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Brief Paper 

Continuous Time Systems Identification with Unknown Noise Covariance* 

Syst~mes d'Identification de Temps Continu avec Co-variation de Bruit 
(ou Bruits) Inconnus 

Identifikation zeitkontinuierlicher Systeme mit unbekannter Rauschkovarianz 

A R U N A B H A  B A G C H I I "  

Summary- - In  identifying parameters of a continuous-t ime 
dynamical system, a difficulty arises when the observation 
noise covariance is unknown.  The present paper solves 
this problem in the ease of a linear t ime-invariant system " 
with white noise affecting additively bo th  the state and the 
observation. The problem is that  the likelihood functional 
cannot  be obtained when the observation noise covariance 
is unknown.  A related procedure is suggested, however, 
and the estimates are obtained by finding roots of an 
appropriate functional. It is shown that  the estimates 
obtained are consistent. 

1. Introduction 

Tree problem of identifying parameters of  dynamical 
systems has been considered .by many authors.  The 
excellent survey paper of AstrSm and  Eykhoff [1 ] discusses 
various methods and their relative merits. Almost all el ~ 
the existing literature, however, has been devoted to dis- 
crete time dynamical systems, the notable exception being 
the works of Balakrishnan [2, 3], who extended the maxi- 
mum likelihood method to continuous-t ime linear dynami- 
cal systems. We consider a continuous-t ime linear dynami- 
cal system with the state and the observation affected by 
independent  Gaussian white noises in an additive manner,  
i.e. Wiener processes in the integrated form. In this case, 
the extension of the method of maximum likelihood, as 
proposed in [3], to estimate the unknown system para- 
meters is possible when the observation noise covariance is 
known. 

In case this is unknown,  however, no likelihood func- 
tional can apparently be defined. In the present paper, we 
solve the problem of estimating all the unknown system 
parameters when the observation noise covariance is 
unknown.  This is done by defining an  appropriate  
functional and showing that  minimizing this functional 
with respect to all the unknown system parameters,  
including those in the observation noise covariance, yields 
consistent estimates of those parameters.  
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2. Problem statement 
Consider the following continuous-t ime stochastic linear 

dynamical system 

x(,; to)= ffAx(s; to)ds+/;Bu(s) d s + / 0 ' F  d Wt(s; co), 

(2.1) 

Y(t; 
(2.2) 

where u(t) is a p-dimensional ' input '  funct ion;  x(t; to) and 
Y(t; to) are n- and m-dimensional 'state '  and 'output '  

functions respectively; A, B, C, D are n x n ,  n x p ,  m x n ,  
m x p  constant  but partially unknown matrices; Wl(t; OJ) 
and W2(t; to) are n x  1 and m x  1 independent Wiener pro- 
cesses and F, G are n x n, m x m constant  but partially 
unknown matrices. We assume that GG* > 0 to exclude the 
singular ease, where * denotes the transpose. One problem 
of systems identification is to estimate the unknown para- 
meters in the matrices A, B, C, D, F and G, based on the 
observation Y(t; to) for one realization of the experiment 
in 0 ~< t ~< 7". Let 0 denote the vector of all the unknown 

parameters and let 00 be their true values. Let 
to) denote an estimate of 0o based on the data Y(t; to) 

for 0~< t~< T. Our objective is to determine a consistent 
estimate of 0o; that  is, to find an  estimate O~,(to)'such that  

/~r(to) "* 0o in probabili ty as T -~ oo. 

In the corresponding discrete t ime dynamical system, 
the method of maximum likelihood has been proposed by 
AstrSm and Bohlin [4] in the scalar-input, scalar-output 
case. The extension to vector case has been done by 
Kashyap [5]. Both the papers contain outline of  proofs of 
consistency of the proposed estimates. In the cont inuous 
time problem, let C = C'n[0, T] denote the space of con- 
t inuous functions f rom [0, T] into R".  Let P r  be the 
measure induced on C by the observation process Y(t; to), 
0~< t~< 7". In analogy with the discrete t ime ease, a likeli- 
hood functional can be defined if we find a fixed measure 
on C such that  P r  is absolutely cont inuous with respect to 
that  measure. If  G is known, the measure Pew, induced by 
the process G W2(t; to), 0 <~ t <<. T, is such a measure and in 
this case, we can define the likelihood functional as the 
corresponding Radon-Nikodym derivative evaluated at  
the sample trajectory of the observation. The above brief 
discussion is included only for the sake of completeness. 
The concepts introduced are explained in Yeh [6, Chapts.  
6 and 8]. 
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Let us now explain the fundamental difference and the 
associated difficulty in the continuous-time problem. In 
the above discussion, we assumed G to be known and took 
the fixed measure to be pave, instead of the more obvious 
measure pve, on C. The reason is that py  is absolutely 
continuous with respect to peve, but if GG*#[, Pow, is 
singular with respect to pve,! This last assertion is an 
obvious generalization of the corresponding well-known 
result in one dimension [6, Theorem 32.1]. Intuitively, this 
can be seen as follows• If we sample GW(t; to) and 
W(t; co) at a finite number, say k, of time points, the likeli- 
hood ratio of the resulting Gaussian random vectors con- 
tains an exponential term multiplied by a determinant 
term [(2~r)" det (GG*)] -~/'z. But as k -+ o0, this multiplying 
term goes to zero, indicating that the function space 
measures will not be absolutely continuous. When G is 
known, the likelihood functional defined above is given by 
[3, p. 1951 

H[O; Y(.; ~); T] 

= exp[ - 1  (fff(GG*)-'[C:~(t; 0; co)+ Du(t)], 

C:,(t; O; co)+ Du(t)} d t - 2  

x f;{(GG*)-x[C,fft; 0; co) + Du(t)], 

dY(t; co)})], (2.3) 

where [ . , . ]  denotes inner product in R "  and the second 
integral is to be interpreted in the It6 sense. Here 
:t(t; 0; to) satisfies the stochastic differential equation 

f0 j' 2(t; 0; to) = A2(s; 0; to )ds+  oBu(s) ds 

+ f~e(s) C(GG*) -1 dZ(s; 0; co), 

(2.4) 

fo' Z(t; 0; co) = Y(t; co)- C2(s; 0; co) ds 

- f D.(s) as, (2.5) 

where P(t) satisfies the matrix Ricatti equation 

£'(t) = AP(t) +P(t) A* + FF* -P( t )  C*(GG*) -x CP(t); 

P(0) = O. (2.6) 

At the true value 00, Z(t; 00; to) is a Wiener process, the 
so-called ' innovation process', with 

E[Z(t; 00; to) Z(s; 00; co)*] = (GG*)o rain (t, s), (2.7) 

where (GG*)o denotes the true value of GG*. Let 

q[O; Y(. ; to); r l  = - ( 2 / 7 )  log H[O; r( .  ; co); r ] .  (2.8) 

It has been shown in [3] that minimizing this functional 
in an appropriate neighbourhood of 0 o yields consistent 
estimates of all the unknown system parameters. In 
analyzing the proof, one finds that the weights (GG*) -~ 
occurring in the expression q play no role in the consis- 
tency consideration of  the estimates. We note further that 
(GG*) occurs in q through ~(t; 0; w) also. These two 
observations are exploited to solve the estimation problem 
when G is unknown. 

3. Method of  estimation 
Consider the situation when G is unknown in which case 

the likelihood functional cannot be apparently defined. 
We propose a functional analogous to the log-likelihood 

functional expression q as given by (2.8) for known G. 
Let (70 be an a priori guess of Go, the true value of G, so that 
(70 (70* > 0. We replace the weights (GG*) -1 occurring in q 
by the guessed values (G 0 (70*) -1 but regard q otherwise as a 
function of all the unknown parameters including those in 
G. We can take Go G0* to be the identity matrix without 
affecting the consistency property of the estimates but a 
value close to (GG*)o may be desirable from a numerical 
point of view. Noting that 0 now stands for all the un- 
known system parameters including those in G, we now 
define a modified functional 

3[0; Y( ' ;  co); T] 

= ~, , (70 (To*)-xtC.~(t; 0; 6u)+ DuO)l, 

C~(t; 0; co)+ Du(t)} d t - 2  

T - 

×fl {(Go (To*)-l[C~(t; 0; co)+ Du(t)], d Y(t; co)}). 
(3.1) 

In the following, we shall be working only with ~ and, 
therefore, we replace ~ by q without any possibility of con- 
fusion with the q in (2•8)• 

We claim that minimizing this modified functional in a 
neighbourhood of 00 will yield consistent estimates of all 
the unknown parameters of the system under a certain 
sufficiency condition. To investigate this asymptotic pro- 
perty of the estimates, we need to impose certain conditions 
on the system and the input to ensure convergence of some 
expressions as T becomes very large. We consider 0 to be 
in a suitable neighbourhood ~ of 00 to be defined later. 

Condition 1. For  any 0 in N, assume that A is a stable 
matrix• This condition implies that the initial condition of 
the state has no effect on the asymptotic behaviour of the 
system and this justifies our setting the initial condition to 
be zero in (2.1). 

Condition 2. For  any 0 in ~ ,  assume that the pair (C, A) 
is completely observable. 

This condition implies that limt..,® P(t) exists; we denote 
the limit by P. P satisfies the algebraic equation 

AP+PA*+FF*-PC*(GG*) -x CP = 0 (3.2) 

• and, furthermore, the matrix A-PC*(GG*) -1 C is also 
stable. 

Condition 3. We assume that the input u(.) is such that 

• 1 l "  ~' 
r-,~ohm T.J|0 II u(t) ll 2 dt < co (exists and is finite) 

and 

l f ;u(s) u(s + t )* r,(t) = lira ds 

is a continuous function of t in every finite interval. This 
condition implies the existence of 'time averages~ occurring 
in the proof of consistency of the estimates. 

Let 0i denote the ith component of 0 and let 

Veq[0; Y( ' ;  to); T] 

be the gradient vector with the ith component 

0 
q,[O; Y(" ; co); T] = ~ q[O; Y(" ; to); T]. 

Let Q[O; Y(" ; to) ;  T] be the matrix with the ijth com- 
ponent 

q,~[0; Y(.; 6o); T] = 7 / - - ~ - q [ 0 ;  Y('; to); T]. 
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We use t h e  following notation 

q(O; 7") = Eq [0; ]I(" ; to); T], 

q(0) = l imq(0; T) 

and establish similar notations for the partial derivatives 
of q. Consistency is proved by showing that in any 
arbitrarily small neighbourhood of 00, the equation 

Voq[Ü; Y( ' ;  tv); T] = 0 (3.3) 

has a root for T sufficiently large. Now if Üx is another 
point in the parameter space which yields the same 
response Y(t; w) for t>~0 and almost all ¢v, the above 
result would hold in a neighbourhood of Ox also. To make 
sense of the above procedure, we have, therefore, to 
ensure that there at least exists a neighbourhood of 0 o in 
which no other value of 0 yields the same response as 
that of 00. The following lemma gives a sufficient con- 
dition for this to hold. The proof of the lemma is given 
in [7]. 

Lemma 1. If  Q(Oo) is positive definite, there is a neigh- 
bourhood of 00 such that no other value of 0 will yield a 
response identical to the one observed for all t > 0 for any 
to, omitting a set of zero probability. 

Remark. If Q(Oo) is positive definite, there exists a 
neighbourhood of  00 in which no other value of 0 yields a 
response identical to the one observed for t ;~ 0 for almost 
all w. We consider 8 in that neighbourhood. Take the 
neighbourhood to be closed and bounded and denote it 
by ~r. 

We now have the following theorem ensuring consistency. 

Theorem 1. Assume that Q(Oo) is positive definite. Then 
given any arbitrarily small positive numbers ~ and e, one 
can always find a number To = T0(8, e) such that for all 
T> To, there exists an w-set A(e) of probability less than e 
while for all w ~ A(E), the equation 

Veq[0; Y(.;  w); T] ----- 0 

has a root in the sphere $8(0o) of radius 8 about 0o. 

Remark. The above theorem asserts that given any 
neighbourhood of the true value 00, however small, and for 
to belonging to a set of probability arbitrarily large, we can 
find T sufficiently large such that equation (3.3) has a 
solution in that neighbourhood. Equivalently, one root of 
equation (3.3) converges to 0o in probability as T goes to 
infinity. The proof of  this theorem is given in the 
Appendix. 

It should be noted that the estimates are consistent under 
the sufficient condition that Q(0o) is positive definite. This 
is called the 'identifiability condition'.  The expression for 
Q(Oo) is given in [7]. 

4. Conclusion 
The problem of obtaining consistent estimates of the 

parameters of a linear, time-invariant, continuous-time 
stochastic dynamical system when the observation noise 
covariance is unknown has been solved in the present 
paper. The estimation method proposed can be used to 
identify the structured parameters of an aircraft in motion 
when it is subject to random wind disturbance [8], in the 
case of unknown observation noise covarianc¢. 
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APPENDIX 

Proof of  Theorem 1. The proof of Theorem 1 is based on 
the following two lemmas. The proofs are omitted and 
can be found in [7]. 

Lemma 2. Ve q(go) = O. 

Lemma 3. Assuming that Conditions 1-3 of Section 3 
are satisfied, 

E{ I[q[0; Y( ' ;  w); T ] -q (0 )  [[2) 

goes to zero as T goes to infinity and, moreover, the con- 
vergence is uniform with respect to 0 in corfipact subsets. 

Corollary. An analogous statement holds for all deriva- 
tives of q(0; Y(. ; to); T). 

Proof of  Theorem 1. Expanding Ve q[O; Y(.; w); T] in 
Taylor series about 0o, we have 

Veq[O; Y(.; w); T] 

= Veq[00; Y(-; w); T] 

+Q[00; Y(.; w); T] (0-0o) 

+{3[0; Y(.; w); T] (0-00)) (0-0o), (*) 
where 

Y[0; Y(.; o,); r] 

= J{[(1 -ts) Oe+stO]; Y('; to); T} (I - s )  ds dt 

with J[O; ] I ( ' ;  to); T] denoting the gradient (Fr~he t  
derivative) of Q[O; Y(.; w); T] with respect to 0. 

Let m >  0 be the lowest spectral bound for the matrix 
Q(0o) which is positive definite by assumption. By Lemma 
3 and the corollary, all coefficients in (*) converge in mean 
square sense, uniformly in 0 in the compact set .~. Let 
M = supee ~ f(O). Then given 81 >0,  there exists a set 
A(e) of  measure less than • such that for all T> To(8~, e) 
and for w f A(e), 

II Veq[0o; Y( ' ;  to); T]-Veq(Oo) 11 

= II V0q[0o; Y( ' ;  w); Tilt<81, 

l] Q[0o; Y( ' ;  w); T] -Q(0o) I ;<m/2 ,  

ll.710; 3"('; w); T]-7(O) ll<M/2 f o r 0 ~ N .  
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Then Q[0u; Y(- ; 60); T] is also positive definite with the 
smallest spectral bound greater than m/2 implying that 

It 0[•o; Y( ' ;  ~) ;  T] -z I1<~21 m. 

Let x = 0-0o-  Define 

f (x )  = x-{Q[Oo; Y(' ;  ~o); T]} -1 ~Taq[x+do; Y(';  co); T] 

=-~QtOo; Y(.; 60); T] -x V0q[Oo; Y('; co); T] 

+Q[0o; Y( ' ;  w); T]-~{Y[0; Y( ' ;  co); T] (x)} (x)~ 

by (*). 

From our previous estimates, we get 

I] fix)i1 ~ 28x/m + 3(M/m)N x f-. 

Choose ~ such that 3 < m/4M and then choose 31 = m3/8. 
Then for all x such that I] x J[ ~< 3, [] f (x )  i1 <~ 3. The map f 

being continuous, by Brouwer fixed point theorem, there 
exists a point x, with 11 x, iI ~< ~ such that f (xO = xr. 

From the definition of f, there is a point 0r whose dis- 
tance from 00 is less than or equal to 6, such that 

Voq[Or; Y(.; w); T] = 0 

proving the desired result. 


