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Industrial summary 

After  edge-rol l ing (heavy wid th - r educ t ion ) ,  t he  cross-sect ion of  a con t inuous ly -cas t  
steel slab may  be non- rec tangu la r ,  whereas  wha t  is desired is tha t  it shou ld  be  exac t ly  
rec tangular .  The  d e f o r m e d  shape resul ts  in an increased n u m b e r  of  heavy wid th-  and 
th i ckness - r educ t ions  having to be imposed  on  the  slab. Since edge-roll ing is clearly a 
th ree -d imens iona l  fo rming  process,  use of p lane-s t ra in  analysis  would  be insuff ic ient :  
a th ree -d imens iona l  f in i t e -e lement  f o r m u l a t i on ,  based on  elas t ic--plast ic  mater ia l  behav-  
iour,  has t he r e fo re  been  developed.  This  th ree -d imens iona l  f o r m u l a t i o n  has been  incor- 
po ra t ed  in to  the  exis t ing special purpose  FEM p r o g r a m m e  DIEKA,  deve loped  at T w e n t e  
Univers i ty  of T e c h n o l o g y  by  one  o f  the  p resen t  au thors .  The  fo rmer  two-d imens iona l  
p r o g r a m m e  D I E K A  has a l ready been  successful ly  appl ied to p lane-s t ra in  processes  such 
as the  cold rol l ing o f  s t r ip-mater ia l ,  and ax i - symmet r ic  processes  such as wire drawing.  

Using the  ex t ended  th ree -d imens iona l  p rog ramme ,  ca lcu la t ions  have been  made  in 
o rde r  to  invest igate  the  in f luence  of  roller-radii  off the  resu l t ing  cross-sect ion of  the  slab 
a f te r  a w id th  r educ t ion .  E x p e r i m e n t s  for  ver i f ica t ion  and  small-scale s imu la t i on  of  the  
real p r o d u c t i o n  process  have been  carried ou t  using plas t ic ine  as a m o d e l  mater ia l .  

Notat ion 

aii = a l l  q a22 + a33 
Ob i 

bi, j - Oxj 
[B] 

dij 
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F 
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[K] 

L k 

(Einstein convention, subscripts only) 

(partial derivative) 

matrix of  derivatives of  nodal interpolation 
functions 
rate of deformation tensor 
Young's modulus 
body-force vector per unit volume 
nodal-points load vector of complete  body 
shear modulus 
stiffness matrix of  complete body 
interpolation function associated with the kth 
nodal point  of an element 
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Basic equations 

number of  nodes per element 
natural coordinates of isoparametric elements 
deviatoric-stress tensor 
time 
force vector on body surface 
global-coordinates vector 
displacement vector 
velocity vector 
work, power 
variational operator 
Kronecker's delta; i=j: 6ij  = 1, i=/=j: 5i j  = 0 
increment 
equivalent plastic-strain 
coefficient of  sliding friction 
Poisson's ratio 
stress component  
yield stress 
stress tensor 
equivalent, Von Mises stress 
vorticity tensor 

(material rate of change) 

(Jaumann rate of change) 

A forming process can be described in terms of  the applied stresses, strains 
and strain-rates and the (current) geometry of  the workpiece. Once the 
stresses are known, the forces that  act on the workpiece/tool can be cal- 
culated, together with the power needed to carry out the forming process. 
The stresses have to satisfy the mechanical equilibrium 

Oij,j + f i  = 0 (1) 

where oij , j  stands for the divergence of the symmetric stress tensor and 
vector f i  contains the body-forces per unit volume. 

The rates of deformation can be obtained by decomposing the partial 
derivatives of the velocity vector into a symmetric and an asymmetric part 

Vi,j = d o + coij 

d i j  = 1/2(vi, j + vj, i) (2) 

wi j  = ½(v i , j  - vj, i) 

where tensor di j  is known as the rate of deformation tensor, and o~g (not 
contributing to the deformation) is called the vorticity tensor. 
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The equa t ions  tha t  def ine the  relat ionships be tween  stresses and strains 
are called cons t i tu t ive  equat ions:  in the  present  case, as will be seen later, 
these appear  to  be const i tu t ive  rate  equat ions.  First ly,  the  condi t ions  tha t  
must  be satisfied in o rde r  to  achieve plastic d e f o r m a t i o n  have to  be specified. 
Assuming isotropic  mater ia l  behaviour ,  the  Von Mises yield cr i ter ion [1] 
can be applied. Using the  fol lowing no ta t i on  for  the  deviator ic  stress tensor  

1 
8ij = Oij - - ~  Okk6ij  (3) 

the  cr i ter ion states t ha t  plastic de fo rma t ion  occurs  if 

SijSij = 2k 2 (4) 

in which k = av /V /3 ,  where  Ov represents  the  cur ren t  yield stress in a tensile 
test .  Equa t ion  (4) is o f t en  wr i t t en  as 

2 
- - 9 2  = 2k2 (5) 
3 

where  ff is k n o w n  as the  equivalent  Von  Mises stress. 
According to  the  results o f  exper iment ,  the  yield stress is assumed to be 

a func t ion  of  the  equivalent  plastic strain (~P), the s train-hardening param- 
e ter  tha t  takes into accoun t  the  p las t ic -deformat ion  h is tory  of a material  
particle.  Hence  (in plastic de fo rma t ion )  

= o(EP) (6) 

By decompos ing  the  rate  o f  d e f o r m a t i o n  tensor  into an elastic and a plastic 
part  according to 

e 
dij  = dij  + dP (7)  

the  equivalent  plastic strain can be expressed in dp. as 

t 2 

0 

At t = 0 the material  is, according to eqn. (8), free o f  plastic strain and is 
called 'dead soft ' .  

The  const i tu t ive  equat ions  applicable in the  elastic region consist  of  a 
modi f ied  fo rmula t ion  o f  Hooke ' s  law [2 ] ,  which for  small elastic strains 
can be expressed as [3, 4[ 
~7 e 

°ij  = Ei jk ldk l  (9) 
v 

where  aij is the  J aumann  rate o f  change o f  the  stress tensor  and 

Eijkl  - 2(1 + v) 6ikSj l  + 6il6jk + 1 - - 2 v  6Li6hl (10)  
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The relationship between the plastic part of the rate of deformation ten- 
sor and the deviatoric stress tensor follows from the Drucker postulation [5] 

dP.u = ?tsij  (11) 

By using this relationship, the Von Mises yield condition as given earlier, 
and eqns. (5) and (7), the following elastic--plastic constitutive rate equa- 
tions can be derived [4, 6] 
V 
oij = Dijkldkl 

with 

Dijkl = Eijkl - (3G2 sijSkl)t(G 

(12) 

+ 3-c/-~ / (13) 

Note: these equations describe the behaviour of an isotropic material under 
isothermal conditions. 

Finite-element formulation 

The previously described equations have to be suitably elaborated to be 
solved with the finite-element method: the solution will, in general, be an 
approximation. Starting from mechanical equilibrium, eqn. (1) will be 

(oij,j + f i )SuidV = 0 V 6 vi (14) 
V 

This formulation is known as the weak formulation of  the equilibrium. The 
vector ~ ,  containing the components 8vi, is called the virtual velocity 
vector. It is possible to lower the order of the highest derivative of oij in 
eqn. (14). To achieve this, the Gauss divergence theorem can be applied 

5W = f oi jgdijdV f f i6v idV - f Ti~vidS=O VSVi (15) 
V V S 

which is known as the equation of the virtual power. Ti are components  of 
the stress vector, acting on the surface part dS of the material surface S, 
bounding the volume V. Equation (15) holds for every type of material. 

Elastic--plastic material behaviour is described using eqn. (12). Under 
the given definition of the Jaumann rate of change, this equation results in 

di j = Di jk ldk l  + CdikOkj + COjkOik (16) 

Note that  this expression for dij (the material rate of change) cannot be 
substituted directly into the equation for the virtual power: it is necessary 
to include also the material rate of change of 5W in eqn. (15). Straight- 
forward manipulation and substitution of the expression of dij given by eqn. 
(16) leads to [7] 



5 W = f (DijkldklSdij - 2okjdikSdij  + oijVk,j6Vk, i + oij6dijvk,k) d V  
v 

- f ( F i 6 v i  + Fi6ViVk ,k )dV-  f (* iSv i  + T i6v idS  ) d S = O  
v s d S /  
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(17) 

V6V,  

where  dS/dS deno tes  the specific change o f  the ou te r  surface. This equa t ion  
can be regarded as the governing equa t ion  to be solved for  the  i n d e p e n d e n t  
field variables; in the case of  the  FEM programme DIEKA these are velocities.  

In the  f in i te -e lement  fo rmula t ion ,  the  vo lume of  the  mater ia l  subjected 
to d e f o r m a t i o n  is divided into parts,  in this case into three-d imensional  
e lements .  In the  FEM prog ramme  DIEKA these are h ex ah ed ro n  e lements  
with 8 or 20 nodes ,  as shown in Fig. 1. These  e lements  can be charac ter ized  
by  the  f a c t  tha t  the  shape (global coordinates) ,  or geome t ry ,  is descr ibed 
in the  same way as the  i ndependen t  field variables (velocities) 

N 
x i = ~ Lk(r,s , t )x~ 

h=l  
(i = 1, 2, 3) 

(18) 
N N 

v i= ~ Lk(r,s,t)v~ and 5v i= ~ Lk(r,s, t)Sv~ 
k=l  k=l  

These  e lements  are the re fo re  called isoparametr ic  [8 ] .  L k are in te rpo la t ion  
func t ions ,  the  values of  which depend  on the  natural ,  intrinsic coord ina tes  
r,ks and t [9 ] .  N is equal  to  the  n u m b e r  of  nodes  per  e lement  (8 or 20). 
x i and v~ are the  nodal -poin t  global coord ina tes  and velocities respect ively  
(superscripts  re fer  to noda l -po in t  numbers) .  

8 8 19 ,7 

5 ~  20 
7 S 15 

. . Z ~ I  
9 2 

X~...../ y 
Fig. 1. Three-dimensional hexahedron elements: (a) bi-linear element; (b) quadratic 
element. 
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The partial derivatives of  the global velocities follow from eqn. (18) 

N OL k 
k h ~ (19) vi, j = ~ L , j ( r , s , t )v  i with L j = 

k =1 ~xj  

This notat ion for vi, j allows expression of the rate of deformation tensor 
(dij) in nodal-point velocities. 

After arranging the partial derivatives of the interpolation functions into 
the so-called B-matrix, the following relationship between d (vector con- 
taining the six independent components  of the symmetric tensor dij) and 
re (vector containing the nodal-point velocities) is obtained 

d = [g] "re (20) 

A similar expression can be derived to express the vorticity tensor (zij in 
the nodai-point velocities. 

Starting from a known state, it is possible to substitute eqns. (18), (19) 
and (20) into eqn. (17). The (weaker) condition that  the resulting expres- 
sion is equal to zero with respect to all possible virtual nodal velocities 
5v a is then applied. The boundary conditions are enforced to find the 
following set of linear equations 

[K]-v  : t  ) (21) 

The matrix [K] is called the stiffness matrix; the vector v contains all 
degrees of  freedom of the system (nodal-point velocities). The vector/5 is 
called the load-rate vector. The completion of  eqn. (21) will not  be dis- 
cussed in detail, as it is the same as the usual finite-element discretization 
in linear problems [9, 10].  It should be noted just that  integration of the 
integrals in eqn. (17) is performed numerically [8, 9]. 

From the solution of  eqn. (21), the nodal-point velocities, (v~), will 
result. If these are assumed to persist for a time increment At, it is possible 
to calculate approximately the change of the stress-tensor components  
in the integration points from eqns. (16) and (18), by 

Aoi  j = A t (Di jk ldk l  + COikOkj + WjkOik ) (= ~i jA t )  (22) 

It can be noted from eqn. (13) that  the change of the stress tensor, as 
shown by eqn. (22), depends implicitiy on the current stress-state. 

In the case of  an Updated Lagrangian approach [6],  the nodal points 
are coupled with the material points. In this case the new stresses in the 
integration points are found by adding Aoi j  (from eqn. 22) to the corre- 
sponding stress components  just before the time increment. If an Eulerian 
reference frame is designated, the nodal points are not coupled with specific 
material particles throughout  the simulation process: the material flows 
through the elements. Hence it will be necessary to alter eqn. (22) in order 
to find the new stresses in integration points of the fixed reference mesh. 
The incremental change of the stress tensor is then given by the following 
approximation 
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A o i j  = (~ij  - VlUii,l) A t  (23) 

so that  instead of  the material rate of-~hange, the time derivative ( ~ / ~ t )  is 
used to calculate the stress changes. The algorithm to calculate oij, l will be 
discussed in detail later. 

A Lagrangian approach is applicable to transient problems, whereas an 
Eulerian formulation is often used in steady-state problems. A combination 
of these two approaches consists of coupling the nodal-point displacements 
to some extent  to the displacements of  the material points that  coincide 
with the nodal points just before a time increment (see Fig. 2). This com- 
bined Eulerian--Updated Lagrangian finite-element formulation can be 
applied to steady-state, large-deformation processes where not all material 
surface-movements are imposed by the tool geometry or symmetry con- 
ditions. Often, an Updated Lagrangian approach is not suitable because 
of the large number of elements that  have to be used to find the steady- 
state solution of the forming process. Further, it takes considerable effort 
to adapt the continuously changing boundary conditions. A purely Eulerian 
formulation cannot take into account a free-surface motion since the ref- 
erence mesh is fixed in space. The combined Euler ian-Updated Lagrangian 
finite-element formulation is therefore applied to the edge-rolling process. 

/ 
J 

t t~afer ia l  and nodal 
oint af t 
aferiaL disptacement 

in At 
/ ONodal poinf at t + A t  \ \ \ \ \ \ \  

Fig. 2. Uncoupled material and nodal-point displacements. 

There are several options for altering the positions of the nodal points 
in actual computations with the three-dimensional sub-frame of  the FEM 
programme DIEKA. Once these new positions are known, the programme 
can calculate the new stresses and strains in the integration points (their 
positions are related to the element shape and the integration equation 
[8, 11] ), after a time increment At. 

Some of the options in altering the nodal-point coordinates are outlined 
below. 

(i) One coordinate remains unchanged. The programme user can apply 
this useful option to the coordinate in the dominating velocity direction. 
See Fig. 3a. 
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• Material and nodal points 
at t 

, o Material points at t+Z~t 
, Z o New position of surface 
' ~ point K 

~ "  m Materia[ and nodat points 
~ at t 

~ [] Maferiat points at t + At 
~ o New position of surface 

point K 

',K 

Fig. 3. Two op t ions  to alter the  pos i t ion  of  a surface node:  (a) one  coord ina te  remains  
unchanged ;  (b) new pos i t ion  drawn f rom the  in tersec t ion  K ~ K  2 and the  locally approx-  
imated surface in K. 

(ii) An external  surface (or an internal surface that  forms the boundary  
between two different  materials), can be locally approximated,  using the 
position of three points. The intersection of the surface drawn from the 
material displacement after a t ime-increment At, and for a given direction, 
will show the new position of  the nodal (surface) point. In Fig. 3b the 
points K~ and K2 are used to indicate the direction of  displacement. In- 
stead of using two points, the displacement direction can be determined 
by a vector normal to the surface at t = 0. 

Once the position of  every nodal point  connected to an element is known, 
the new locations of  the integration points are also determined (the intrinsic, 
natural coordinates remain unchanged, as they  depend only on the num- 
erical-integration equation used). 

The algorithm applied to calculate the new stresses in the integration 
points is outlined below. To illustrate the algorithm, a two-dimensional,  
quadrilateral element with four  nodes and one integration point  is shown 
in Fig. 4. A stress-tensor componen t  ol in the material point  that  coincides 
with the new integration point  after a t ime increment  A t follows from 

~t  

1 0 f O = O m + ° m  d t  (24) 
t=O 
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where the stress component  at t = 0 in the material point (°m) can be 
written as (Taylor-series in the integration point) 

0 
Om = ~ + o,F~ul + O(Au)2 (25) 

o denotes the value of the stress in the integration point at t = 0 and A u 
shows the difference in location between the integration point and the 
material point at t = 0 (see Fig. 4). 

E 
l k  

vk.AP'\. 

5 u k ~ - - - - - - . . ~  

@Noda[ pointaf t=O 
• Dummy node af t=O 
0 New position a f t  + &t 

t1---1:3 Material disptacemenf 

Similarly for 
integration point 
(small symbots) 

Fig. 4. Si tuat ions  of  an in tegrat ion point  in a quadri lateral  e lement .  

The second term on the right-hand side of eqn. (25) can be computed 
by defining an additional stress-field (a ' )  using the stress values in N dummy 
nodes (the same number of nodes as in the element-type used). Firstly, the 
stress values in the relevant dummy points have to be specified. The stress 
values in these nodes (a 'k) depend on the values in the actual nodal points 
(a  k) and the distance between the dummy nodes and actual nodal points. 

A stress-tensor component  in an actual nodal point is computed as an 
average taken from all elements coupled to the nodal point. For each ele- 
ment,  the nodal-point value is calculated from the stress values in the in- 
tegration points of the elements by extrapolation, and by using a least- 
squares algorithm [12] for the case of 27 Gaussian integration points. From 
Au k (see Fig. 4), showing the distance between the dummy nodes and actual 
nodal points resulting from the solution vector v (eqn. 21), the change in 
the intrinsic coordinates (dr n, ds n, d t  n )  of nodal point n can be obtained. 
The intrinsic coordinates of dummy node n are then written as (r  n + dr  n,  . .). 
The stresses in the dummy nodes can now be expressed as 

N 
on Lk k, o, = ~ (r n + drn, s n + dsn, t n + d t n )  °o n = l , 2 , . . N  (26) 

k=l 

Hence the additional stress-field becomes 
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N 
O,(r,s,t ) ~ Lk o k  = (r,s,t)a, (27) 

k=l 

Using eqn. (27) the second term in the Taylor-seres (eqn. 25) can, after some 
manipulation, be written as 

N 
O iAu l ~  ~ Lk(r,s,t )(ok, _°k)  (28) 

k=l 

where the intrinsic, natural coordinates of the integration point are used. 
The new stress in the integration point can now be calculated (from eqns. 

24, 25 and 26) as 

N At 
=° + ~ Lk(r,s,t) (ok, _ °k) + f ~mdt (29) 

k=l t=O 

The incremental change in the stress given by the integral is calculated using 
eqns. (13), (20), (21) and (22). Thus, the displacement after a time incre- 
ment  (v .A t  in Fig. 4) is assumed to be the same for the material point flow- 
ing towards the integration point, as for the integration point itself! 

Application to edge-rolling 

At the rougher in a hot-strip mill, slabs of steel (temperature -1200°C)  
are rolled not only by horizontal flat-rolls but also by vertical edge-rolls. 
The purpose of width reduction by edge rolling is twofold: the removal of 
the oxide-skin from the slab surface and the forming of bulk into a par- 
ticular width to secure the desired final strip-width with minimum mill 
margin. One of  the important  technical problems concerning edge-rolling 
is controlling the cross-sectional shape of the material formed: after edge- 
rolling this shape may be non-rectangular. Sometimes, because of its sim- 
ilarity in appearance, this deformed shape is termed 'dog-bone'. 

To develop an optimal rolling scheme it is necessary to determine the 
dependency of slab cross-sections on the various process parameters (rolling- 
speed, reduction, roll-sizes, etc.). In this paper the influence of roll-radii 
on the cross-sectional slab shape in edge-rolling is examined (see Fig. 5). 
Investigations have been carried out in the past by others, either experi- 
mental [13, 14] or numerical [15, 16] : the latter, however, are based on 
rigid--plastic material behaviour. 

To examine the influence of roll-radii, two edge-rolling processes have 
been analyzed with the FEM programme DIEKA, the processes differing 
only in the roll-radii: calculations have been carried out for a small roll- 
radius (R = 50 mm) and a large roll-radius (R = 700 mm). Plasticine is 
used as the forming material, both in the analyses and in the experiments: 
this material is used frequently to simulate the actual hot-rolling process 
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in scaled-down experiments at room temperature.  The process conditions 
are outlined in Table 1; data of  the forming material are given in Table 2. 

Starting from the symmetrical nature of  the forming process (symmetry 
around the slab-centre along the slab-width and the slab-thickness), it is 
possible to minimize calculational effort:  only one quarter of  the slab is 
discretized into elements and appropriate boundary conditions are applied 
to simulate the actual symmetry.  The elements used are 20-node hexa- 
hedron elements (see Fig. 1), with 14-point numerical integration as given 
by Irons [11] .  

J 

" - . . .  Rot[ing direction 

Fig. 5. Schemat i c  d iagram of  t he  edge-roll ing process.  

T A B L E  1 

Numerica l  and  e x p e r i m e n t a l  process  cond i t ions  for single-pass edge-roll ing 

Width of  slab B 0 ( m m )  140 
Thickness  of  slab H 0 ( m m )  22.5 
Edging dra f t  ( m m )  8 
Roll-radii  R ( m m )  50 or 700  
Roll ing t e m p e r a t u r e  (°C) 20 
Rol led mater ia l  Plast ic ine 
Lubr i ca t i on  None  

T A B L E  2 

Mechanica l  p roper t i e s  of  plas t ic ine (at  20°C) 

Colour  Yel low/green  
Young ' s  modu lus  E ( N / m m  2) 10 
Poisson ' s  rat io v 0.4 
C o n s t a n t  yield stress assumed a v ( N / m m : )  0 .12 
Coef f ic ien t  of sl iding f r ic t ion  at the  
p las t ic ine / ro l l  in terface,  u 1.2 
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In the analysis the combined Eulerian--Lagrangian finite-element formula- 
t ion is used: the positions of  the nodal points at the upper  free mesh-surface 
are adapted cont inuously in the thickness-direction, and nodal points on 
the side of  the slab (after the roll-gap exit) are connected to the material dis- 
placement  in the transverse direction. In the initial finite-element mesh 
discretization, the nodal points at the upper  surface are posit ioned at half 
the slab-thickness (Z = 11.25). Since friction along the slab/roll interface is 
large, sticking is assumed ( therefore  the roll surface and nodes show no 
relative mot ion  along this surface). The numerical results are first discussed, 
and are afterwards compared with the results of  the experiments.  

The finite-element mesh for the case of  R = 50 mm is shown in Fig. 6. 
The total number  of  elements is 32 and the mesh is refined in the contact  
zone because of the deformat ion expected near to the slab-edges. Most of  
the following illustrations are cross-sections in the transverse direction at 
Z = 0. The mean total displacement in the dominating velocity direction 
has been 34 mm (0.4 mm/increment) ,  i.e., about  1.5 times the contact-arc 
length. 

i Z 

Y 

Fig. 6. FEM mesh for the case of R = 50 mm (initial geometry). 

The location of  the plastically deforming region in the slab can be drawn 
from the distribution of  the Von Mises stress (see Fig. 7). At a yield stress 
of 0.12 N/mm 2, plastic deformat ion already occurs before the gap entrance. 
Moreover, plastic deformat ion spreads from the slab-edge (at entry) ,  over 
about  a quarter  of  the slab-width (towards the roll-gap exit). 



345  

¥ 

Tofat dispLacemenf 

iX 

~Z 

Fig.  7. D i s i r i b u t i o n  o f  t h e  V o n  Mises  s t ress  in  t h e  s lab  at  Z = 0. C o n t o u r  va lues  ( N / m m 2 ) :  

a = 0 . 0 4 0 ; b  = 0 . 0 6 7 ; c = 0 . 0 9 3 ; d = 0 . 1 2 0 .  

The transverse stress (a11) as drawn in Fig. 8, shows a minimum negative 
value (pressure), in the contact  zone. A small negative level at the slab 
centre (X = 0) combined with t h e  roll pressure provides the necessary 
mechanical equilibrium in the transverse direction. 

× 

"~----~ )Z 
Y 

Fig.  8. T r a n s v e r s e  s t r e s s  in t he  s l ab  a t  Z = 0. C o n t o u r  v a l u e  ( N / m m 2 ) :  a = - 0 . 5 1 4 ;  b = 

- - 0 . 3 9 0 ;  c = - - 0 . 2 7 5 ; d  = - - 0 . 1 5 5 ;  e = - - 0 . 0 3 6 .  



E - . I  
E 

Z 

- . 2  

cII 

~ - . 3  

~5 - .4 

The radial stress normal  to the  roll/slab interface at Z = 0 and the  shear 
stress in the interface are shown in Figs. 9 and 10. The  m i n i m u m  value in 
the  pressure curve is found  half-way along the  dis tance be tween  the  gap- 
en t ry  and the  gap-exit.  The  levels at en t ry  and exit differ  f rom zero because 
o f  the  a lgor i thm applied to ~calculate the  noda l -po in t  stresses (ex t rapo la t ion  
errors), and because o f  discretizing o f  the  material  into elements.  The dis- 
t r ibu t ion  o f  the  shear-stress curve is in agreement  with the  assumed sticking- 
condi t ion .  It  can be shown tha t  this curve is qui te  d i f ferent  f rom the  shear- 
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Fig. 9. Radial stress normal to the roll/slab interface at Z = 0. 
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Fig. 10. Shear stress in the rolling direction at the roll/slab interface. 
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stress curve found in the rolling of thin sheet: in the latter case a neutral 
point N is assumed in the roll/sheet interface. From entry towards N the 
rolls are moving faster than the forming material; from N towards exit, 
the rolls are moving more slowly than the material. The friction force 
between the rolls and the forming material must therefore be directed 
towards the neutral point, the direction of the shear stress changing also 
[17]. 

The distribution of the equivalent plastic strain (Fig. 11) shows the 
plastic deformation to be concentrated in the slab edges (as already con- 
cluded from Fig. 7). The distance between zero level a (see Fig. 11) and 
maximum level g is equal to the total displacement in the rolling direction. 

The velocity field (in the rolling direction} is shown in Fig. 12. At the 
down-stream side can be noted an increase from the slab-edge towards 
the slab-centre, whereas the field should be homogeneous in the material 
that has already been rolled. More elements, covering extra down-stream 
material, would be appropriate to simulate the steady-state nature of the 
process. Slab in the up-stream side of the roll-gap is simulated correctly, 
as shown by the uniformly distributed velocity field. 

The distribution of the velocities in the transverse- and thickness-direc- 
tions, in three cross-sections of the slab, are drawn in Fig. 13. From Figs. 
13a and 13b the conclusion can be drawn that the slab material near to 
the centre does not move significantly in either of the two directions; at 
entrance or half-way along the contact-arc. The completion of the dog- 
bone near to the edge of  the slab is clearly visible. 

R 

J 

~X 

¥~ 

Fig. 11. D i s t r i bu t i on  o f  the  equiva lent  plast ic  s t ra in  in the  slab at Z = 0. C o n t o u r  values 
( % ) : a = 0 . 0 ; b =  6 . 3 ; c =  1 2 . 6 ; d =  2 2 . 1 ; e  = 3 1 . 6 ; f = 4 1 . 4 ; g =  50.5. 
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Fig. 12. Ve loc i ty  field in rol l ing d i r ec t i on  at  Z = 0. C o n t o u r  values (%): a = 36.0;  b = 
3 7 . 0 ; c =  3 7 . 7 ; d = 3 8 . 5 ; e  = 3 9 . 0 ; f =  40.0. 

/.~ Scare factor 125 
~ ' ~  ,, 

lCentre Edge 

(a) 

I"~Scate factor 125 

(b) 

i-~ Scale factor 6250 ", 

(c) 

Fig. 13. Veloci t ies  in th ree  cross-sect ions  o f  the  slab dur ing  rol l ing;  (a) at  en t r ance ;  (b)  
hal f -way across the  c o n t a c t  zone ;  (c) a t  the  roll-gap exit .  
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T h e  final shape  of  the  slab cross-sect ion is shown  in Fig. 14. T h e  shaded  
area represen t s  the  FEM mesh  cross-sect ion a t  t he  roll-gap exit .  O t h e r  
quad ran t s  have been  d rawn by  using the  s y m m e t r y  o f  the  process .  The  
dog -bone  peak  is loca ted  a t  11 m m  f r o m  the  side of  the  slab; the  height  
ca lcula ted  is 27 .314  m m  (2 X 13.657) .  

Calcula t ions  have also been  carried ou t  for  the  case of  R = 700 m m  (a 
magn i f i ca t ion  of  the  roll-radius by  a f ac to r  o f  fou r t een) .  The  f in i t e -e lement  
mesh  as shown in Fig. 15 consists  o f  only  10 e lements  because  the  defor-  
m a t i o n  is a ssumed  to  be qui te  h o m o g e n e o u s .  The  c o n t a c t  zone  is descr ibed  
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Fig. 14. Sectional shape of the dog-bone, as calculated. 
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Fig. 15. FEM mesh for the case o f R  = 700 mm (initial geometry). 
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b y  two  e lements .  T h e  d i s t r ibu t ion  o f  the  V o n  Mises stress is shown  in Fig. 
16. T h e  to t a l  d i s p l a c e m e n t  has been  117 m m  (1.3 m m / i n c r e m e n t ) ,  again 
1 .5- t imes  t he  con tac t - a r c  length.  Plastic d e f o r m a t i o n  occurs  be fo re  the  
en t rance ,  and  mate r ia l  is being d e f o r m e d  plast ical ly  over  the  c o m p l e t e  
s lab-width ,  unl ike  the  s i tua t ion  where  R -- 50 m m .  

~R 

\ Ptastic\ ~ I /a / 

"\\\ ~\ 

Y 

T0ta[ displacement 

I 
X 

Fig. 16. Distribution of the Von Mises stress in the slab at Z = 0. Contour values (N/mm2); 
a = 0.093; b = 0.120. 

The  d i s t r ibu t ion  of  velocit ies  in the  t ransverse-  and  th ickness -d i rec t ions  
is d rawn in Fig. 17. The  d o m i n a n c e  o f  the t ransverse  ve loc i ty  (Figs. 17a 
and  17b)  - -  no t  on ly  near  to the  slab-edge bu t  also near  to  the  cen t re  - 
is qui te  obvious .  The  d i rec t ion  of  the  t ransverse  ve loc i ty  reverses in the  
rol l-gap exi t  (Fig. 17c):  a t t e n t i o n  should  be paid  to  the  re la t ively large 
sca le- fac tor  o f  Fig. 17c c o m p a r e d  to  t h a t  o f  Figs. 17a  and  17b.  

The  final cross-sect ion  (Fig. 18) shows no s t r ic t  dog -bone  shape;  the  
edge-rol l ing pass has caused the  slab th ickness  to  increase f r o m  the  cen t re  
t o w a r d s  t he  edge. T h e  m a x i m u m  height  ca lcu la ted  is 24 .092  m m  (2 × 
12 .046) .  

E x p e r i m e n t s  have been  carr ied ou t  to  ver i fy  the  numer ica l  results:  for  
the  case of  R = 50 m m  the  roll ing load  was measured .  The  process  condi-  
t ions  are l isted in Tab le  1. In the  e x p e r i m e n t s  the  length o f  the  slabs was 
equal  to  430 m m ,  being m a d e  rela t ively grea t  c o m p a r e d  wi th  th ickness  and  
wid th ,  in o rde r  to be  able to s imula te  the  s teady-s ta te  na tu re  o f  t he  num-  
e r ica l ly -ana lyzed  processes.  

The  e x p e r i m e n t a l  e q u i p m e n t  for  the  case of  R = 700 m m ,  as deve loped  
b y  the  R o y a l  D u t c h  H o o g o v e n s  G r o u p  B.V., consis ts  o f  t w o  c i rcular  shaped  
segments .  A pendu la r  mill design had  been  chosen  for  pract ica l  reasons:  
the  d imens ions  o f  an ac tual  mill would  be e x t r e m e l y  large if t w o  c o m p l e t e  
rolls were  to  be  used.  T h e  resul t ing e x p e r i m e n t a l  cross-sect ional  shape  
fo r  the  case o f  R = 50 m m  is shown in Fig. 19: the  pos i t ions  o f  the  noda l  
po in t s  on the  u p p e r  sur face  are d rawn in the  same  p lo t  for  c o m p a r i s o n  



--~ Scale factor 200 

ICenfre Edge 

(a) 

351 

] -~Scaie factor 200 
I 

i 

(b) 

--~Sca[e factor 10000 

I 
(c) 

Fig. 17. Veloci t ies  in th ree  cross-sect ions of  the  slab dur ing  rolling. (a) at  en t rance ;  (b)  
half -way across the  c on t ac t  zone ;  (c) at  the  roll-gap exit .  
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Fig. 18. Sec t ional  shape  of  t he  slab a f te r  rolling, as calcula ted.  
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Fig. 19. C o m p a r i s o n  o f  sec t ional  shapes  o b t a i n e d  by  e x p e r i m e n t  w i t h  those  ob t a ined  
by  numer ica l  analysis ,  for  the  case of  R = 50 ram. 
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with the numerical results. In the experiments, the sectional shape for the 
case of R = 700 mm appeared to be quite similar to the numerically ob- 
tained cross-section (see Fig. 18). 

Experimental and numerical results are listed in Table 3. The smaller 
roll-radii (R = 50 mm) produce uneven deformation with a large dog-bone 
peak: to achieve slab-lengthening by edge-rolling, roll-radii of 700 mm are 
preferable therefore to R = 50 mm. However, rolling load and rolling torque, 
(hence also mill load), are greater for the case of R = 700 mm. 

T A B L E  3 

E x p e r i m e n t a l  and  numer i ca l  (in pa ren theses )  resul ts  of  the  single-pass edge-rol l ing process  

Subjec t  R = 50 m m  R = 700 m m  

M a x i m u m  dog-bone  he igh t  27.4 (27 .314 )  23.9 ( 2 4 . 0 9 2 )  
Rol l ing  load (N) 95 (106 )  - -  ( 291 )  
Rol l ing t o r q u e ( N m )  --  (1.4)  --  (11 .8)  

Conclusions 

(1) The combined three-dimensional Eulerian--Updated Lagrangian finite- 
element formulation developed has been successfully applied to the edge- 
rolling process, the numerical results being in reasonable agreement with 
those of  the experiments carried out. 

(2) Both numerical analyses and experiment show small roll-radii (R = 50 
mm) to be less efficient than large roll-radii (R = 700 mm) in effecting 
width-reduction of the plasticine model-material employed. 

(3) The analysis of slab rolling has been demonstrated to be a feasible 
application of the FEM programme DIEKA: developments of the latter in 
the near future concern extensions of the programme to achieve the ability 
to simulate the flattening of the dog-bone. 
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