
BIT 12 (1972), 318--324

C O R R E C T N E S S P R O O F O F A N I N - P L A C E

P E R M U T A T I O N

A. J. W. DUIJVESTIJbI

Abstract .
The correctness of an in-place permutation algorithm is proved. The algorithm

exchanges elements belonging to a permutation cycle. A suitable assertion is con-
structed from which the correctness can be deduced after completion of the algo-
rithm.

An in-place rectangular matrix transposition algorithm is given as an example.
Key words and phrases: Proof of programs, algorithm, program correctness,

theory of programming.

Introduct ion .

The in-place pe rmuta t ion problem deals wi th the r ea r rangement of
the elements of a given vec tor VEC[i], i = 1(1)(7, G->_ 1, using an a rb i t r a ry
pe rmu ta t i on f (i) of the integers 1 ,G.

The problem tha t has to be solved is : write an a lgor i thm t h a t permutes
the elements of VEC without using ex t r a storage. T h a t means if
VEC[i] = ~ before the pe rmuta t ion then VEC[i] = ~I(~) af ter the permu-
ta t ion.

The solution of the pe rmuta t ion problem is given b y the following
algor i thm:

procedure permute (VEC, f , G); value G; integer G; a r r a y VEC;
in teger p rocedure f ;

c o m m e n t f (x) is the index of VEC where the element can be found that has
to be moved to VEC[x];

begin in teger /c , ko, kn, wr;
for k := 1 step 1 until G do
begin

k~ :-- f(/c);
for /co : = /on while kn < k do kn : = f (ko) ;
if kn 4= k then beg in c o m m e n t exchange (VEC[kn], VEC[k]);

Received Feb. 10, 1972. Revised April 11, 1972.

CORRECTNESS PROOF OF AI~ II~-PLACE PERMUTATION 319

wr:= VEO[kn]; Vl~C[kn] : = VF~C[k];
VEC[k] : = w r

end
end

end

A special case of the permutation problem arises in the transposition
of a rectangular matrix without using extra storage [2, 3]. In case the
matrix A [i,j], i = l(1)m and j = l(1)n is columnwise mapped onto a vector
VEC[k], k=l (1)m.n , G = m . n , the function f is defined as follows in
ALGOL-60:

integer procedure f(x); value x; integer x;
comment f (x) is the index of VEC where the element can be found that has

to be moved to VEC[x];
begin integer w;

w := (x - -1)+n ;
f : - - (x - - w , n - 1) , m + w + l

end

The algorithm for which a correctness proof is given in this note is
essentially that of R. F. Windley [I].

C o r r e c t n e s s of the algorithm.

I t has to be proved tha t the algorithm performs the following:

(1) Vi(1 < i < G ~ VEC[i] = ~m))-

First we introduce a function ~k(i) tha t is defined for k < i < G with
l < k < G :

~k(1) = the first f(8)(i) with f(~)(i) > k, s ~ 1 .

The expression f s means: f if s = 1, otherwise ff(8-1). Consequently ~pk(i) =
f(s)(i) > k, and f(*)(i) < k with 1 < t < s, s > 1.

We prove certain properties of the function ~.

PROPERTY 1 is a property of the permutation f :

Vi(1 < i =<G -+ 3e1(1 <_el <=G ̂ i = f (e l))) .
and

vi(1 __<i =<a 3e (1 _<e2__<a ̂ e2 = / (i))) .

3 2 0 A. ,1. W. DUIJVESTIJN

P~OPERTY 2.

(2)
and

(3)

Vi(k<=i ~G -+ 3el(k<=el ==_a ̂ i = Vk(el)))

V i (k =<i_-< G ~ 3~2(k <= ~2 =< a ^ ~2 =V~(O)) •

P~oo~. Let Vk, a be the set of integers: Vk, (7 = {i : k < i < G}, then prop-
er ty 2 says tha t ~k(i) is a permutation on V~,a.

Apparently property 2 is true for k = 1 since wl(i)=f(i) (property 1).
Assuming property 2 is true for k (induction assumption), we prove

tha t property 2 is also true for k + 1.
According to the induction assumption there exists exactly one ele-

ment el e Vk, a such tha t k=~k(el) and exactly one element e2 e Vk, a
such tha t e2 = ~)k(k). (A direct consequence of (2) and (3)).

We consider two cases:

CASE 1. el > k. Then clearly e2 > k. Consider the sets V~+I, a =
Vk+l , a \ e l and V~_~,a= Vk+l ,a \e2 .

According to the induction assumption we have:

* 3 b(b * * (4) Va(a e Vk+l, o ---> e Vk+l,a ^ b=y)k(a)))

and

V** --> 3a(a e Vk+l,a^ b=Vk(a))) (5) Vb(b e k + l , e

Since b = ~vk(a)> k it follows from the definition of ~v:

b =f(S)(a), s _-> 1 a n d f t (a) < k for 1 < t < s

tha t

b =fS (a) > k + l , s > 1 andf(0(a) < k < k + l for 1 =< t < s;

(6) we conclude b = ~k+da).

Hence it follows that :

(7) V a(a e Vk+l, a -+ ~vk(a) = ~k+l(a)) •

Furthermore we prove e2 =~k+l(el).
From the definition of ~v and the induction assumption it follows:

3 s (s > 1 A k = f S (e l) ^ V t (l < t < s - + f t (e l)<k))

and

3r (r> 1 ^ e2=f ' (k) ^ Vu(1 < u < r -+ fu (k)<k)) .

CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION 321

Clearly e2=fs+r(el)> k+ l, s + r > 2 and f P (e l) < k + l with l ~ p < s + r .
Hence
(8) e2 = Vk+l(el) .

Using (4), (5), (6), (7) and (8) we conclude:

(9) Va(a e Vk+l, a ~ 3b(b e Vk+l, a ^ b=vk+l(a)))
and
(10) Vb(b ~. Vk+l, G ~ ~a(a ~ Vk+l, G ̂ b~---~r)k+l(a))) .

CASE 2. e l = k . In this case el =e2- -k . Furthermore Vk+l,a= V;+l,a=
Vk+l, a and according to (4), (5), (6) and (7) we have:

(11) w (~ ~ v~÷l, a -~ 3 b(b ~ V~÷~,~ ^ b=~k+~(~)))
and
(12) VD(D ~ Vk+l, G ~ ~a(a e Vk+l,(~ ^ b=Vk+,(a))) .

Using (9), (10), (11) and (12) then by induction property 2 is true for all
k<G.

We can now formulate property 3 and 4.

PROPERTY 3. If y~k(el)=k and Vk(k)=e2, while el > k and e2 > k then
according to (8) e2 = ~k+l(el).

REMARK. In case el = e 2 = k , Vk+1(el) is not defined.

PROPERTY 4. ~0k(i)=~k+l(i) for all i > k except that i for which
~k(i)=k (see (6) and (7)).

We prove the t ruth of the assertion E l ^ E 2 on a certain label in the
program. The definition of E1 and E2 is as follows:

(El) Vi(1 __<i<k -~ VEC[i]=~j(~))
and
(E2) V i (k <= i <= a -~ VBO[Wk(i)] = ~f(~)) .

The structure of the program is:

for k : = 1 step 1 until G do
begin . . . end;

This program is equivalent with the program:

k := 1;
L: if k > (7 then goto Exh;

b e g i n . . . e n d ;

k : = k + l ; goto L; Exh:

322 A. J . W . D U I J V E S T I J N

We prove ~- E l ^ E 2 on label L for all /C, l < k < G + l .

P~ooF. I f / c = l t hen F - E l ^ E 2 since E1 is t rue (1 < i < 1 is false so
the implicat ion is t rue) and since ~ol(i) =f(i) the asser t ion E2 reads:

V i(1 < i < G ~ VEC[~ol(i)] = VEC[f(i)] = ~I(~)) which is clearly t r u e .

Assuming t h a t ~ E l ^ E 2 on L for a cer ta in/~=k~ (1 ~/Cl<G) the follow-
ing s t a tements are execu ted before re tu rn ing to label L.

L : ~n = f(/c);
for / co := kn while /cn < /~ do / c n : = f (ko) ;

L I : if /on =~ /C then exchange (VEC[/Cn], VEC[/C]);
L2: /c := / c + l ; t o t e L ;

The labels L1 and L2 are mere ly in t roduced as a reference. At label L1
we have /cn=~k(k). Consequent ly /cn~_k. In ease kn+-b, VEC[/cn] and
VEC[Ic] are exchanged. Since ~ E l ^ E 2 on L i t follows ~- E l ^ E 2 on L1.
We consider two cases:

CASE1. /Cn>]C. F r o m ~ E I ^ E 2 on L1 we have VEC[~pk(k)]=
VEC[Icn] =~/(k)" After exchanging VEC[kn] and VEC[Ic], VEC[k] =~1(k)
a t label L2.

Therefore the following assert ion holds a t L2:

Vi(1 <i <k -~ VEC[i]=o~j,(i)) .
Hence

Vi(1 _-<i < k + 1 -~ VEC[i] = ~I<~3) -

F inal ly ~ E 1 at L for k = k l + l .
Since kn = ~Ok(/C) > k then according to p ro p e r t y 2 there exist e lements

el and e2, e l> /c , e2>/c such t h a t :

e2 = ~0k(k) and /c = $ok(el)

and according to p rope r ty 3:

e2 = ~ok+l(el) .
Appa ren t ly e2 = kn.

At label L1 we have

At label L2

VEC[k] = VEC[~pk(el)] = ~I(el), since el > k .

VEC[kn] = VEC[wd/C)] = VEC[e2] = ~ I < + 1) .

CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION 323

Using p ro pe r ty 3 at L2,

(13) V E C [e 2] = VEC[~Vk+~(el)] = ~s(el) .

F r o m ~- E2 we deduce a t label L1 :

(14) V i(k < i < G ^ i 4 e l -+ VEC[~vk(i)] -- o~j(i)) .

Using p ro pe r ty 4 we get a t L2

(15) V i (k < i < G ^ i ~ : e l -..- VEC[~vk (i)]= VEC[y~k+l(i)]=~/(~)) .

Combining (13), (14) and (15) we have at L2:

v i(k + 1 < i <= G -~ VECEv, k+I(i)] = o,I(~)).

Passing f rom label L2 to label L k := k + 1. Hence ~- E2 a t L for k =
]cl + 1.

CASE 2. kn =/c. In this case ~0k(k) = k and no exchange takes place.
F r o m ~- E2 a t L and a t L1 and L2 we deduce:

(16) VEC[y~k(k)] = VEC[Ic] = ccs(~).

Combining (16) wi th ~ E1 we get a t L2

(17) Vi(1 <=i <=]~ ~ VEC[i]=o~1(i)) .

Hence

(18) Vi(1 < i < / c + 1 -~ V E C [i] = ~ s (i)) a t L 2 .

F r o m ~-E2 and since there does not exist an e lement el >/¢ wi th
~0k(k)=el, and f rom p rope r ty 4 i t follows t h a t :

(19) Vi(/~+ 1 < = i < G ..+ VEC[~k+l(i)]=o~f(i)) a t L 2 .

Combining (18) and (19) a t L2 and using the assignation /c : = /c+1
in passing f rom label L2 to label L we get : ~- E l ^ E 2 at L for k = / c l + 1.
B y induct ion i t follows t h a t : ~ - E l ^ E 2 a t L for all k = I (1)G+ 1. More-
over ~- E 1 ̂ E2 ^ Ic = G + 1 at label E x h . In t h a t case E 1 confirms the t r u t h
of (1).

REMAmK 1. The a lgor i thm can be changed sl ight ly in case of a ma t r i x
t ransposi t ion. I t suffices t h a t the for loop runs f rom] c = 2 (1) G - 2 , be-
cause A[1,1] and A i m , n] do no t move. In case all e lements have been
moved up to G - 2 then the G - l t h e lement is in place. E v e n in the general
case the range of the for loop can be t ak e n k = 1 (1)G - 1.

324 A.J .W. DUIJVESTIJN

RE~L~RK 2. Looking at the invariant ~- E1 ^E2 we observe that E2
describes the initial state of the program for k = 1. E1 is then "empty" .
E1 describes the final state for k = G + 1. E2 is then "empty" .

Acknowledgements.
The author wishes to thank F. GSbel and J. Engelfriet for their discus-

sions and remarks.

R E F E R E N C E S

1. P. F. Windley, Transposing matrices in a digital computer, Computer Journal 2 (April
1959, 47-48.

2. J . Bootroyd, Algorithm 302, Transpose vector stored array, Comm. ACM 10 (May 1967),
292-293.

3. S. Laflin and M. A. Brebner, Algorithm 380, I n situ-transposition of a rectangular matrix,
Comm. ACM 13 (May 1970), 324-326.

TECHNOLOGICAL UNIVERSITY TWENTE
ENSCHEDE
THE NETHERLANDS

