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Industrial summary

After edge-rolling (heavy width-reduction), the cross-section of a continuously-cast
steel slab may be non-rectangular, whereas what is desired is that it should be exactly
rectangular. The deformed shape results in an increased number of heavy width- and
thickness-reductions having to be imposed on the slab. Since edge-rolling is clearly a
three-dimensional forming process, use of plane-strain analysis would be insufficient:
a three-dimensional finite-element formulation, based on elastic—plastic material behav-
jiour, has therefore been developed. This three-dimensional formulation has been incor-
porated into the existing special purpose FEM programme DIEKA, déveloped at Twente
University of Technology by one of the present authors. The former two-dimensional
programme DIEKA has already been successfully applied to plane-strain processes such
as the cold rolling of strip-material, and axi-symmetric processes such as wire drawing.

Using the extended three-dimensional programme, calculations have been made in
order to investigate the influence of roller-radii on the resulting cross-section of the slab
after a width reduction. Experiments for verification and small-scale simulation of the
real production process have been carried out using plasticine as a model material.

Notation
a;;=a;; ta;, tas (Einstein convention, subscripts only)
bij= % (partial derivative)
0x;
[B] matrix of derivatives of nodal interpolation
functions
d;; rate of deformation tensor
E Young’s modulus
f body-force vector per unit volume
F nodal-points load vector of complete body
G shear modulus
[K] stiffness matrix of complete body
L* interpolation function associated with the kth

nodal point of an element

*Presently at Marc Analysis, Zoetermeer, The Netherlands.
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N number of nodes per element

r,s,t natural coordinates of isoparametric elements
8 deviatoric-stress tensor

t time

T force vector on body surface

X global-coordinates vector

u displacement vector

v velocity vector

w work, power

8 variational operator

& ij Kronecker’s delta; i=j: 8 =1, i#j: 6i;=0
A increment

€P eguivalent plastic-strain

U coefficient of sliding friction
y Poisson’s ratio
o stress component

Oy yield stress

0 stress tensor

g equivalent, Von Mises stress
Wiy vorticity tensor

. oG aG

G=—+y— (material rate of change)

ot ox;

0jj = 0jj =~ WikOkj — Wjk0jr {Jaumann rate of change)
Basic equations

A forming process can be described in terms of the applied stresses, strains
and strain-rates and the (current) geometry of the workpiece. Once the
stresses are known, the forces that act on the workpiece/tool can be cal-
culated, together with the power needed to carry out the forming process.
The stresses have to satisfy the mechanical equilibrium

Oij,j+fi:0 (1)

where o;; ; stands for the divergence of the symmetric stress tensor and
vector f; contains the body-forces per unit volume.

The rates of deformation can be obtained by decomposing the partial
derivatives of the velocity vector into a symmetric and an asymmetric part

Vij = dyj + wjj
dij = Yalvij +vj ;) (2)

wij = Yalv; j — vj i)

where tensor d;; is known as the rate of deformation tensor, and w;; (not
contributing to the deformation) is called the vorticity tensor.
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The equations that define the relationships between stresses and strains
are called constitutive equations: in the present case, as will be seen later,
these appear to be constitutive rate equations. Firstly, the conditions that
must be satisfied in order to achieve plastic deformation have to be specified.
Assuming isotropic material behaviour, the Von Mises yield criterion [1]
can be applied. Using the following notation for the deviatoric stress tensor

1
Sij = 05 T3 Okkdij (3)

the criterion states that plastic deformation occurs if
8j8ij = 2k (4)

in which k = 0,/2/3, where ¢ represents the current yield stress in a tensile
test. Equation (4) is often written as

2
—3—”2 = 2k* (5)

where ¢ is known as the equivalent Von Mises stress.

According to the results of experiment, the yield stress is assumed to be
a function of the equivalent plastic strain (¢P), the strain-hardening param-
eter that takes into account the plastic-deformation history of a material
particle. Hence (in plastic deformation)

0 = 0(eP) (6)

By decomposing the rate of deformation tensor into an elastic and a plastic
part according to

dj=dj; +df (7)

the equivalent plastic strain can be expressed in dl‘-} as

o= ((2qp gr)}

ep = f(—3—d,.j dij) dt (8)
0

At t = 0 the material is, according to eqn. (8), free of plastic strain and is
called ‘dead soft’.

The constitutive equations applicable in the elastic region consist of a
modified formulation of Hooke’s law [2], which for small elastic strains
can be expressed as [3, 4]

v
0;j = Ejjpdp (9)

where g,-j is the Jaumann rate of change of the stress tensor and

2v
Ejjpi = 5140 V)(5ik5jl + &b + o 5ij5k1) (10)
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The relationship between the plastic part of the rate of deformation ten-
sor and the deviatoric stress tensor follows from the Drucker postulation [5]

ds = }\Sij (11)
By using this relationship, the Von Mises yield condition as given earlier,

and eqns. (5) and (7), the following elastic—plastic constitutive rate equa-
tions can be derived [4, 6]

gij = Djjridri (12)

with

Dijk1 = Eijr1 — (3G? Sijskl)s(G P 12 )52% 1 (13)
3 dep

Note: these equations describe the behaviour of an isotropic material under
isothermal conditions.

Finite-element formulation

The previously described equations have to be suitably elaborated to be
solved with the finite-element method: the solution will, in general, be an
approximation. Starting from mechanical equilibrium, eqn. (1) will be

[ (o4 + F)svidV =0 Y 5u; (14)
‘/7

This formulation is known as the weak formulation of the equilibrium. The
vector §v, containing the components sv;, is called the virtual velocity
vector. Tt is possible to lower the order of the highest derivative of o;; in
eqn. (14). To achieve this, the Gauss divergence theorem can be applied

W= [ ogsdydv - [ fisvdV - [ TibudS =0 Vv, (15)
1% 1% S

which is known as the equation of the virtual power. T; are components of
the stress vector, acting on the surface part dS of the material surface S,
bounding the volume V. Equation (15) holds for every type of material.

Elastic—plastic material behaviour is described using eqn. (12). Under
the given definition of the Jaumann rate of change, this equation results in

Gij = Dijridpl + @ik Okj ¥ WjkOik (16)

Note that this expression for ¢;; (the material rate of change) cannot be
substituted directly into the equation for the virtual power: it is necessary
to include also the material rate of change of 8W in eqn. (15). Straight-
forward manipulation and substitution of the expression of ¢;; given by eqn.
(16) leads to [7]
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SW = f(Dijkldkl‘Sdij = 201jdiRddjj + 0jjvg jBUk, i + 0;8djjvp ) AV
v
(17)

: : dd \ o
- f(Fiavl-+F,-5v,~uk,k)dV—f(Tiavi+Tiavi—)dS—0 vy,
14 S ds

where dS/dS denotes the specific change of the outer surface. This equation
can be regarded as the governing equation to be solved for the independent
field variables;in the case of the FEM programme DIEKA these are velocities.

In the finite-element formulation, the volume of the material subjected
to deformation is divided into parts, in this case into three-dimensional
elements. In the FEM programme DIEKA these are hexahedron elements
with 8 or 20 nodes, as shown in Fig. 1. These elements can be characterized
by the fact that the shape (global coordinates}), or geometry, is described
in the same way as the independent field variables (velocities)

N
xi=3) L*(rst)al (i=1,2,3) )
k=1

N N
b= Lk(r,s,t)vﬁe and dv;= 3, L*(r,5,0)8 U?
k=1 k=1

These elements are therefore called isoparametric [8]. L* are interpolation
functions, the values of which depend on the natural, intrinsic coordinates
r, s and t [9]. N is equal to the number of nodes per element (8 or 20).
x; and v; are the nodal-point global coordinates and velocities respectively
(superscripts refer to nodal-point numbers).

19 ]

15

Fig. 1. Three-dimensional hexahedron elements: (a) bi-linear element; (b) quadratic
element.
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The partial derivatives of the global velocities follow from eqn. (18)

N aLk®
z) E(rs by with  Lf=— (19)
=1 X

This notation for v;; allows expression of the rate of deformation tensor
(d;;) in nodal-point velocities.

After arranging the partial derivatives of the interpolation functions into
the so-called B-matrix, the following relationship between d (vector con-
taining the six independent components of the symmetric tensor d;;) and
v (vector containing the nodal-point velocities) is obtained

= [B]-ve (20)

A similar expression can be derived to express the vorticity tensor w;; in
the nodal-point velocities.

Starting from a known state, it is possible to substitute eqns. (18), (19)
and (20) into eqn. (17). The (weaker) condition that the resulting expres-
sion is equal to zero with respect to all possible virtual nodal velocities
§vk is then applied. The boundary conditions are enforced to find the
following set of linear equations

[K]-v=F (21)

The matrix [K] is called the stiffness matrix; the vector v contains all
degrees of freedom of the system (nodal-point velocities). The vector F is
called the load-rate vector. The completion of egn. (21) will not be dis-
cussed in detail, as it is the same as the usual finite-element discretization
in linear problems [9, 10]. It should be noted just that integration of the
integrals in eqn. (17) is performed numerically [8, 9].

From the solution of eqn. (21), the nodal-point velocities, (v ), will
result. If these are assumed to persist for a time increment At, it is p0531b1e
to calculate approximately the change of the stress-tensor components
in the integration points from eqgns. (16) and (18), by

Aoy = At(Djjridrr + WiROpj + Wik0ik) (= 6;At) (22)

It can be noted from eqn. (13) that the change of the stress tensor, as
shown by eqn. (22), depends implicitly on the current stress-state.

In the case of an Updated Lagrangian approach [6], the nodal points
are coupled with the material points. In this case the new stresses in the
integration points are found by adding Ao;; (from eqn. 22) to the corre-
sponding stress components just before the time increment. If an Eulerian
reference frame is designated, the nodal points are not coupled with specific
material particles throughout the simulation process: the material flows
through the elements. Hence it will be necessary to alter eqn. (22) in order
to find the new stresses in integration points of the fixed reference mesh.
The incremental change of the stress tensor is then given by the following
approximation
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Aoj; = (645 — vojj )AL (23)

so that instead of the material rate of €hange, the time derivative (0/0¢) is
used to calculate the stress changes. The algorithm to calculate 0 ; will be
discussed in detail later.

A Lagrangian approach is applicable to transient problems, whereas an
Eulerian formulation is often used in steady-state problems. A combination
of these two approaches consists of coupling the nodal-point displacements
to some extent to the displacements of the material points that coincide
with the nodal points just before a time increment (see Fig. 2). This com-
bined Eulerian—Updated Lagrangian finite-element formulation can be
applied to steady-state, large-deformation processes where not all material
surface-movements are imposed by the tool geometry or symmetry con-
ditions. Often, an Updated Lagrangian approach is not suitable because
of the large number of elements that have to be used to find the steady-
state solution of the forming process. Further, it takes considerable effort
to adapt the continuously changing boundary conditions. A purely Eulerian
formulation cannot take into account a free-surface motion since the ref-
erence mesh is fixed in space. The combined Eulerian—Updated Lagrangian
finite-element formulation is therefore applied to the edge-rolling process.

® Material and nodal

point at t
e—0Material displacement
in At

O Nodal point af t+ At

Fig. 2. Uncoupled material and nodal-point displacements.

There are several options for altering the positions of the nodal points
in actual computations with the three-dimensional sub-frame of the FEM
programme DIEKA. Once these new positions are known, the programme
can calculate the new stresses and strains in the integration points (their
positions are related to the element shape and the integration equation
[8,11]), after a time increment At.

Some of the options in altering the nodal-point coordinates are outlined
below.

(i) One coordinate remains unchanged. The programme user can apply
this useful option to the coordinate in the dominating velocity direction.
See Fig. 3a.
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® Material and nodal points
at t

O Material points at t+At

O New position of surface

point K

® Material and nodal points
at t

O Material points at t+At

\ o New position of surface

\ point K

Fig. 3. Two options to alter the position of a surface node: (a) one coordinate remains
unchanged; (b) new position drawn from the intersection K, K, and the locally approx-
imated surface in K.

(i) An external surface (or an internal surface that forms the boundary
between two different materials), can be locally approximated, using the
position of three points. The intersection of the surface drawn from the
material displacement after a time-increment At, and for a given direction,
will show the new position of the nodal (surface) point. In Fig. 3b the
points K; and K, are used to indicate the direction of displacement. In-
stead of using two points, the displacement direction can be determined
by a vector normal to the surface at ¢t = 0.

Once the position of every nodal point connected to an element is known,
the new locations of the integration points are also determined (the intrinsic,
natural coordinates remain unchanged, as they depend only on the num-
erical-integration equation used).

The algorithm applied to calculate the new stresses in the integration
points is outlined below. To illustrate the algorithm, a two-dimensional,
quadrilateral element with four nodes and one integration point is shown
in Fig. 4. A stress-tensor component & in the material point that coincides
with the new integration point after a time increment At follows from

At
&:8m+f 6 dt (24)
t=0



341

where the stress component at t = 0 in the material point (3m) can be
written as (Taylor-series in the integration point)

m= g+ 8,1Aul + O(Au)? (25)

o denotes the value of the stress in the integration point at £ = 0 and Au
shows the difference in location between the integration point and the
material point at t = 0 (see Fig. 4).

o Qo

® Nodal point at t=0

@ Oummy node at t=0

ONew position at t+ At
@---0OMaterial displacement

Similarly for
integration point
{(small symbols)

Fig. 4. Situations of an integration point in a quadrilateral element.

The second term on the right-hand side of eqn. (25) can be computed
by defining an additional stress-field (¢’) using the stress values in N dummy
nodes (the same number of nodes as in the element-type used). Firstly, the
stress values in the relevant dummy points have to be specified. The stress
values in these nodes (¢'%) depend on the values in the actual nodal points
(o%) and the distance between the dummy nodes and actual nodal points.

A stress-tensor component in an actual nodal point is computed as an
average taken from all elements coupled to the nodal point. For each ele-
ment, the nodal-point value is calculated from the stress values in the in-
tegration points of the elements by extrapolation, and by using a least-
squares algorithm [12] for the case of 27 Gaussian integration points. From
Auk (see Fig. 4), showing the distance between the dummy nodes and actual
nodal points resulting from the solution vector v (eqn. 21), the change in
the intrinsic coordinates (dr, ds”, dt") of nodal point n can be obtained.
The intrinsic coordinates of dummy node n are then written as (r* +drit, . ).
The stresses in the dummy nodes can now be expressed as

N
&' = 3 LEGT + A + dset + S n = 1,2
k=1

,..N (26)

Hence the additional stress-field becomes
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N R
$(rst) =3 Lk(rsndt (27)
k=1

Using eqn. (27) the second term in the Taylor-seres (egn. 25) can, after some
manipulation, be written as

N
Si1au~ 3 LE(rst) (8¢ - &) (28)

k=1

where the intrinsic, natural coordinates of the integration point are used.
The new stress in the integration point can now be calculated (from eqns.
24, 25 and 26) as

N At
b=§+ 3 Lrasn (8 -85+ [ mat (29)
k=1 t=0

The incremental change in the stress given by the integral is calculated using
egns. (13), (20), (21) and (22). Thus, the displacement after a time incre-
ment (v-At in Fig. 4) is assumed to be the same for the material point flow-
ing towards the integration point, as for the integration point itself!

Application to edge-rolling

At the rougher in a hot-strip mill, slabs of steel (temperature ~1200°C)
are rolled not only by horizontal flat-rolls but also by vertical edge-rolls.
The purpose of width reduction by edge rolling is twofold: the removal of
the oxide-skin from the slab surface and the forming of bulk into a par-
ticular width to secure the desired final strip-width with minimum mill
margin. One of the important technical problems concerning edge-rolling
is controlling the cross-sectional shape of the material formed: after edge-
rolling this shape may be non-rectangular. Sometimes, because of its sim-
ilarity in appearance, this deformed shape is termed ‘dog-bone’.

To develop an optimal rolling scheme it is necessary to determine the
dependency of slab cross-sections on the various process parameters (rolling-
speed, reduction, roll-sizes, etc.). In this paper the influence of roll-radii
on the cross-sectional slab shape in edge-rolling is examined (see Fig. 5).
Investigations have been carried out in the past by others, either experi-
mental [13, 14] or numerical [15, 16]: the latter, however, are based on
rigid—plastic material behaviour.

To examine the influence of roll-radii, two edge-rolling processes have
been analyzed with the FEM programme DIEKA, the processes differing
only in the roll-radii: calculations have been carried out for a small roll-
radius (R = 50 mm) and a large roll-radius (R = 700 mm). Plasticine is
used as the forming material, both in the analyses and in the experiments:
this material is used frequently to simulate the actual hot-rolling process
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in scaled-down experiments at room temperature. The process conditions
are outlined in Table 1; data of the forming material are given in Table 2.

Starting from the symmetrical nature of the forming process (symmetry
around the slab-centre along the slab-width and the slab-thickness), it is
possible to minimize calculational effort: only one quarter of the slab is
discretized into elements and appropriate boundary conditions are applied
to simulate the actual symmetry. The elements used are 20-node hexa-
hedron elements (see Fig. 1), with 14-point numerical integration as given
by Irons [11].

">~ _Rolling direction

Fig. 5. Schematic diagram of the edge-rolling process.

TABLE 1

Numerical and experimental process conditions for single-pass edge-rolling

Width of slab B, (mm) 140
Thickness of slab H;, (mm) 22,5
Edging draft (mm) 8
Roll-radii R (mm) 50 or 700
Rolling temperature (°C) 20

Rolled material Plasticine
Lubrication None
TABLE 2

Mechanical properties of plasticine (at 20°C)

Colour Yellow/green
Young’s modulus £ (N/mm?) 10
Poisson’s ratio v 0.4

Constant yield stress assumed o, (N/mm?) 0.12
Coefficient of sliding friction at the
plasticine/roll interface, u 1.2




344

In the analysis the combined Eulerian—Lagrangian finite-element formula-
tion is used: the positions of the nodal points at the upper free mesh-surface
are adapted continuously in the thickness-direction, and nodal points on
the side of the slab (after the roll-gap exit) are connected to the material dis-
placement in the transverse direction. In the initial finite-element mesh
discretization, the nodal points at the upper surface are positioned at half
the slab-thickness (Z = 11.25). Since friction along the slab/roll interface is
large, sticking is assumed (therefore the roll surface and nodes show no
relative motion along this surface). The numerical results are first discussed,
and are afterwards compared with the results of the experiments.

The finite-element mesh for the case of R = 50 mm is shown in Fig. 6.
The total number of elements is 32 and the mesh is refined in the contact
zone because of the deformation expected near to the slab-edges. Most of
the following illustrations are cross-sections in the transverse direction at
Z = 0. The mean total displacement in the dominating velocity direction
has been 34 mm (0.4 mm/increment), i.e., about 1.5 times the contact-arc
length.

Fig. 6. FEM mesh for the case of R = 50 mm (initial geometry).

The location of the plastically deforming region in the slab can be drawn
from the distribution of the Von Mises stress (see Fig. 7). At a yield stress
of 0.12 N/mm?2, plastic deformation already occurs before the gap entrance.
Moreover, plastic deformation spreads from the slab-edge (at entry), over
about a quarter of the slab-width (towards the roll-gap exit).
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X

P——c
Y VA

Total displacement

Fig. 7. Distribution of the Von Mises stress in the slab at Z = 0. Contour values (N/mm?):
a=0.040;b =0.067;c =0.093;d = 0.120.

The transverse stress (0;;) as drawn in Fig. 8, shows a minimum negative
value (pressure), in the contact zone. A small negative level at the slab

centre (X = 0) combined with the-roll pressure provides the necessary
mechanical equilibrium in the transverse direction.

p
\

\
\a
b

- _lx
Y z
Fig. 8. Transverse stress in the slab at Z = 0. Contour value (N/mm?): a = -0.514;b =
—0.390;¢=—-0.275;d = —0.155;¢ = —0.036.
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The radial stress normal to the roll/slab interface at Z = 0 and the shear
stress in the interface are shown in Figs. 9 and 10. The minimum value in
the pressure curve is found half-way along the distance between the gap-
entry and the gap-exit. The levels at entry and exit differ from zero because
of the algorithm applied to ‘calculate the nodal-point stresses (extrapolation
errors), and because of discretizing of the material into elements. The dis-
tribution of the shear-stress curve is in agreement with the assumed sticking-
condition. It can be shown that this curve is quite different from the shear-

O ! i 1 i

Radial stress [N/mmz]

—.6 T T T T -+
0 5 10 15 19.6
Entry  pistance from gap entry [mm] EXif

Fig. 9. Radial stress normal to the rcll/slab interface at Z = 0.

-.08

Shear stress [N/mmé]

08 T T - ;
0 5 10 15 19.6

Entry pistance from gap entry [mm]  EXif

Fig. 10. Shear stress in the rolling direction at the roli/slab interface.
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stress curve found in the rolling of thin sheet: in the latter case a neutral
point N is assumed in the roll/sheet interface. From entry towards N the
rolls are moving faster than the forming material; from N towards exit,
the rolls are moving more slowly than the material. The friction force
between the rolls and the forming material must therefore be directed
towards the neutral point, the direction of the shear stress changing also
[17].

The distribution of the equivalent plastic strain (Fig. 11) shows the
plastic deformation to be concentrated in the slab edges (as already con-
cluded from Fig. 7). The distance between zero level a (see Fig. 11) and
maximum level g is equal to the total displacement in the rolling direction.

The velocity field (in the rolling direction) is shown in Fig. 12. At the
down-stream side can be noted an increase from the slab-edge towards
the slab-centre, whereas the field should be homogeneous in the material
that has already been rolled. More elements, covering extra down-stream
material, would be appropriate to simulate the steady-state nature of the
process. Slab in the up-stream side of the roll-gap is simulated correctly,
as shown by the uniformly distributed velocity field.

The distribution of the velocities in the transverse- and thickness-direc-
tions, in three cross-sections of the slab, are drawn in Fig. 13. From Figs.
13a and 13b the conclusion can be drawn that the slab material near to
the centre does not move significantly in either of the two directions; at
entrance or half-way along the contact-arc. The completion of the dog-
bone near to the edge of the slab is clearly visible.

X

=

Y

Fig. 11. Distribution of the equivalent plastic strain in the slab at Z = 0. Contour values
(%):a=00;b=6.3;c=12.6;d=22.1,e=316;f=41.4;g=50.5.
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lx
YT

Fig. 12. Velocity field in rolling direction at Z = 0. Contour values (%): a = 36.0; b =
37.0,¢=37.7;d =38.5;e =39.0;f=40.0.

| Scale factor 125

N
Y h St
,, e @
Centre Edge
| = Scale factor 125 o
- (b)
- B (c)

Fig. 13. Velocities in three cross-sections of the slab during rolling; (a) at entrance; (b)
half-way across the contact zone; (¢) at the roll-gap exit.
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The final shape of the slab cross-section is shown in Fig. 14. The shaded
area represents the FEM mesh cross-section at the roll-gap exit. Other
quadrants have been drawn by using the symmetry of the process. The
dog-bone peak is located at 11 mm from the side of the slab; the height
calculated is 27.314 mm (2 X 13.657).

Calculations have also been carried out for the case of R = 700 mm (a
magnification of the roll-radius by a factor of fourteen). The finite-element
mesh as shown in Fig. 15 consists of only 10 elements because the defor-
mation is assumed to be quite homogeneous. The contact zone is described

1 1 ! 1 1 1 1 L i L 1 1 | 1

o Calculated -

-70 -60 -50 -40 -30 -20 10 0 10 20 30 40 50 60 70
(mm)

Fig. 14. Sectional shape of the dog-bone, as calculated.

Fig. 15. FEM mesh for the case of R = 700 mm (initial geometry).
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by two elements. The distribution of the Von Mises stress is shown in Fig.
16. The total displacement has been 117 mm (1.3 mm/increment), again
1.5-times the contact-arc length. Plastic deformation occurs before the
entrance, and material is being deformed plastically over the complete
slab-width, unlike the situation where R = 50 mm.

NN ‘ N
Lo NN N
- Plasticn >
~“region
\\ N h A

>

Total displacement ‘

Fig. 16. Distribution of the Von Mises stress in the slab at Z = 0. Contour values (N/mm?);
a=0.093;b=0.120.

The distribution of velocities in the transverse- and thickness-directions
is drawn in Fig. 17. The dominance of the transverse velocity (Figs. 17a
and 17b) — not only near to the slab-edge but also near to the centre —
is quite obvious. The direction of the transverse velocity reverses in the
roll-gap exit (Fig. 17c): attention should be paid to the relatively large
scale-factor of Fig. 17¢ compared to that of Figs. 17a and 17b.

The final cross-section (Fig. 18) shows no strict dog-bone shape; the
edge-rolling pass has caused the slab thickness to increase from the centre
towards the edge. The maximum height calculated is 24.092 mm (2 X
12.046).

Experiments have been carried out to verify the numerical results: for
the case of R = 50 mm the rolling load was measured. The process condi-
tions are listed in Table 1. In the experiments the length of the slabs was
equal to 430 mm, being made relatively great compared with thickness and
width, in order to be able to simulate the steady-state nature of the num-
erically-analyzed processes.

The experimental equipment for the case of R = 700 mm, as developed
by the Royal Dutch Hoogovens Group B.V., consists of two circular shaped
segments. A pendular mill design had been chosen for practical reasons:
the dimensions of an actual mill would be extremely large if two complete
rolls were to be used. The resulting experimental cross-sectional shape
for the case of R = 50 mm is shown in Fig. 19: the positions of the nodal
points on the upper surface are drawn in the same plot for comparison
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| — Scale factor 200
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\ind ¥ = —
Fig. 17. Velocities in three cross-sections of the slab during rolling. (a) at entrance; (b)
half-way across the contact zone; (¢) at the roll-gap exit.

1 ) N I 1 1 1 L 1 A 1 1 L 1 1 1

20 o Calculated -

T T T T T T T T T T T L
<70 -60 -50 40 -30 20 10 0 10 20 30 &0 50 60 70
(mm]

Fig. 18. Sectional shape of the slab after rolling, as calculated.

eCaleculated points on surface
Drawn line: experimental shape

Fig. 19. Comparison of sectional shapes obtained by experiment with those obtained
by numerical analysis, for the case of R = 50 mm.
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with the numerical results. In the experiments, the sectional shape for the
case of R = 700 mm appeared to be quite similar to the numerically ob-
tained cross-section (see Fig. 18).

Experimental and numerical results are listed in Table 3. The smaller
roll-radii (R = 50 mm) produce uneven deformation with a large dog-bone
peak: to achieve slab-lengthening by edge-rolling, roll-radii of 700 mm are
preferable therefore to R = 50 mm. However, rolling load and rolling torque,
(hence also mill load), are greater for the case of R = 700 mm.

TABLE 3

Experimental and numerical (in parentheses) results of the single-pass edge-rolling process

Subject R =50 mm R =700 mm
Maximum dog-bone height 27.4 (27.314) 23.9 (24.092)
Rolling load (N) 95 (1086) — (291)
Rolling torque (Nm) — (1.4) — (11.8)
Conclusions

(1) The combined three-dimensional Eulerian—Updated Lagrangian finite-
element formulation developed has been successfully applied to the edge-
rolling process, the numerical results being in reasonable agreement with
those of the experiments carried out.

(2) Both numerical analyses and experiment show small roll-radii (R = 50
mm) to be less efficient than large roll-radii (R = 700 mm) in effecting
width-reduction of the plasticine model-material employed.

(3) The analysis of slab rolling has been demonstrated to be a feasible
application of the FEM programme DIEKA: developments of the latter in
the near future concern extensions of the programme to achieve the ability
to simulate the flattening of the dog-bone.
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