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C O R R E C T N E S S  P R O O F  O F  A N  I N - P L A C E  

P E R M U T A T I O N  

A. J. W. DUIJVESTIJbI 

Abstract .  
The correctness of an in-place permutation algorithm is proved. The algorithm 

exchanges elements belonging to a permutation cycle. A suitable assertion is con- 
structed from which the correctness can be deduced after completion of the algo- 
rithm. 

An in-place rectangular matrix transposition algorithm is given as an example. 
Key words and phrases: Proof of programs, algorithm, program correctness, 

theory of programming. 

Introduct ion .  

The in-place pe rmuta t ion  problem deals wi th  the  r ea r rangement  of 
the  elements of a given vec tor  VEC[i], i = 1(1)(7, G->_ 1, using an  a rb i t r a ry  
pe rmu ta t i on  f ( i )  of the  integers 1 . . . .  ,G. 

The problem tha t  has to  be solved is : write an  a lgor i thm t h a t  permutes  
the  elements  of VEC without  using ex t r a  storage. T h a t  means  if 
VEC[i] = ~ before the pe rmuta t ion  then  VEC[i] = ~I(~) af ter  the  permu-  
ta t ion.  

The solution of the pe rmuta t ion  problem is given b y  the  following 
algor i thm: 

procedure  permute (VEC, f ,  G); value G; integer  G; a r r a y  VEC; 
in teger  p rocedure  f ;  

c o m m e n t  f (x )  is the index of VEC where the element can be found that has 
to be moved to VEC[x]; 

begin  in teger /c ,  ko, kn, wr; 
for  k :=  1 step 1 until  G do 
begin 

k~ :-- f(/c); 
for  /co : =  /on while kn < k do kn : =  f (ko) ;  
if kn 4= k then  beg in  c o m m e n t  exchange (VEC[kn], VEC[k]); 
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wr:= VEO[kn]; Vl~C[kn] : =  VF~C[k]; 
VEC[k] : =  w r  

end 
end 

end 

A special case of the permutation problem arises in the transposition 
of a rectangular matrix without using extra storage [2, 3]. In  case the 
matrix A [i,j], i = l(1)m and j = l(1)n is columnwise mapped onto a vector 
VEC[k], k=l (1 )m.n ,  G = m . n ,  the function f is defined as follows in 
ALGOL-60: 

integer procedure f(x); value x; integer x; 
comment f (x)  is the index of VEC where the element can be found that has 

to be moved to VEC[x]; 
begin integer w; 

w :=  (x - -1 )+n ;  
f : - -  ( x - - w , n - 1 ) , m + w +  l 

end 

The algorithm for which a correctness proof is given in this note is 
essentially that  of R. F. Windley [I]. 

C o r r e c t n e s s  of  the  algorithm. 

I t  has to be proved tha t  the algorithm performs the following: 

(1) Vi(1 < i < G ~ VEC[i] = ~m))- 

First we introduce a function ~k(i) tha t  is defined for k < i < G with 
l < k < G :  

~k(1) = the first f(8)(i) with f(~)(i) > k, s ~ 1 . 

The expression f s  means: f if s = 1, otherwise ff(8-1). Consequently ~pk(i) = 
f(s)(i) > k, and f(*)(i) < k with 1 < t < s, s > 1. 

We prove certain properties of the function ~. 

PROPERTY 1 is a property of the permutation f :  

Vi(1 < i  =<G -+ 3e1(1 <_el <=G ̂  i = f ( e l ) ) ) .  
and 

vi(1 __<i =<a 3e (1 _<e2__<a ̂  e2 = / ( i ) ) ) .  
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P~OPERTY 2. 

(2) 
and 

(3) 

Vi(k<=i ~G -+ 3el(k<=el ==_a ̂  i = Vk(el))) 

V i ( k  =<i_-< G ~ 3~2(k <= ~2 =< a ^ ~2 =V~(O))  • 

P~oo~. Let Vk, a be the set of integers: Vk, (7 = {i : k < i < G}, then prop- 
er ty 2 says tha t  ~k(i) is a permutation on V~,a. 

Apparently property 2 is true for k =  1 since wl(i)=f(i) (property 1). 
Assuming property 2 is true for k (induction assumption), we prove 

tha t  property 2 is also true for k + 1. 
According to the induction assumption there exists exactly one ele- 

ment el e Vk, a such tha t  k=~k(el ) and exactly one element e2 e Vk, a 
such tha t  e2 = ~)k(k). (A direct consequence of (2) and (3)). 

We consider two cases: 

CASE 1. el > k. Then clearly e2 > k. Consider the sets V~+I, a = 
Vk+l , a \ e l  and V~_~,a= Vk+l ,a \e2 .  

According to the induction assumption we have: 

* 3 b(b * * (4) Va(a  e Vk+l, o ---> e Vk+l,a ^ b=y)k(a))) 

and 

V**  --> 3a(a e Vk+l,a^ b=Vk(a)) ) (5) Vb(b e k + l , e  

Since b = ~vk(a)> k it follows from the definition of ~v: 

b =f(S)(a), s _-> 1 a n d f t ( a ) < k  for 1 < t < s 

tha t  

b =fS (a )  > k + l ,  s > 1 andf(0(a) < k < k + l  for 1 =< t < s; 

(6) we conclude b = ~k+da). 

Hence it follows that :  

(7) V a(a e Vk+l, a -+ ~vk(a) = ~k+l(a)) • 

Furthermore we prove e2 =~k+l(el). 
From the definition of ~v and the induction assumption it follows: 

3 s ( s >  1 A k = f S ( e l ) ^  V t ( l  < t < s - +  f t ( e l )<k) )  

and 

3r ( r>  1 ^ e2=f ' ( k )  ^ Vu(1 < u < r  -+ fu (k )<k) )  . 
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Clearly e2=fs+r(el)> k+ l, s + r > 2  and f P ( e l ) < k + l  with l ~ p < s + r .  
Hence 
(8) e2 = Vk+l(el) . 

Using (4), (5), (6), (7) and (8) we conclude: 

(9) Va(a e Vk+l, a ~ 3b(b e Vk+l, a ^ b=vk+l(a)) ) 
and 
(10)  Vb(b ~. Vk+l, G ~ ~a(a ~ Vk+l, G ̂ b~---~r)k+l(a))) . 

CASE 2. e l = k .  In this case el =e2- -k .  Furthermore Vk+l,a= V;+l,a= 
Vk+l, a and according to (4), (5), (6) and (7) we have: 

(11) w ( ~  ~ v~÷l, a -~ 3 b(b ~ V~÷~,~ ^ b=~k+~(~))) 
and 
(12)  VD(D ~ Vk+l, G ~ ~a(a e Vk+l,(~ ^ b=Vk+,(a)) ) . 

Using (9), (10), (11) and (12) then by  induction property 2 is true for all 
k<G. 

We can now formulate property 3 and 4. 

PROPERTY 3. If  y~k(el)=k and Vk(k)=e2, while el > k  and e2 > k  then 
according to (8) e2 = ~k+l(el). 

REMARK. In case el = e 2 = k ,  Vk+1(el) is not  defined. 

PROPERTY 4. ~0k(i)=~k+l(i ) for all i > k  except that  i for which 
~k(i)=k (see (6) and (7)). 

We prove the t ruth of the assertion E l ^ E 2  on a certain label in the 
program. The definition of E1 and E2 is as follows: 

(El) Vi(1 __<i<k -~ VEC[i]=~j(~))  
and 
(E2)  V i (k  <= i <= a -~ VBO[Wk(i)] = ~f(~)) . 

The structure of the program is: 

for k : =  1 step 1 until G do 
begin . . .  end; 

This program is equivalent with the program: 

k :=  1; 
L:  if k > (7 then goto Exh; 

b e g i n  . . .  e n d ;  

k : =  k + l ;  goto L;  Exh: 
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We prove  ~- E l ^ E 2  on label L for  all /C, l < k < G + l .  

P~ooF.  I f  / c = l  t hen  F - E l ^ E 2  since E1 is t rue  ( 1 < i < 1  is false so 
the  implicat ion is t rue)  and  since ~ol(i ) =f( i )  the  asser t ion E2 reads:  

V i(1 < i < G ~ VEC[~ol(i)] = VEC[f(i)] = ~I(~)) which is clearly t r u e .  

Assuming t h a t  ~ E l ^ E 2  on L for  a cer ta in/~=k~ (1 ~/Cl<G) the  follow- 
ing s t a tements  are execu ted  before re tu rn ing  to  label L.  

L :  ~n = f(/c); 
for  / co :=  kn while /cn < /~ do / c n : =  f (ko) ;  

L I :  if /on =~ /C then  exchange (VEC[/Cn], VEC[/C]); 
L2:  /c :=  / c + l ;  t o t e  L ;  

The  labels L1 and  L2 are mere ly  in t roduced  as a reference.  At  label L1 
we have  /cn=~k(k ). Consequent ly  /cn~_k. In  ease kn+-b, VEC[/cn] and  
VEC[Ic] are exchanged.  Since ~ E l ^ E 2  on L i t  follows ~- E l ^ E 2  on L1. 
We consider two cases: 

CASE1. /Cn>]C. F r o m  ~ E I ^ E 2  on L1 we have  VEC[~pk(k)]= 
VEC[Icn] =~/(k)" After  exchanging VEC[kn] and  VEC[Ic], VEC[k] =~1(k) 
a t  label L2. 

Therefore  the  following assert ion holds a t  L2:  

Vi(1 <i <k  -~ VEC[i]=o~j,(i)) . 
Hence  

Vi(1 _-<i < k +  1 -~ VEC[i] = ~I<~3) - 

F inal ly  ~ E 1  at  L for k = k l + l .  
Since kn = ~Ok(/C ) > k then  according to  p ro p e r t y  2 there  exist  e lements  

el  and  e2, e l> /c ,  e2>/c  such t h a t :  

e2 = ~0k(k ) and /c = $ok(el ) 

and  according to  p rope r ty  3: 

e2 = ~ok+l(el ) . 
Appa ren t ly  e2 = kn. 

At label L1 we have  

At  label L2 

VEC[k] = VEC[~pk(el)] = ~I(el), since el  > k .  

VEC[kn] = VEC[wd/C)] = VEC[e2] = ~ I < + 1 ) .  
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Using p ro pe r ty  3 at  L2,  

(13) V E C [ e 2 ]  = VEC[~Vk+~(el )] = ~s(el) . 

F r o m  ~- E2  we deduce a t  label L1 : 

(14) V i(k < i < G ^ i 4 e l  -+ VEC[~vk(i)]  -- o~j(i) ) . 

Using p ro pe r ty  4 we get  a t  L2 

(15) V i ( k  < i  < G  ^ i ~ : e l  -..- VEC[~vk ( i ) ]=  VEC[y~k+l(i)]=~/(~)  ) . 

Combining (13), (14) and  (15) we have  at  L2:  

v i(k + 1 < i <= G -~ VECEv, k+I(i)] = o,I(~)). 

Passing f rom label L2 to  label  L k :=  k + 1. Hence  ~- E2  a t  L for  k = 
]cl + 1. 

CASE 2. kn =/c. In  this case ~0k(k ) = k and no exchange takes  place. 
F r o m  ~- E2  a t  L and  a t  L1 and  L2 we deduce:  

(16) VEC[y~k(k)]  = VEC[Ic]  = ccs(~). 

Combining (16) wi th  ~ E1 we get  a t  L2 

(17) Vi(1 <=i <=]~ ~ VEC[i]=o~1(i)  ) . 

Hence  

(18) Vi(1 < i < / c +  1 -~ V E C [ i ] = ~ s ( i )  ) a t  L 2 .  

F r o m  ~-E2 and  since there  does not  exist  an e lement  el  >/¢ wi th  
~0k(k)=el, and  f rom p rope r ty  4 i t  follows t h a t :  

(19) Vi(/~+ 1 < = i < G  ..+ VEC[~k+l( i )]=o~f( i ) )  a t  L 2 .  

Combining (18) and  (19) a t  L2 and  using the  assignation /c : =  /c+1 
in passing f rom label L2 to label L we get :  ~- E l ^ E 2  at  L for k = / c l  + 1. 
B y  induct ion  i t  follows t h a t :  ~ - E l ^ E 2  a t  L for  all k =  I (1 )G+ 1. More- 
over  ~- E 1 ̂  E2  ^ Ic = G + 1 at  label E x h .  In  t h a t  case E 1 confirms the  t r u t h  
of (1). 

REMAmK 1. The  a lgor i thm can be changed sl ight ly in case of a ma t r i x  
t ransposi t ion.  I t  suffices t h a t  the  for  loop runs  f rom ] c = 2 ( 1 ) G - 2 ,  be- 
cause A[1,1] and  A i m ,  n] do no t  move.  In  case all e lements  have  been 
moved  up to  G - 2 then  the  G -  l t h  e lement  is in place. E v e n  in the  general  
case the  range of the  for  loop can be t ak e n  k =  1 (1 )G -  1. 
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RE~L~RK 2. Looking at the invariant  ~- E1 ^E2 we observe that  E2 
describes the initial state of the program for k = 1. E1 is then "empty" .  
E1 describes the final state for k = G + 1. E2 is then "empty" .  
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