BIT 12 (1972), 318—324

CORRECTNESS PROOF OF AN IN-PLACE
PERMUTATION

A.J.W. DULJVESTIJN

Abstract.

The correctness of an in-place permutation algorithm is proved. The algorithm
exchanges elements belonging to a permutation cycle. A suitable assertion is con-
structed from which the correctness can be deduced after completion of the algo-
rithm.

An in-place rectangular matrix transposition algorithm is given as an example.

Key words and phrases: Proof of programs, algorithm, program correctness,
theory of programming.

Introduction.

The in-place permutation problem deals with the rearrangement of
the elements of a given vector VEC[:], i =1(1)@, G = 1, using an arbitrary
permutation f(¢) of the integers 1,...,G.

The problem that has to be solved is: write an algorithm that permutes
the elements of VEC without using extra storage. That means if
VEC[¢]=w,; before the permutation then VEC[i]=«y, after the permu-
tation.

The solution of the permutation problem is given by the following
algorithm:

procedure permute (VEC, f, @); value G; integer G; array VEC;
integer procedure f;
comment f(x) is the index of VEC where the element can be found that has
to be moved to VEC[x];
begin integer k, ko, kn, wr;
for k:= 1 step 1 until G do
begin
kn := f(k);
for ko := kn while kn < k do kn := f(ko);
if kn =+ k then begin comment exchange (VEC[kn}, VEC[k]);

Received Feb. 10, 1972. Revised April 11, 1972.



CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION 319

wr := VEC[kn]; VEC[kn]:= VEC[L];
VEC[k] := wr
end
end
end

A special case of the permutation problem arises in the transposition
of a rectangular matrix without using extra storage [2, 3]. In case the
matrix A[3,5], 4= 1(1)m and j = 1(1)n is columnwise mapped onto a vector
VEC[k], k=1(1)msn, G=mxn, the function f is defined as follows in
ALGOL-60:

integer procedure f(x); value x; integer x;

comment f(z) ¢s the index of VEC where the element can be found that has
to be moved to VEC[x);

begin integer w;,
wi= {(x—1)+n;
fi= (@—wwn—1)xm+w+1

end

The algorithm for which a correctness proof is given in this note is
essentially that of R. F. Windley [1].

Correctness of the algorithm.
It has to be proved that the algorithm performs the following:

(1) Vi(l 4 £ G~ VEC[E] = ayp) -

First we introduce a function y,(¢) that is defined for k<i<G with
12k<@G:
(1) = the first fO¢) with f@(E) 2k, s21 .

The expression f* means: f if s=1, otherwise ff*-b. Consequently ¢,(s) =
JO@E) 2k, and fO@) <k with 15t<s, s21.
We prove certain properties of the function .

PrOPERTY 1 is a property of the permutation f:

Vi(15i<G > Fel(1Sel G ai=flel))) .
and
Vi(1Si=G > 3e2(15e25G re2=f(1))) .



320 A.J.W.DUIJVESTIIN

ProPERTY 2.

(2) Vi(k<1SG > Jel(kZel SG Ai=yyel)))
and
(3) Vi(kSi2G > ek Se2 <G A e2=yp,(i))) .

Proor. Let ¥V, g be the set of integers: V;, o={i: k<7 <G}, then prop-
erty 2 says that y,(¢) is a permutation on V g.

Apparently property 2 is true for k=1 since y,(¢)=f(¢) (property 1).

Assuming property 2 is true for k (induction assumption), we prove
that property 2 is also true for k+1.

According to the induction assumption there exists exactly one ele-
ment el € V,, o such that k=y,(el) and exactly one element e2€ V; 4
such that e2=1,(k). (A direct consequence of (2) and (3)).

We consider two cases:

Casi 1. e1>%. Then clearly e2>k. Consider the sets V3, o=
Vi, g\ el and V;ck:;,G: Ve \€2.
According to the induction assumption we have:

(4) Va(a e Viy,e—>3bbe Vi g ab=pa))
and
(5) Vb(be Vil o~ Jalae Vi, o Ab=y4a)))

Since b=y, (a)>k it follows from the definition of y:
b=fOa), s 21 and ffa)<k for 1 £t < s
that
b=f%a)z2 k+1,s=1and fa)< bk <k+lforl 2t<s;
(6) we conclude b = y;,,(a) .

Henece it follows that:
(7) Vafa e V;:+1,G > (@) = pri4(a)) .

Furthermore we prove e2=y, ,(el).
From the definition of y and the induction assumption it follows:

Hs(sg 1ak=f%el) AVi{1<t<s — fi(el) <Ic))
and
Br(rg Tae2=frk)aVu(lZu<r —»f“(k)<k)) .



CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION 321

Clearly e2=f*+t"(el)2k+1, s+7r=2 and fP(el)<k+1 with 1Sp<s+r.
Hence

(8) e2 = yyq(el) .
Using (4), (8), (6), (7) and (8) we conclude:
(9) Va(a € Viry,g > 3b(bE Vg oAb =‘l’k+1(“)))
and
(10) Vb(b € Virs,g > da(a € Vi g A b='l’k+1(a))) .

CasE 2. el=Fk. In this case el =e2="Fk. Furthermore V}, o=Vi} o=
V11, ¢ and according to (4), (5), (6) and (7) we have:

(11) Va,(a, € Vs, > 3b(b € Vigy oA bz%”ku(“)))
and
(12) Vb(b € Vie>3a(a € Vi gn bz'f’kﬂ(a))) .

Using (9), (10), {11) and (12) then by induction property 2 is true for all
k<@.
We can now formulate property 3 and 4.

ProrerTY 3. If 9 (el)=k and y,(k)=e2, while el >% and e2>% then
according to (8) e2=1yy,,(el).

REMARK. In case el=e2=k, y;,,;(el) is not defined.

PROPERTY 4. y,(¢)==1y;.,(¢) for all {>Fk except that ¢ for which
(1) =k (see (6) and (7)).

We prove the truth of the assertion E1AE2 on a certain label in the
program. The definition of Z1 and E2 is as follows:

(B1) Vi(lsi<k > VEC[i]=0yq)
and
(B2) Vi(k£i=G —~ VEC[y ()] =o0pp) -

The structure of the program is:

for k:= 1 step 1 until G do
begin ... end;

This program is equivalent with the program:

E:=1;

L: if &t > G then goto Exh;
begin ... end;
k:=k+1; goto L; Exh:



322 A.J. W. DUIJVESTIIN

We prove + E1AE2 on label L for all k, 12k<G+1.

Proor. If k=1 then + E1AE2 since Fl is true (1 <i<1 is false so
the implication is true) and since y,(¢)=f(¢) the assertion E2 reads:

V(1242 G~ VEC[y,(i)]= VEC[f(i)] = ) which is clearly true .

Assuming that — E1AE2 on L for a certain k=Fk, (1 £k, £ @) the follow-
ing statements are executed before returning to label L.

L: kn = f(k);

for ko := kn while kn < k do kn := f(ko);
L1: if kn + k then exchange (VEC[kn], VEC[E]);
L2: k:= k+1; goto L;

The labels L1 and L2 are merely introduced as a reference. At label L1
we have kn=1v,(k). Consequently kn=k. In case kn=k, VEC[kn] and
VEC[k] are exchanged. Since + E1AE2 on Lit follows — E1aE2 on L1.
We consider two cases:

Casg 1. kn>k. From + E1AE2 on L1 we have VEC[y,k)]=
VEC(kn]=oygy. After exchanging VEC[kn] and VEC[k), VEC[k]= o,
at label L2.

Therefore the following assertion holds at L2:

Vi(l<i<k - VEC[i]=0yq) -
Hence

Finally + E1 at L for k=k1+1.
Since kn=v,(k)>k then according to property 2 there exist elements
el and €2, el >k, e2>k such that:

e2 = p(k) and k = ylel)
and according to property 3:

€2 = yy(el) .
Apparently e2=1kn.
At label L1 we have
VEC[k] = VEC[yilel)] = iy, since el >k .
At label L2

i

VEC[kn] = VEC[y(k)] = VEC[e2] = tyey -



CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION 323
Using property 3 at L2,
(13) VEC[e2] = VEC[yy(el)] = oty -
From F E2 we deduce at label L1:
(14) Vilk<iSG@ Ai%el > VEC[y(d)l=0y) .
Using property 4 we get at L2
(15) Vi(k<i <G aikel - VEC[y,(3)] = VEC[y1(8)] = oppy) -
Combining (13), (14) and (15) we have at L2:
Vi(k+120 G —» VEC[yp ()] =xpy) -

Passing from label L2 to label L k:= k+ 1. Hence + E2 at L for k=
kl1+1,

Case 2. kn=k. In this case y,(k)=k and no exchange takes place.
From + E2 at L and at L1 and L2 we deduce:

(16) VEC[y(k)] = VECTk] = oz -

Combining (16) with + E1 we get at L2

(17) Vi(lSi<k > VEC[i]=0.) .
Hence
(18) V%(l _§£<k+1 — VEO{'&.}=0€f(§)) at L2 .

From + E2 and since there does not exist an element el >k with
pi(k)=el, and from property 4 it follows that:

(19) Vi(k+15i2G - VEC[yp ()] =00) at L2.

Combining (18) and (19) at L2 and using the assignation %k := k+1
in passing from label L2 to label L we get: i~ F1AE2 at L for k=k1+1.
By induction it follows that: — F1aE2 at L for all k=1(1)¢ + 1. More-
over - E1AE2Aak=@G+1 at label Exh. In that case E1 confirms the truth
of (1).

Remarx 1. The algorithm can be changed slightly in case of a matrix
transposition. It suffices that the for loop runs from k=2(1)G—2, be-
cause A{1,1] and A[m,n] do not move. In case all elements have been
moved up to G — 2 then the G — 1th element is in place. Even in the general
case the range of the for loop can be taken k=1(1)G—1.



324 A.J. W, DULJVESTIIN

ReEmark 2. Looking at the invariant + Z1AH2 we observe that E2
describes the initial state of the program for £=1. E1 is then “empty”.
E1 describes the final state for k=G + 1. E2 is then “empty”.

Acknowledgements.

The author wishes to thank F. Gobel and J. Engelfriet for their discus-
sions and remarks.

REFERENCES

1, P. F. Windley, T'ransposing matrices in a digital computer, Computer Journal 2 (April
1959, 47-48.

2. J. Bootroyd, Algorithm 302, Transpose vector stored array, Comm. ACM 10 (May 1967),
292-293.

3. 8. Laflin and M. A. Brebner, Algorithm 380, In situ-transposition of a rectangular matriz,
Comm. ACM 18 (May 1970), 324-326.

TECHNOLOGICAL UNIVERSITY TWENTE
ENSCHEDE
THE NETHERLAXNDS



