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Abstract - -  Zusammenfassung 

Aspects of Insertion in Random Trees. A method formulated by Yao and used by Brown has yielded 
bounds on the fraction of nodes with specified properties in trees built by a sequence of random 
internal nodes in a random tree built by binary search and insertion, and show that in such a tree about 
bounds better than those now known. We then apply these methods to weight-balanced trees and to a 
type of "weakly balanced" trees. We determine the distribution of the weight-balance factors of the 
internal nodes in a random tree built by binary search and insertion and show that in such a tree about 
72% of all internal nodes have weight balance factors lying between 1 - ]/2/2 and V2/2. 
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Aspekte bei der Einfiigung in Zufallsb~iume. Eine Methode, die von Yao formuliert und von Brown 
angewendet wurde, gestattet es, Schranken fiir den Anteil yon Knoten mit bestimmten Eigenschaften in 
B~umen anzugeben, die durch eine Folge von zuf~illigen Einffigungen entstehen. Ftir den Fall yon AVL- 
B~umen (h6henbalanziert) zeigen wird, dab solche Methoden nicht erweitert werden k6nnen, um 
bessere Schranken als die bisher bekannten zu berechnen. Dann wenden wir diese Methode auf 
gewichtsbalanzierte B~ume und aufeine Art von ,,schwach balanzierten" B~iumen an und bestimmen die 
Verteilung der gewichtsbalanzierten Faktoren der inneren Knoten in einem Zufallsbaum, der durch 
binfire Suche und Einffigen entsteht; ferner zeigen wir, dab in einem solchen Baum ungef'ahr 72% der 
inneren Knoten gewichtsbalanzierte Faktoren zwischen 1 - V~/2 und [f2/2 haben. 

1. I n t r o d u c t i o n  

H e i g h t - b a l a n c e d  (AVL) trees and  w e i g h t - b a l a n c e d  trees are  useful d a t a  s t ruc tures  

because  search ing ,  inser t ion ,  a n d  de le t ion  can  all  be  a c c o m o d a t e d  in t ime  tha t  is 

l o g a r i t h m i c  in the  n u m b e r  of  i t ems  in the  t ree  [4],  1-5], [6].  Th i s  excel lent  wor s t  case 
p e r f o r m a n c e  has  k ind l ed  in te res t  in the i r  a v e r a g e  b e h a v i o u r  u n d e r  r a n d o m  
sequences  of  inse r t ions  a n d  de le t ions  [3],  [7],  [2].  

U n f o r t u n a t e l y ,  l i t t le  p rogress  has  been  m a d e  in the  analys is  of  the i r  ave r age  

behav iou r .  Vi r tua l ly  no  p rogres s  has  been  m a d e  in ana lyz ing  dele t ion.  I n se r t i on  has  

fared s o m e w h a t  be t t e r :  Based  on  Yao ' s  ana lys is  of  2 - 3  trees [7],  B r o w n  [3]  was 
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able to obtain, for random height-balanced trees, upper and lower bounds on the 
fraction of internal nodes that have a balance factor of zero. Those bounds are not 
very tight, however. While Yao's analysis of insertion into 2 - 3  trees can, in 
principle, be carried out to any desired degree of precision, Brown could not 
similarly extend his methods to get better bounds. 

The approach of Yao and Brown is to use transitions between subtrees to model the 
insertion process. We therefore name their method transition analysis. The following 
questions naturally arise: 

i) Is it possible to do a more elaborate analysis of insertion in random height- 
balanced trees ? 

ii) Can transition analysis be applied to weight-balanced trees? 

iii) If the balancing rules are relaxed (perhaps even to the point of sacrificing the 
logarithmic height of the trees), does the analysis of the insertion/deletion 
process become more tractable? In such a case, what happens to the bounds? 

iv) How badly out of balance is a tree built by random search and insertion ([4], 
page 424)? In other words, what is the distribution of balance factors in its 
internal nodes? 

In the various section of this paper we try to answer the questions posed above. In 
section 2 we show why Brown's work on height-balanced trees cannot be extended, 
and in section 3 we look at the corresponding problem for weight-balanced trees. We 
give a transition analysis for trees under a weak rebalancing rule in section 4; 
surprisingly, the bounds we obtain on the fraction of internal nodes with balance 
factor zero are better than those obtained by Brown. In section 4, the distribution of 
weight-balance factors of the internal nodes in a tree built by random search and 
insertion is computed, and it is shown, for example, that about 727oo of the nodes have 

weight-balance factors between 1 - 1/~/2 and V2/2. Also, we show that at least 59% 
of the internal nodes are roots of height-balanced subtrees. The concluding section 
describes some open problems. 

2. Height-Balanced Trees 

To study the insertion process in height-balanced trees we introduce some 
terminology. 

Definitions: 
a) A node p in a binary tree Tis a fringe node if at least one of the sons ofp is a leaf. 

b) A binary tree Tis labeled if all edges of Tare labeled with distinct labels. A labeled 
tree Tis a subtree of a labeled tree T' if there is a node p in T' such that the subtree of 
T' rooted at p is identical (including labels) to T. 

c) A binary tree T is unlabeled if the edges of T are unlabeled. 
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d) Let Tbe  a labeled binary tree and C a set of unlabeled binary trees. Then C covers 

T if there exists a set D of labeled binary trees such that 

i) each tree in D is isomorphic, viewed as a binary tree, to some tree in C, 

ii) each tree in D is a subtree of T, 

iii) each fringe node in T occurs in exactly one tree in D. 

e) Let T be an unlabeled binary tree and C a set of unlabeled binary trees. Then C 
covers T if there exists a labeled tree T' such that 

i) 7 ~ is isomorphic, viewed as a binary tree, to T, 

ii) C can cover T'. 

V W X Y Z 

Fig. 1. (a) Five trees used as a cover, (b) the tree covered in example 1 by covers 1 and 2 

Example  1 : Let C consist of the five subtrees shown in Fig. 1 (a) and their symmetric 
variants, and let Tbe  as in Fig. 1 (b). (In the figures, squares indicate leaves.) Then C 
can cover T in various ways. One way is: 

Element of C No. of copies 

V 1 

W 1 

X 1 

Y 1 

Z 1 

An alternative way could be: 

Element of C No. of copies 

V 3 

W 2 

X 2 

Y 0 

Z 0 
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Definitions: 

a) Let T and T' be two height-balanced trees. Then T ~  T' means that it is possible 
to get T' from T as the result of the insertion of a single node in T. (When we talk 
about the insertion of a node in a height-balanced tree, we mean insertion by the 
standard insertion algorithm, e.g., the one given in [4] page 455.) 

b) A finite set C of height-balanced trees is a closed set if 

i) for every height-balanced tree T, C covers T, or Tis a subtree of an element of C, 

ii) for any T~ C, whenever T ~  T' then C covers T'. 

Example 2: For  each i>  1, let Ai consist of all height-balanced trees T such that 
either Thas height i, or Thas height i+  1 with one subtree of the root of height i -  1 
and the other of height i. Then A1 consists of the trees V and W of Fig. 1 (a) together 
with symmetric variants. It is easily verified, that if Te  A i and T--, T', then either 
T' ~ A i or the left and right subtrees of the root of T' are each individually in Ai. Thus 
A~ is a closed set. Moreover, A~ has the interesting property that given any height- 
balanced tree T of height at least i, Ai covers T in exactly one way. 

A transition analysis of insertion in random height-balanced trees has the following 
features. There is a closed set C of k height-balanced subtrees U 1, U 2, ..., U k. For 
large enough n, an n-node height-balanced tree Tcan be covered by C. Suppose that 
in this cover u ~ copies of U ~ are used, for 1 ~< i _< k. Now, suppose that T ~  T'. Then by 
the definition of a closed set, the (n+ 1) node height-balanced tree T' can also be 
covered by C. Let 

u 2 

and let ~, + 1 be the corresponding vector for T'. Under the assumption that Tand T' 
are random height-balanced trees, it is possible to derive a matrix recurrence 
relation involving g~ and g~ + 1- We find the steady state solution of the recurrence 
relation (i.e., a solution that holds for large n), and this solution is used to determine 
bounds on the fraction of internal nodes in a random height-balanced tree having a 
specified property. 

Brown's analysis is exactly of this type. In his case, C consists of the subtrees Vand W 
of Fig. 1 (a). Let v, and wn be the number of copies of V and W needed to cover an 
n-node random height-balanced tree. He gets the recurrence relation 

where I is the 2 x 2 unit matrix and 
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In the limit as n ~ o e  the solution is 

2 (n+1)  
V n - -  

7 

n + l  
W n - -  

7 

If B, is the expected number of internal nodes with balance factor zero in a random 
n-node height-balanced tree, then using the above results he shows that, as n ~  o% 

10 6 
(n+ 1)_< B._<~- (n+ 1 ) -  1. (1) 

2~- 

It is clear that to get better bounds on B, a larger closed set must be used. One 
possibility is to use an A~ of Example 2 for some i > 1. But, we show below that that 
cannot be done. 

Lemma 1 �9 I f  C is a closed set then C contains a complete binary tree. 

Proof: Since C is finite there is a complete binary tree T that is not in C, and that is 
not a subtree of any element of C. Tcan only be covered by smaller complete binary 
trees, and since C must cover T, C must thus contain a complete binary tree. QED 

In Fig. 1 (a), both V and X are complete binary trees. Of course, the only complete 
binary tree in a closed set C may be V. 

Theorem 1: I f  a closed set C contains a complete binary tree of  height at least 2, then C 
cannot be used in a transition analysis of  insertion in random height-balanced trees. 

Proof" Suppose Ccontains the subtree Xof  Fig. 1 (a), which is a complete binary tree 
of height 2. The insertion of a node into X produces Y, unless the situation depicted 
in Fig. 2 occurs. (In this figure, leaves are not shown.) Here a node is inserted into the 
X subtree rooted at r, and a double rotation at p is needed to restore balance; the 
resulting tree has no Y subtree. The transitions from X are thus not well-defined. 
Similar problems arise with complete binary trees of height greater than 2. QED 

P F 

/ s 

s 

Fig. 2 

Thus if a transition analysis is to be possible with a closed set C, then V must be the 
only complete binary tree in C. But since V~  W, W must also be in C, because W 
cannot be covered with any other subtrees. By Theorem 1, X is not in C, and since 
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W ~ X ,  an insertion in a Wtree  will yield two copies of V. Using the notat ion defined 
above, we must  have (see [7]) 

~ . + 1 =  1-t n + l  M ft. 

where I is the k x k unit  matr ix  and M is a k x k matr ix  obta ined from the transitions. 
For  convenience we specify that  U ~ = V and U 2 = W. Normal iz ing  the ft. column 
vectors 

we get 

1 
tn = ~  Un 

t n + 2  J 

where N = M - I  and N has the form 

[ 6x 1400 x x 
i.e., N~j=0  for 3<i<_k and l < j _ < 2 ;  the x's indicate irrelevant values. Now 
C -  { V, W} does not  contain a complete  binary tree, so it cannot  be closed. Thus  it 
must  be the case that  at  least one of the entries in columns 3 through k in the first two 
rows of N is positive and nonzero. We also have 

k 

2 tl. + 3 t ] + Z Li tin = 1 (2) 
i=3  

where L i is the number  of  leaves in U ~ and t;. is the i-th componen t  of t'.. 

To  get the steady state solution, we have to solve (see [7]) 

N t , = 0  (3) 

together  with (2). (This assumes that  no eigenvalue of N has a positive real part.) The  
first two equations in (3) can be writ ten in the form 

-3t ,~  + 6 t z + ~ l  = 0  

2 t, ~ - 4 t, 2 + ~2 = 0 (4) 

3 k where el and e z represent  the contr ibut ions of  t,, ..., t,  to the sums. Clearly e I > 0 and  
ez > 0, since the only negative entries in N are along the main  diagonal,  so from (4), 

81 ~E: 2 ~ 0 .  

This shows that  for 3<i<_k, whenever either N~,~>0 or N2,~>0, we must  have 

t~,=0. (5) 
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But.for any U ~ e C, 3 _< i < k, there is a sequence of insertions that will convert U ~ to a 
complete binary tree. By (5), this says 

t~, = 0, 3<_i<_k. 

So, the steady state solution must be identical to the one found by Brown working 
with the closed sef A1. Our conclusion can be restated as 

Theorem 2: Let C be a closed set with which a transition analysis of  random insertions 
in height-balanced trees is possible. Then the bounds on B, that the analysis yields can 
be no better than those given in (1). 

We clarify the proof of this theorem by constructing a directed graph G with the k 
elements of C as its k nodes. G is similar to the state transition diagram ofa  Markov 
chain: There is a directed arc from node i to n o d e j  in G if U~--*U j, or if there is a 
height-balanced tree T such that U i ~  T and U j is an element of the smallest subset 
of C that covers T. G has the form shown in Fig. 3. Clearly, in the steady state (i.e., for 
large n), if there is an arc from node i to n o d e j  and t~=0, then t~,=0. We showed 
above that t~ = 0 if there is an arc from node i to node 1 or, node 2. Moreover, there is a 
directed path from any node i, for i>2 ,  to node 1. It  follows that t~,=0 for 3<i<_n. 

2 

Fig. 3 

It  does not appear  possible to do a transition analysis for random deletions in 
height-balanced trees: Suppose we modify the definition of a closed set approp- 
riately, by considering transitions that result from deletions rather than from 
insertions. Let C be such a "closed set" for deletion, and let Tbe  an element of C with 
the smallest number of internal nodes. Then the deletion of a node from Twould give 
a tree that  is not in C and that cannot be covered by C. So, a transition analysis 
would not be possible with C. 

3. Weight-Balanced Trees 

We now take a look at the insertion process in weight-balanced trees. Basic 
definitions can be found in [6], page 244. We are primarily interested in the class 

WB [e] where e = 1 - V2/2. The notation and concepts introduced in section 2 are 
all meaningful in the context of weight-balanced trees, so we use them without 
redefining them. As far as we are concerned, the only real point of dissimilarity 
between height-balanced trees and weight-balanced trees is that the balancing rules 

2 Computing 29/1 
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(i.e., the single and double rotations) are applied under different conditions. For 
weight-balanced trees, the conditions are given in [6], pages 2 4 7 -  250. 

Brown's analysis remains valid when viewed as an analysis of insertion in random 
weight-balanced trees, but better results are obtained here with the closed set A 2 
consisting of the four trees W, X, Y and Z of Fig. 1 (a). Transitions with this closed set 
are not well-defined when insertions are made in height-balanced trees, but such 
problems do not arise with weight-balanced trees, provided a certain condition is 
satisfied. 

p F 

e c o m e s  

/ s 

s 

Fig. 4 

Suppose a node is inserted into a weight-balanced tree; part of the tree is shown in 
Fig. 4, and the insertion is assumed to take place in the subtree T, which is one of W, 
X, Y, or Z. The weight-balanced tree may require more than one rotation, single or 
double, for rebalancing. As explained in [6], page 250, these rotations can be 
performed on the way down from the root of the tree to the leaf where the insertion 
will take place. However, our analysis requires that the rotations we made on the 
way up after the insertion is made, as is customary with height-balanced trees. 
Looking at Fig. 4 again, we find that the only situations of interest are 

i) double rotation at p, 

ii) single rotation at q. 

Other rotations do not affect the fringe of the tree. Let L(p), L(q) and R(p), R(q) 
indicate the numbers of leaves in the left and right subtrees of p and q prior to the 

insertion. For a = 1 -  V2/2, the following four cases arise: 

Case 1, T= W: Here R (q) = 3 and L (q) > 2. In fact, we may assume L (q)_> 3, for 
otherwise the subtree rooted at q is Y, and this case is treated separately below. Since 
R (p) > 3 as well, a double rotation at p or a single rotation at q can never be needed, 
and W just changes to X. Note that a single rotation at p, if it does take place, causes 
no problems as the fringe is not affected. 

Case 2, T=X:  Here again, R (q)---4 and R(p)> 3. Also L(q)_> 3, otherwise the 
subtree rooted at q is Z. A double rotation at p is required when L(q )=3  and 
R (p) = 3, as illustrated in Fig. 5, where s is the newly inserted node, and leaves are not 
shown. In the figure the fringe still requires two W subtrees and one Y subtree, so 
there is no problem: 
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p 

q \ 

/ /  

T 

Fig. 5 

19 

Case 3, T =  Y: In this case, R (q) = 5, L (q)_> 3 and R (p) >__ 4. Double  rotation is needed 
at p only when L(q)= 4 and R (p)= 4, as shown in Figs. 6 (a) and 6 (b). There are 
other subcases involving symmetrical variants that are not shown. The number of 
IV, X, Y, Z subtrees in the fringe do not change as a result of the rotation. 

P r 

b e c o m e s  

. s 

s 

(a) 

P r 

b e c o m e s  

$ 

s 

(b) 

Fig. 6 

Case 4, T =  Z: Here R (q) = 6, L (q) _> 3. Since a Z subtree is transformed into one W 
and one X subtree as a result of the insertion, double rotation, if needed at p can 
cause no difficulties, since the newly generated W and X subtrees are three levels 
below p. 

If rotations are performed on the way down as described in [6], then Case 4 becomes 
a stumbling block in our analysis: When L (q)= 3 and R (p)= 4 the Z subtree can 
now get split by a double rotation at p, so transitions from Z are no longer well- 
defined. 

2* 
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Now, let w. be the number  of  W subtrees needed to cover the fringe nodes of  a 
r andom n-node weight-balanced tree, and define x,, y,, z. similarly. Then 

"+1 
.+1] 

where I is the 4 x 4 unit matrix and 

1 M] x. 
n +  1 Yn 

7. 

~ - 4  0 
4 - 5  
0 3 - 

(6) 

23 3 
x.=sT-(n+ li / 

2 6 
1) 

Let f(0t) be the fraction of  internal nodes with weight-balance factor exactly ~ or 
1 -  ~ in an n-node r andom weight-balanced tree. Then for large n, 

0.533 < f (1 / 2 )  <0.780 

0.054 < f  (2/5) < 0.301 (7) 

0.166 < f (1 / 3 )  <0.413.  

Moreover,  when an insertion is made, a rotation, single or  double, is certain to be 
required in 

2w,+ 2y,+4z,=O.378(n+ 1) 

cases; i.e., a rotat ion takes place at least once every 2.64 insertions. 

Is it possible to do a similar analysis with a larger closed set? Let us first see what  
some typical closed sets for weight-balanced trees are like. 

Example 3: Given ~ where 0 <~ t<  1/2 and given a positive integer k, let 

j = 1. 

The set A~ consists of all trees T in WB [~] such that  

i) T has m internal nodes where k < m_<j, 

ii) at least one subtree of  the root  of  T has less than k internal nodes. 

Then A~ is a closed set of weight-balanced trees. Note  that  A~ = A 1 and  A[ = A 2. 
Brown's  analysis uses A~ and our  analysis above uses A[. 

Let N = M - I as before. Then the eigenvalues of  N are 0, - 7, and - 7.5 ___ 4.213 i. So 
solving (6) as in [7]  for large values of  n, we get 
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An attempt at an analysis with a larger closed set encounters the same problems 
faced in section 2. It is clear that Lemma 1 holds for weight-balanced trees. Consider 
a closed set for weight-balanced trees that contains a complete binary tree of height 
at least 3. An example is shown in Fig. 7, where T 1 is a complete binary tree of 4 
leaves, Tz is a complete binary tree having 8 leaves, and T3 is s-weight-balanced 

with 5 leaves, for ~ = 1 - ] /~ /2 .  The insertion of a node into T2 forces a double 
rotation at p, and it is easy to see that transitions from Tz are not well defined. This 
shows that Theorem 1 is also valid for weight-balanced trees, but only when the 
closed set contains a complete binary tree of height at least 3. 

p 

q 

T 3 

T~ 

Fig. 7 

An appropriate version of Theorem 2 also holds, but now there are two cases: If a 
closed set contains Vbut not X of Fig. 1 (a); then Brown's results would be obtained, 
while if it contains X but not V then our results would be obtained. There is no 
advantage in putting both V and X in the closed set. 

Thus, from the point of view of transition analysis, height-balanced trees and weight- 
balanced trees behave similarly. The only major difference is that while no analysis 
can be done with A 2 o n  height-balanced trees, A~ on weight-balanced trees does 
yield an analysis, provided we assume that balancing is done from the leaf upwards, 
rather than from the root downwards. It is curious and surprising that the  two 
balancing procedures for weight-balanced trees give different distributions of 
subtrees at the fringe. 

4. Weak Rebalancing Rules 

We know from the previous sections that it is not possible to do transition analyses 
of insertion in height-balanced trees or weight-balanced trees using large closed sets, 
because transitions from subtrees are not always well-defined. Moreover, the 
bounds that we get from the analyses that w e  can do are not very tight. The 
balancing rules, particularly the double rotation rule, seem to be the source of the 
trouble, so it is of interest to investigate the consequences of weakening the 
balancing rules. 
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The most important property of balanced trees is that insertions and deletions can 
be done in time logarithmic in the number of nodes in the tree. If the balancing rules 
are weakened, this property would have to be sacrificed. In compensation, however, 
we may be able to get better bounds on, for example, the number of internal nodes 
with balance factor zero; if these bounds are superior to Brown's, we may get an 
indication of what better bounds for height-balanced trees would be like. 

Definition: 
A binary tree T is weakly balanced if for every fringe node p in T, the longest path 
from p to a leaf has length at most two. 

Thus in a weakly balanced tree, the balance factor of a fringe node must be 0, - 1, or 
+ 1, but no restrictions are imposed on the difference in heights between the left and 
right subtrees of other internal nodes. Let Tbe  a weakly balanced tree, and suppose 
we insert a node into Tusing the binary tree search and insertion procedure of [-4], 
page 424. The resulting binary tree T' may not be weakly balanced. There may be a 
fringe node p in T' such that the longest path from p to a leaf has length 3, as shown in 
the lefthand side of Fig. 8. In this case the rotations shown in Fig. 8 would have to be 
performed to restore weak balance. These (and their symmetric variants) are the 
only permissible balancing operations. 

P~ q 

'/ becomes 

r~' r p 

r becomes 
q P 

Fig. 8 

Brown's work can be regarded as a transition analysis of insertion in random weakly 
balanced trees. Viewed in this light, his work can be extended, and an analysis is 
possible with the five subtrees V, W, X, Yand Z of Fig. 1 (a). With these five subtrees, 
covers are no longer unique, and we will make the assumption that we try to cover 
the fringe of a weakly balanced tree first with Z subtrees, then with Y subtrees, then 
with X subtrees, and so on, so that we use as many Z subtrees as possible, then as 
many Y subtrees as possible, etc. Let v, be the number of V subtrees in the cover of a 
random n-node weakly balanced tree, and define w~, x,, y, and z, similarly. Then 

~ 

"+q 1 

n;1 .+q 
. + l J  

Ivl W n 
3 

_ m M I  x .  

Y, 

Z 
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where I is the 5 x 5 unit matrix and 

M =  ii0001 - 3  0 4 

3 - 4  0 

0 4 - 5  

0 0 3 - 

For large n the solution is 

8 3 
v. = 2 ~  (n+ 1 ) w . = ~ -  (n+ 1) 

3 2 
x , = ~ -  (n+ 1) y, = ~ -  (n+ 1) 

6 
z, = 2 ~  (n+ 1). 

If B', is the number of internal nodes with balance factor 0 in a random n-node 
weakly balanced tree, then 

0.514 (n + 1) < B', < 0.776 (n + 1). (8) 

These bounds are better than Brown's. It would be nice if we could conclude from 
this that in a random height-balanced tree of n internal nodes at least 0.514 (n + 1) 
nodes have balance factor 0, but we have not been able to prove this. Actually, 
bounds even better than (8) can be derived by using larger closed sets, but there is 
little point in doing so until we can relate such bounds to height-balanced trees. 

5. Random Binary Search Trees 

A random binary tree of n internal nodes constructed by the usual search and 
insertion procedure ([4], page 424) can in the worst case have height n, but such cases 
rarely arise. In general, the tree would be fairly well balanced. We can determine how 
out of balance an n-node random binary search tree T is by computing the 
distribution of the weight balance factors of its internal nodes. 

Let ~ be given, 0 < ~ < 1/2. Let a, be the number of internal nodes in Twhose weight 
balance factor is in the range [e, 1 - el. Since T is random, all permutations of the 
integers 1 through n are equally likely as the order of the elements inserted in T, so 
that for n > 1 

na,= ~ (ai_ 1 + a , _ i ) +  [(1 - c~)(n + 1)J - [~(n+ 1)]+ 1. (9) 
i=1 
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We get this expression by observing that, if the root  of T is regarded as an integer i 
lying between 1 and n, then the weight balance factor of  i is in the required range if 

[(1 - a)(n + 1)J_> i_> [a (n+  1)l. 
Note  that  a o = 0. 

F r o m  (9)7 for n > 1 

(n+ l)a,+1-(n+ 2)a, 

= [(n + 2) (1 - a)j - [(n + 2) ~l - L(n + 1) (1 - a)J + [(n + 1) ~l.  

Let  RHS represent  the right hand  side of (10). N o w  suppose 

r( .  + 2) al  = r( .  + 1) + 1. 
Then we can write 

( n + 2 ) a = k + l + e ,  

(rtq- 1) ~ = k q - 8  2 

for some nonnegat ive  integer k, and 0 < e~, e2 -< 1. So 

(n + 2)(1 - a ) = ( n + 2 ) - ( k  + 1 +el)=(n-k+ 1 ) - e l  

( n +  1)(1 - a) = (n - k  + 1 ) - e2  

[(n + 2)(1 - a)J = [(n + 1)(1 - a)J = n - k. 

and 

i,e.~ 

Thus RHS= - 1 .  Similarly, when 

[(n + 2) ~l = F(n + 1) ~l 

then RHS= +1.  Since ~ <  1/2, for n > l ,  

[(n + 2) a] > [(n + l ) ~] implies [ ( n + l ) ~ ] = [ n c ~ ] .  

Moreover ,  when a = 1/2, 

[(n + 2) ~] > [(n + l) a] iff [-(n + l) a] = [n ~]. 

I t  follows from above  that  f o r ,  = 1/2, we have the recurrence relation 

(n+  1 ) a , , + l - 2 a , - ( n + l ) a , _  1 = 0  

for n > 2, with a 0 = 0, al = 1. Using generat ing functions and putt ing 

we have 

so that  

H,  = 

H(z)= ~ a,,z" 
n=0 

2 1 
H + - -  

1 - z  1 - z :  

21n(1 + z ) - z  
H -  

(1 - z )  2 

(10) 
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This gives 

which, for large n yields 

n - 1  n - k  
a . = 2  Z ~ - ~ ( - 1 )  k - n  

k = O  

a...~ (2 In 2 - 1 ) ( n +  1) ~ 0.386(n + 1). (11) 

It is easy to show that in a random binary search tree a third of all the internal nodes 
have only leaves as sons. So (11) indicates that practically all the nodes with weight- 
balance factor exactly 1/2 are at the bottommost levels of the tree. 

To get the desired distribution of the weight-balance factors, it is enough to solve (10) 
for rational values of a. Let 

~=p/q, 0 < ~ <  I/2, 

where p and q are positive integers, in (1()}. RHS= - 1  if 

n+ I = [ k q  p] 

where k is any positive integer, and RHS = + 1 otherwise. So 

(n+l)a.+, z"+l-  ~ (n+2)a .  z "+ l=  Z z " + ' - 2  zLkq/pJ" 
n = l  n = l  n = l  k = l  

Therefore 
2 1 ~ z Jk-1 

H ' -  H - - -  2 Z ( l _ z q ) ( l _ z )  1 - z  (1 - z )  2 k=l 
where 

Jk = [k q/pj for 1 _< k_< p. 

For large n, we finally end up with 

a. ~ 1 - 2  
n + l  k = l  

Table 1 gives the values of 

oo 

2 1 
,=o (iq+Jk)(iq+Jk + 1)" 

A (1/2) = 2 In 2 - 1 e = 1/2 

A (~) = ( lim A (x) - lim A (x) a < 1/2 
x ~ c l -  x ~  + 

for different e. A (cO is the expected percentage of nodes with weight-balance factor in 
the range [~, 1 -  c~], and A (c0 is the expected percentage of nodes with weight- 
balance factor exactly ~ or 1 - cc  Using generating function techniques as above, 
we get 

A ( ~ ) = 4  
X = ,  

~=~ (iq--1)iq(iq+l) 

and 

a n A (a) = tim - -  
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where ~ = p/q ~ 1/2, and  p and q are relat ively prime. The  interest ing po in t  to observe 
is the very j e rky  manner  in which A (c~) changes with a. In  fact, whenever  ~ crosses a 
fraction with a small  integer denomina to r  like 1/3 or  1/4, A (a) changes by  a 
relat ively large amount .  I t  turns out  that  A (~) is d iscont inuous  for ra t iona l  values of 

and  cont inuous  for i r ra t iona l  values of a (see [2]). We  also note  that  a lmost  72~o of 

the in ternal  nodes have weight -ba lance  factors lying between 1 - V 2 / 2  and 1//2/2, 
which is a ra ther  high percentage.  

Table 1 

A (~) A (c~) 

0 =0.00000 
1/60=0.01667 
1/30=0.03333 
1/20=0.05000 
1/15=0.06667 
1/12=0.08333 
1/10=0.10000 
7/60=0.11667 
2/15=0.13333 
3/20=0.15000 
1/6 =0.16667 

11/60=0.18333 
1/5 =0.20000 

13/60=0.21667 
7/30=0.23333 
1/4 =0.25000 
4/15 =0.26667 

17/60=0.28333 
3/10=0.30000 

19/60=0.31667 
1/3 =0.33333 
7/20=0.35000 

11/30=0.36667 
23/60=0.38333 
2/5 =0.40000 
5/12=0.41667 

13/30=0.43333 
9/20=0.45000 
7/15=0.46667 

29/60=0.48333 
1/2 =0.50000 

1.00000 
0.99910 
0.99643 
0.99206 
0.98605 
0.97845 
0.96931 
0.95490 
0.94203 
0.92389 
0.91831 
0.88865 
0.88473 
0.84026 
0.82884 
0.82512 
0.74265 
0.73435 
0.71697 
0.70589 
0.70322 
0.50353 
0.49461 
0.48170 
0.47643 
0.43315 
0.41343 
0.40302 
0.39438 
0.38814 
0.38630 

0.00000 
0.00002 
0.00018 
0.00060 
0.00143 
0.00280 
0.00485 
0.00002 
0.00143 
0.00060 
0.02281 
0.00002 
0.03984 
0.00002 
O.OOO18 
0.07944 
0.00143 
0.00002 
0.00485 
0.00002 
0.19722 
0.00060 
0.00018 
O.O0OO2 
0.03984 
0.O028O 
0.00018 
0.00060 
0.00143 
0.00002 
0.38630 

The expected weight -ba lance  factor of an internal  node  is a round  0.366, if we 
consider  all nodes as having weight -ba lance  factors between 0 and 1/2, while a lower 

bound  on the cor respond ing  pa rame te r  for WB [~] trees for ~ = 1 - 1//2/2 is, from (7), 

0.533 • 0.5 + 0.054 x 0.4 + 0.166 • 0.333 + 0.247 x 0.293 = 0.416. 

This reaffirms the fact tha t  r a n d o m  b inary  search trees are quite well ba lanced  on the 
average.  
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The height-balance factor of a node in a binary tree, which is the difference in height 
between the right and left subtrees of the node, can take on any integral value, 
positive, negative or zero. It would be of great interest to determine the distribution 
of the height-balance factors of the internal nodes in a random binary search tree, 
but the problem seems very hard. It is possible, however, to get a reasonable lower 
bound on the fraction of nodes that are roots of height-balanced subtrees. 

Let Tbe a random n-node binary search tree, and let b, be the number of nodes in T 
such that the subtree of T rooted at the node is height-balanced. To get a lower 
bound on b,, we only consider subtrees of seven or fewer nodes. In that case, for n >_ 8 

1 b,=-- ~ (bi_l +b,_i) 
n i=1 

o r  

so that 

n+2 
bn+l-  b~, for n_>8, 

n + t  

n + l  bn=~-b8, for n>_9, 

and b s has to be computed directly. 

All height-balanced trees with seven or fewer internal nodes are shown in Fig. 9 
(leaves are omitted, and symmetrical variants are not shown). We have 

bo=O 

b l = l  

b 2 = 2 

2 1 7 
b 3 = - - x 2 + - - x 3 = - -  

3 3 3 

1 7 1 19 
b4.=--x--+--x4=-- 

2 3 2 16 

2192(2  31_), 56 
b5 5 5 15 = - - x ~ - + ~ x  x3+ x5 + - - x s = - -  

1 
b6 =~- 

2 
b7 ~ m  

7 

56 1 ( I 9 ~  1 ( 2  1 ) 3 7 7  
x - - + - -  1 3 90 15 3 + 6 - )  +3- x 4 + - - x 6 -  

, 56,2(  4 )XT+ XS+ 1513 377+7 ~ + ~ j +  ~ x4+ x x 
90 ] 7 \9 315 
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�9 s A + + ,  /? 

Fig. 9 

Finally, 

Thus 

2 /" 7 19 56 377 1513"~ 3343 
bs=~- ~1 + 2 + 3 - + 6 - + ~ - + ~ - +  3 ~ - ) -  630" 

b~ 
- - ~ 0 . 5 9 0 .  
n + l  

Hence at least 59% of all internal nodes are roots of height-balanced subtrees. Better 
lower bounds can be obtained by considering larger height-balanced subtrees, but 
the computation becomes laborious. 

6. Conclusions 

The major import of sections 2 and 3 of this paper is a negative one, namely that 
transition analysis as it is currently formulated is unlikely to lead to any further 
insights into the nature and properties of the insertion process in height-balanced 
and weight-balanced trees. Nor is transition analysis likely to be useful in the study 
of deletion. A new analytical technique is necessary. 

In the course of our investigations two questions remained unanswered, and they 
deserve further investigation. First, weak balancing rules gave good lower bounds 
for 13', in section 4, but what implication, if any, does this have on lower bounds for 
B,? Since it is easy to get even better lower bounds on B', by just doing a more 
elaborate transition analysis with a larger closed set, the discovery of a correlation 
between the two lower bounds would be important. The second problem concerns 
the distribution of height-balance factors of internal nodes in random binary search 
trees. Is there a "top-down" method for getting this distribution, similar to the 
method used for weight-balanced trees in section 5 ? 
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