Program Synthesis and Transformation (1994).

[4] A. Bossi, M. Bugliesi, M. Gabbrielli, G. Levi and M.C. Meo, Differential logic programming, in: Proc.
20th Ann. A CM Symp. on Principles of Programming Languages (ACM, New York, 1993) 359~70.

[5] A. Bossi and N. Cocco, Basic transformation operations which preserve computed answer substitutions
of logic programs, J. Logic Programming 16 (1 and 2) (1993) 4%87.

[6] A. Bossi, M. Gabbrielli, G. Levi and M.C. Meo0 A compositional semantics for logic programs, Theoret.
Comput. Sci. 122 (1-2) (1994) 3-47.

S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146 145

[7] M. Bugliesi, E. Lamina and P. Mello, Partial deduction for structured logic programs, J. Logic
Programmin 9 16 (1-2) (1993) 89-122.

[8] M. Bugliesi, E. Lamma and P. Mello, Modularity in logic programming, J. Logic Programmin 9 19-20
(1994) 443-502.

[9] R.M. Burstall and J. Darlington, A transformation system for developing recursive programs, J. Assoc.
Comput. Math. 24(1) (1977) 44-67.

[10] K.L. Clark and S. Sickel, Predicate logic: a calculus for deriving programs, in: Proc. IJCAI'77, (1977)
419-420.

[11] S. Etalle and M. Gabbrielli, A transformation system for modular CLP programs, in: Proc. 20th Internat.
Conf. on Logic Programming, ICLP 95 (MIT Press, Cambridge, MA, 1995).

[12] S. Etalle and M. Gabbrielli, The replacement operation for CLP modules, in: Proc. A C M SIGPLAN
Syrup. Partial Evaluation and Semantics-Based Program Manipulation, PEPM '95 (ACM Press, 1995)
168-177.

[13] M. Gabbrielli, G.M. Dore and G. Levi, Observable semantics for constraint logic programs, J. Logic
Comput. 5(2) (1995) 133-171.

[14] M. Gabbrielli and G. Levi, Modeling answer constraints in constraint logic programs, in: K. Furukawa,
ed., Proc. 8th Internat. Conf on Logic Programmin 9 (MIT Press, Cambridge, MA, 1991) 238-252.

[15] H. Gaifman and E. Shapiro, Fully abstract compositional semantics for logic programs, in: Proc, 16th
Ann. A C M Syrup. on Principles of Programmin 9 Languages (ACM, New York, 1989) 134-142.

[16] P.A. Gardner and J.C. Shepherdson, Unfold/fold transformations of logic programs, in: J-L. Lassez and
G. Plotkin, eds., Computational Logic: Essays in Honor of Alan Robinson (MIT Press, Cambridge,
MA, 1991).

[17] C.J. Hogger, Derivation of logic programs, J. Assoc. Comput. Mach. 28(2) (1981) 372-392.
[18] J. Jaffar and J.-L. Lassez, Constraint logic programming, Tech. Report, Department of Computer Science,

Monash University, June 1986.
[19] J. Jaffar and J.-L. Lassez, Constraint logic programming, in: Proc. 14th Ann. ACM Syrup. on Principles

of Programming Languages (ACM, New York, 1987) 111-119.
[20] J. Jaffar and M.J. Maher, Constraint logic programming: A survey, J. Logic Programming 19/20 (1994)

503-581.
[21] J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap, An abstract machine for CLP(¢~), in: Proc. ACM

SIGPLAN Symp. on Programming Language Design and Implementation (PLDI), (ACM, New York,
1992) 128-139.

[22] J. Jaffar, S. Michayov, P.J. Stuckey and R.H.C. Yap, The CLP(~) language and system, ACM Trans.
on Programming Languages and Systems 14(3) (1992) 339-395.

[23] N. J~rgensen, K. Marriott and S. Michaylov, Some global compile-time optimizations for CLP(~), in:
V. Saraswat and K. Ueda, eds., ILPS'91: Proc. the Internat. Logic Programmin 9 Symposium, (San
Diego, October 1991) (MIT Press, Cambridge, MA, 1991) 420-434.

[24] T. Kawamura and T. Kanamori, Preservation of stronger equivalence in unfold/fold logic programming
transformation, in: Proe. Internat. Conf. on 5th Generation Computer Systems (Institute for New
Generation Computer Technology, Tokyo, 1988) 413-422.

[25] H.J. Komorowski, Partial evaluation as a means for inferencing data structures in an applicative
language: A theory and implementation in the case of Prolog, in: 9th A C M Symp. on Principles
of Programmin 9 Languages (Albuquerque, NM 1982) 255-267.

[26] A. Lakhotia and L. Sterling, Composing recursive logic programs with clausal join, New Generation
Computing 6 (2,3) (1988) 211-225.

[27] J.-L. Lassez, M.J. Maher and K. Marriott, Unification revisited, in: J. Minker, ed., Foundations of
Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA., 1988) 587~525.

[28] J.W. Lloyd, Foundations of Logic Programmin9 (Springer, Verlag, Berlin, 2nd ed., 1987).
[29] M.J. Maher, A transformation system for deductive databases with perfect model semantics, Theoret.

Comput. Sci. 110 (1993) 377-403.
[30] K. Marriott and P.J. Stuckey, The 3 r's of optimizing constraint logic programs: Refinement, removal and

reordering, in: POPL'93: Proc. A C M SIGPLAN Symp. on Principles of Programming Languages,
(Charleston, January 1993).

[31] R.A. O'Keefe, Towards an algebra for constructing logic programs, in: Proc, IEEE Symp. on Logic
Programmin 9 (1985) 152-160.

146 S. Etalle, M. Gabbrielli/ Theoretical Computer Science 166 (1996) 101-146

[32] A. Pettorossi and M. Proietti, Transformation of logic programs: Foundations and techniques, J. Logic
Programming 19(20) (1994) 261-320.

[33] T. Sato, Equivalence-preserving first-order unfold/fold transformation system, Theoret. Comput. Sci.
105(1) (1992) 57-84.

[34] H. Seki, Unfold/fold transformation of stratified programs, Theoret. Comput. Sci. 86(1) (1991) 107-
139.

[35] H. Seki, Unfold/fold transformation of general logic programs for the well-founded semantics, J. Logic
Programming 16 (1 and 2) (1993) 5-23.

[36] H. Tamaki and T. Sato, A transformation system for logic programs which preserves equivalence, Tech.
Report ICOT TR-018, ICOT, Tokyo, Japan, August 1983.

[37] H. Tamaki and T. Sato, Unfold/fold transformations of logic programs, in: Sten-.~d(e T~irnlund, ed.,
Proc. 2nd Internat. Conf. on Logic Programming (1984) 127-139.

