CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION

A. J. W. DUIJVESTIJN

Abstract

. The correctness of an in-place permutation algorithm is proved. The algorithm exchanges elements belonging to a permutation cycle. A suitable assertion is constructed from which the correctness can be deduced after completion of the algorithm.

An in-place rectangular matrix transposition algorithm is given as an example. Key words and phrases: Proof of programs, algorithm, program correctness, theory of programming.

Introduction.

The in-place permutation problem deals with the rearrangement of the elements of a given vector $V E C[i], i=1(1) G, G \geqq 1$, using an arbitrary permutation $f(i)$ of the integers $1, \ldots, G$.

The problem that has to be solved is: write an algorithm that permutes the elements of $V E C$ without using extra storage. That means if $V E C[i]=\alpha_{i}$ before the permutation then $V E C[i]=\alpha_{f(i)}$ after the permutation.

The solution of the permutation problem is given by the following algorithm:
procedure permute ($V E C, f, G$); value G; integer G; array $V E C$;
integer procedure f;
comment $f(x)$ is the index of VEC where the element can be found that has
to be moved to VEC[x];
begin integer k, $k o, k n$, wr;
for $k:=1$ step 1 until G do
begin
$k n:=f(k)$;
for $k o:=k n$ while $k n<k$ do $k n:=f(k o)$;
if $k n \neq k$ then begin comment exchange (VEC[kn],VEC[k]);

Received Feb. 10, 1972. Revised April 11, 1972.

```
    \(w r:=V E C[k n] ; V E C[k n]:=V E C[k] ;\)
    \(V E C[k]:=w r\)
end
```

 end
 end

A special case of the permutation problem arises in the transposition of a rectangular matrix without using extra storage [2,3]. In case the matrix $A[i, j], i=1(1) m$ and $j=1(1) n$ is columnwise mapped onto a vector $V E C[k], k=1(1) m * n, G=m * n$, the function f is defined as follows in ALGOL-60:
integer procedure $f(x)$; value x; integer x;
comment $f(x)$ is the index of VEC where the element can be found that has to be moved to VEC[x];
begin integer w;

$$
\begin{aligned}
& w:=(x-1) \div n \\
& f:=(x-w * n-1) * m+w+1 \\
& \text { end }
\end{aligned}
$$

The algorithm for which a correctness proof is given in this note is essentially that of R. F. Windley [1].

Correctness of the algorithm.

It has to be proved that the algorithm performs the following:

$$
\begin{equation*}
\forall i\left(1 \leqq i \leqq G \rightarrow V E C[i]=\alpha_{f(i)}\right) \tag{1}
\end{equation*}
$$

First we introduce a function $\psi_{k}(i)$ that is defined for $k \leqq i \leqq \theta$ with $1 \leqq k \leqq G$:

$$
\psi_{k}(i)=\text { the first } f^{(s)}(i) \text { with } f^{(s)}(i) \geqq k, s \geqq 1
$$

The expression f^{s} means: f if $s=1$, otherwise $f f^{(s-1)}$. Consequently $\psi_{k}(i)=$ $f^{(s)}(i) \geqq k$, and $f^{(t)}(i)<k$ with $1 \leqq t<s, s \geqq \mathrm{I}$.

We prove certain properties of the function ψ.
Property 1 is a property of the permutation f :

$$
\forall i(1 \leqq i \leqq G \rightarrow \exists e 1(1 \leqq e 1 \leqq G \wedge i=f(e \mathrm{I})))
$$

and

$$
\forall i(1 \leqq i \leqq G \rightarrow \exists e 2(1 \leqq e 2 \leqq G \wedge e 2=f(i)))
$$

Property 2.

$$
\begin{equation*}
\forall i\left(k \leqq i \leqq G \rightarrow \exists e 1\left(k \leqq e 1 \leqq G \wedge i=\psi_{k}(e 1)\right)\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall i\left(k \leqq i \leqq G \rightarrow \exists e 2\left(k \leqq e 2 \leqq G \wedge e 2=\psi_{k}(i)\right)\right) \tag{3}
\end{equation*}
$$

Proof. Let $V_{k, G}$ be the set of integers: $V_{k, G}=\{i: k \leqq i \leqq G\}$, then property 2 says that $\psi_{k}(i)$ is a permutation on $V_{k, G}$.

Apparently property 2 is true for $k=1$ since $\psi_{1}(i)=f(i)$ (property 1).
Assuming property 2 is true for k (induction assumption), we prove that property 2 is also true for $k+1$.

According to the induction assumption there exists exactly one element $e l \in V_{k, G}$ such that $k=\psi_{k}(e 1)$ and exactly one element $e 2 \in V_{k, G}$ such that $e 2=\psi_{k}(k)$. (A direct consequence of (2) and (3)).

We consider two cases:

Case 1. $e 1>k$. Then clearly $e 2>k$. Consider the sets $V_{k+1, G}^{*}=$ $V_{k+1, G} \backslash e 1$ and $V_{k+1, G}^{* *}=V_{k+1, G} \backslash e 2$.

According to the induction assumption we have:

$$
\begin{equation*}
\forall a\left(a \in V_{k+1, a}^{*} \rightarrow \exists b\left(b \in V_{k+1, a}^{* *} \wedge b=\psi_{k}(a)\right)\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall b\left(b \in V_{k+1, G}^{* *} \rightarrow \exists a\left(a \in V_{k+1, G}^{*} \wedge b=\psi_{k}(a)\right)\right) \tag{5}
\end{equation*}
$$

Since $b=\psi_{k}(a)>k$ it follows from the definition of ψ :

$$
b=f^{(s)}(a), s \geqq 1 \text { and } f^{t}(a)<k \text { for } 1 \leqq t<s
$$

that

$$
b=f^{s}(a) \geqq k+1, s \geqq 1 \text { and } f^{(i)}(a)<k<k+1 \text { for } 1 \leqq t<s
$$

$$
\begin{equation*}
\text { we conclude } b=\psi_{k+1}(a) \tag{6}
\end{equation*}
$$

Hence it follows that:

$$
\begin{equation*}
\forall a\left(a \in V_{k+1, \theta}^{*} \rightarrow \psi_{k}(a)=\psi_{k+1}(a)\right) . \tag{7}
\end{equation*}
$$

Furthermore we prove $e 2=\psi_{k+1}(e 1)$.
From the definition of ψ and the induction assumption it follows:

$$
\exists s\left(s \geqq 1 \wedge k=f^{s}(e 1) \wedge \forall t\left(1 \leqq t<s \rightarrow f^{t}(e 1)<k\right)\right)
$$

and

$$
\exists r\left(r \geqq 1 \wedge e 2=f^{r}(k) \wedge \forall u\left(1 \leqq u<r \rightarrow f^{u}(k)<k\right)\right)
$$

Clearly $e 2=f^{s+r}(e 1) \geqq k+1, s+r \geqq 2$ and $f^{p}(e 1)<k+1$ with $1 \leqq p<s+r$. Hence

$$
\begin{equation*}
e 2=\psi_{k+1}(e 1) \tag{8}
\end{equation*}
$$

Using (4), (5), (6), (7) and (8) we conclude: and

$$
\begin{equation*}
\forall a\left(a \in V_{k+1, G} \rightarrow \exists b\left(b \in V_{k+1, G} \wedge b=\psi_{k+1}(a)\right)\right) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\forall b\left(b \in V_{k+1, a} \rightarrow \exists a\left(a \in V_{k+1, G} \wedge b=\psi_{k+1}(a)\right)\right) \tag{10}
\end{equation*}
$$

Case 2. $e \mathrm{I}=k$. In this case $e \mathrm{I}=e 2=k$. Furthermore $V_{k+1, G}^{*}=V_{k+1, a}^{* *}=$ $V_{k+1, G}$ and according to (4), (5), (6) and (7) we have:
and

$$
\begin{equation*}
\forall a\left(a \in V_{k+1, G} \rightarrow \exists b\left(b \in V_{k+1, G} \wedge b=\psi_{k+1}(a)\right)\right) \tag{11}
\end{equation*}
$$

Using (9), (10), (11) and (12) then by induction property 2 is true for all $k \leqq G$.

We can now formulate property 3 and 4.
Property 3. If $\psi_{k}(e 1)=k$ and $\psi_{k}(k)=e 2$, while $e 1>k$ and $e 2>k$ then according to (8) $e 2=\psi_{k+1}(e 1)$.

Remark. In case $e 1=e 2=k, \psi_{k+1}(e 1)$ is not defined.
Property 4. $\psi_{k}(i)=\psi_{k+1}(i)$ for all $i>k$ except that i for which $\psi_{k}(i)=k$ (see (6) and (7)).

We prove the truth of the assertion $E 1 \wedge E 2$ on a certain label in the program. The definition of $E 1$ and $E 2$ is as follows:

$$
\begin{equation*}
\forall i\left(1 \leqq i<k \rightarrow V E C[i]=\alpha_{f(i)}\right) \tag{E1}
\end{equation*}
$$

and
(E2)

$$
\forall i\left(k \leqq i \leqq G \rightarrow V E C\left[\psi_{k}(i)\right]=\alpha_{f(i)}\right)
$$

The structure of the program is:
for $k:=1$ step 1 until G do
begin ... end;
This program is equivalent with the program:

$$
k:=1
$$

L : if $k>G$ then goto $E x h$;
begin ... end;
$k:=k+1$; goto L; Exh:

We prove $\vdash E 1 \wedge E 2$ on label L for all $k, 1 \leqq k \leqq G+1$.

Proof. If $k=1$ then $\vdash E 1 \wedge E 2$ since $E 1$ is true ($1 \leqq i<1$ is false so the implication is true) and since $\psi_{1}(i)=f(i)$ the assertion $E 2$ reads:
$\forall i\left(1 \leqq i \leqq G \rightarrow V E C\left[\psi_{1}(i)\right]=V E C[f(i)]=\alpha_{f(i)}\right)$ which is clearly true.
Assuming that $\vdash E 1 \wedge E 2$ on L for a certain $k=k_{1}\left(1 \leqq k_{1} \leqq G\right)$ the following statements are executed before returning to label L.
$L: k n=f(k) ;$
for $k o:=k n$ while $k n<k$ do $k n:=f(k o)$;
$L 1$: if $k n \neq k$ then exchange (VEC[kn], VEC[k]);
$L 2: k:=k+1$; goto L;
The labels $L 1$ and $L 2$ are merely introduced as a reference. At label $L 1$ we have $k n=\psi_{k}(k)$. Consequently $k n \geqq k$. In case $k n \neq k, V E C[k n]$ and $V E C[k]$ are exchanged. Since $\vdash E 1 \wedge E 2$ on L it follows $\vdash E 1 \wedge E 2$ on $L 1$. We consider two cases:

Case 1. $k n>k$. From $\vdash E 1 \wedge E 2$ on $L 1$ we have $V E C\left[\psi_{k}(k)\right]=$ $V E C[k n]=\alpha_{f(k)}$. After exchanging $V E C[k n]$ and $V E C[k], V E C[k]=\alpha_{f(k)}$ at label $L 2$.

Therefore the following assertion holds at $L 2$:

$$
\forall i\left(1 \leqq i \leqq k \rightarrow V E C[i]=\alpha_{f(i)}\right) .
$$

Hence

$$
\forall i\left(1 \leqq i<k+1 \rightarrow V E C[i]=\alpha_{f(i)}\right) .
$$

Finally $\vdash E 1$ at L for $k=k 1+1$.
Since $k n=\psi_{k}(k)>k$ then according to property 2 there exist elements $e 1$ and $e 2, e 1>k, e 2>k$ such that:

$$
e 2=\psi_{k}(k) \quad \text { and } \quad k=\psi_{k}(e 1)
$$

and according to property 3 :

$$
e 2=\psi_{k+1}(e 1)
$$

Apparently $e 2=k n$.
At label $L 1$ we have

$$
V E C[k]=V E C\left[\psi_{k}(e 1)\right]=\alpha_{f(e 1)}, \text { since } e l>k
$$

At label $L 2$

$$
V E C[k n]=V E C\left[\psi_{k}(k)\right]=V E C[e 2]=\alpha_{f(e 1)}
$$

Using property 3 at $L 2$,

$$
\begin{equation*}
V E C[e 2]=V E C\left[\psi_{k+1}(e 1)\right]=\alpha_{f(e) 1} \tag{13}
\end{equation*}
$$

From $\vdash E 2$ we deduce at label $L 1$:

$$
\begin{equation*}
\forall i\left(k<i \leqq G \wedge i \neq e 1 \rightarrow V E C\left[\psi_{k}(i)\right]=\alpha_{f(i)}\right) \tag{14}
\end{equation*}
$$

Using property 4 we get at L2

$$
\begin{equation*}
\forall i\left(k<i \leqq G \wedge i \neq e 1 \rightarrow V E C\left[\psi_{k}(i)\right]=V E C\left[\psi_{k+1}(i)\right]=\alpha_{f(i)}\right) \tag{15}
\end{equation*}
$$

Combining (13), (14) and (15) we have at $L 2$:

$$
\forall i\left(k+1 \leqq i \leqq G \rightarrow V E C\left[\psi_{k+1}(i)\right]=\alpha_{f(i)}\right)
$$

Passing from label $L 2$ to label $L k:=k+1$. Hence $\vdash E 2$ at L for $k=$ $k 1+1$.

Case 2. $k n=k$. In this case $\psi_{k}(k)=k$ and no exchange takes place.
From $\vdash E 2$ at L and at $L 1$ and $L 2$ we deduce:

$$
\begin{equation*}
V E C\left[\psi_{k}(k)\right]=V E C[k]=\alpha_{f(k)} . \tag{16}
\end{equation*}
$$

Combining (16) with $\vdash E 1$ we get at $L 2$

$$
\begin{equation*}
\forall i\left(\mathrm{l} \leqq i \leqq k \rightarrow V E C[i]=\alpha_{f(i)}\right) . \tag{17}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\forall i\left(1 \leqq i<k+1 \rightarrow V E C[i]=\alpha_{f(i)}\right) \text { at } L 2 . \tag{18}
\end{equation*}
$$

From $\vdash E 2$ and since there does not exist an element $e 1>k$ with $\psi_{k}(k)=e l$, and from property 4 it follows that:

$$
\begin{equation*}
\forall i\left(k+1 \leqq i \leqq G \rightarrow V E C\left[\psi_{k+1}(i)\right]=\alpha_{f(i)}\right) \text { at } L 2 . \tag{19}
\end{equation*}
$$

Combining (18) and (19) at $L 2$ and using the assignation $k:=k+1$ in passing from label $L 2$ to label L we get: $\vdash E 1 \wedge E 2$ at L for $k=k 1+1$. By induction it follows that: $\vdash E 1 \wedge E 2$ at L for all $k=1(1) G+1$. Moreover $\vdash E 1 \wedge E 2 \wedge k=G+1$ at label $E x h$. In that case $E 1$ confirms the truth of (1).

Remark 1. The algorithm can be changed slightly in case of a matrix transposition. It suffices that the for loop runs from $k=2(1) G-2$, because $A[1,1]$ and $A[m, n]$ do not move. In case all elements have been moved up to $G-2$ then the $G-1$ th element is in place. Even in the general case the range of the for loop can be taken $k=1(1) G-1$.

Remark 2. Looking at the invariant $\vdash E 1 \wedge E 2$ we observe that $E 2$ describes the initial state of the program for $k=1 . E 1$ is then "empty". $E 1$ describes the final state for $k=G+1 . E 2$ is then "empty".

Acknowledgements.

The author wishes to thank F. Göbel and J. Engelfriet for their discussions and remarks.

REFERENCES

1. P. F. Windley, Transposing matrices in a digital computer, Computer Journal 2 (April 1959, 47-48.
2. J. Bootroyd, Algorithm 302, Transpose vector stored array, Comm. ACM 10 (May 1967), 292-293.
3. S. Laflin and M. A. Brebner, Algorithm 380, In situ-transposition of a rectangular matrix, Comm. ACM 13 (May 1970), 324-326.

TEOHNOLOGICAL UNIVERSITY TWENTE
ENSCHEDE
THE NETHERLANDS

