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An exact expression is derived for the rotational friction coefficient of a cylinder of infinite length and constant permea-
bility immersed in an incompressible viscous fluid. An asymptotic expression for the translational friction coefficient of a
permeable cylinder moving in a sheet of viscous fluid embedded on both sides in a fluid of much lower viscosity is also given.

In this letter we consider a porous cylinder of in-
finite length and uniform permeability immersed in
an incompressible fluid (viscosity 1) and rotating with
a constant angular velocity cw around its axis. The
problem is to calculate the rotational friction coeffi-
cient fg, which is defined as the ratio T/wg, where T
denotes the total torque of the forces per unit of
length which the cylinder exerts on the fluid.

This problem is relevant to the rotational diffusion
of a patch of cross-linked proteins in a cell mem-
brane [1]. This rotational friction coefficient has
never been calculated; the analogous problem for a
sphere of uniform permeability was solved only a few
years ago by Felderhof and Deutch {2].

Consider a cartesian system of coordinates (x, y, 2)
with the z-axis along the axis of the cylinder. (Present-
ly, we shall also use cylindrical coordinates (7, ¢, 2).)
Let ¥V and P denote the average local velocity and pres-
sure of the fluid and U the local velocity of the cylin-
der. The fluid flow has to be solved from the Debye—
Brinkman—Bueche equation:

~VP+nAV — (n/k}(V-U)=0, 1)
together with the incompressibility equation:
div ¥=0. (2

In this note we only consider the case of a uniform

cylinder for which the permeability k(r) = k if r <a,
k(r) = oo if r > a; a denotes the radius of the cylinder.
A microscopic derivation of eq. (1) has been given by
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Felderhof and Deutch [2]; and a macroscopic deriva-
tion was given by Wiegel and Mijnlieff [3]. Applica-
tions of the Debye—Brinkman—Bueche equation to
the flow of a solvent through a polymer coil are also
found in refs. [4—10].

The x and y components of U are:

U, = —wyr sin ¢; Uy =+wqr cos ¢. 3)
For the pressure and the velocity we make the ansatz:
P = constant, 4
Vy==V(@)sing; V,= +V(r) cos ¢, (5

where V(r) denotes an unknown function — the mag-
nitude of the velocity — which has cylindrical symme-
try. Upon substitution of eqgs. (4) and (5) into egs. (1)
and (2) one finds that all equations are satisfied pro-
vided V(r) is the solution of the ordinary differential
equation:

0<r<a,

1
- (6a,b)

Viky — wqorlky,
e j_V=[ Jko — worlko

0, a<r

The boundary conditions are: (i) ¥(0) should be finite;

(i) V(e0) = 0; (iii) ¥ and V" should be continuous at
r=a
The solution of this differential equation is straight-
forward and one finds:
® {wor +BI (r/Vky), 0<r<a,
Vir)=
Afr, a<r,

(7a)
(7b)

>
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with:
A= w0a212(o)/10(0), (8)
B = —2wqaloly(o). )

In these formulae the dimensionless parameter ¢
Ea/\/lc—o is the ratio of the radius of the cylinder and
the distance \/k over which the fluid flow effectively
penetrates the cylinder. The / (o) denote the modified
Bessel functions.

The torque of the forces which the cylinder exerts
on the fluid, per unit of length, equals:

, a 1,(0)
=981 [,2 = 2.2V,
T=-2nB ko Ofr 11 (/N kg)dr = dnnwgya 10(0)(10)

Hence the rotational friction coefficient per unit of
length is given by:

fr = 4mna2I,(0)/I4(0). ¢8))

In the limit ¢ - o° the cylinder becomes impermea-
ble and one recovers the trivial result f = 4nna?
which holds for a hard cylinder. If, on the other hand,
0 <1 the expression (11) simplifies to fg = 1nna202,
as it should. Using tables of the modified Bessel func-
tions [11], we have tabulated in table 1 the correction
factor due to the finite permeability of the cylinder.

For the sake of completeness, we also give the
translational friction coefficient (force per unit rela-
tive velocity) of a permeable cylinder of height 4 con-
strained to move in a sheet of fluid with viscosity 7.
The sheet has thickness # and is embedded on both
sides in another fluid of a much lower viscosity 7'
The translational friction coefficient is given by:

Iy(o) !

fr=d4mh{—y+In N2y 020 12
T= 4mnh{—y + In(hnfan’) 2 ol () )
provided (2n/an’) > 1. In this formula y = 0.5772 de-
notes Euler’s constant. The derivation of eq. (12) will
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Table 1

The second column gives the correction factor to the hard

disk rotational friction coefficient due to finite permeability,
eq. (11); the third column gives the correction term to the in-
verse of the hard disk translational friction coefficient, eq. (12).

o I, (0)/Io(0) (2/0?) +Io(0)/ol1(0)
0 0 oo
1 0.1072 4.2402
2 0.3022 1.2166
3 0.4600 0.6337
4 0.5682 0.4145
5 0.6426 0.3039
6 0.6958 0.2382
7 0.7355 0.1952
8 0.7662 0.1649
9 0.7905 0.1426

10 0.8103 0.1254

be given elsewhere [12]. The correction term (2/0?)
+1(0)/o1;(0) has also been tabulated in table 1.
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