MAGNETIC ENERGY ABSORPTION IN SINTERED YBa2Cu307-8 SAMPLES C. RILLO, F. LERA, J. GARÇIA, J. BARTOLOME, R. NAVARRO, D. GQNZALEZ, M.A. ALARIO-FRANCO*, D. BELTRAN*, D.H.A. BLANK[§], J. GONZALEZ-CALBET*, J. FLOKSTRA[§], R. IBAÑEZ*, E. MORAN*, J.S. MUÑOZ+, X. OBRADORS[§], A. SANCHEZ+, M. VALLET* I.C.M.A., C.S.I.C.-Univ. de Zaragoza, 50009 Zaragoza, Spain. * Fac. de Ciencias Químicas, Univ. Complutense, 28040 Madrid, Spain. # U.I.B.C.M., Dpto. de Química Inorgánica, Fac. de Químicas, 46100 Burjassot, Valencia, Spain. \$ Dpt. of Applied Physisc, Univ. of Twente, 7500 AE Enschede, The Netherlands. + Dpt. de Física, Univ. Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. Y Dpt. de Física Fonamental, Univ. de Barcelona, 08020 Barcelona, Spain. A.c. magnetic susceptibility measurements of eight microscopically characterized sintered YBa₂Cu₃O_{7- δ} samples are reported. The samples show losses 0.2 > $4\pi\chi''$ > 0.002. χ'' vs χ' plots derived for all samples agree with models and results where flux pinning plays an important role. #### 1. INTRODUCTION Low field a.c. magnetic susceptibility, $\chi=\chi'-i\chi''$ is a good probe to study granular superconductivity. Reported $\chi(T)$ data for high T_C superconductors in sintered and powdered samples show special features clearly related with the microestructure (1). To investigate the influence of preparation and sintering techniques on the diamagnetic response of YBa2Cu3O7- δ , systematic measurements of a series of sintered samples obtained by different methods have been performed. ### 2. EXPERIMENTAL Preparation method and other relevant parameters are presented in Table 1. $\chi(T)$ measurements were performed in an automated susceptometer. Samples were cut into bars and oriented parallel to the applied field, 1 mOe < h_0 < 11 Oe, v=120 Hz. ## 3. RESULTS AND DISCUSSION For samples I to VII, the onset of diamagnetism, ho independent, starts at To, where the resistive transition, $T_0(\rho)$, does too. The strong decrease in χ' takes place at $T_1=T_C(\rho=0)$. At low temperature and low applied field the apparent volume susceptibility corrected from demagnetizing effects reaches an asymptotic value within 10% of perfect flux exclusion. At T1 a strongly field amplitude dependent peak in χ'' accompanies the transition (2). Sample VII shows a second peak in $\chi''(T)$ at T_0 . $\chi'(T)$ and $\chi''(T)$ curves for sample I and ho=110 mOe are given in figure 1. From inspection of table 1 the trend of increasing hysteresis losses for smaller grain size is apparent. For sample VIII no anomaly is observed in χ' at T_C =91.8 K. The lowest value of $-4n\chi'$ yields only 45% of the ideal one, and it is ho independent. χ'' values for ho=110 m0e are negligible but a sharp peak appears at To for ho=11 0e (see inset of figure 1). Since for ceramic superconductors no frequency dependence exists (3), results will be discussed assuming that magnetic energy absorption is due to hysteresis in the M-H curve of a type II superconductor. Collected results are presented in a $\chi^{\prime\prime}~vs~\chi^{\prime}$ diagram (figure 2). 3.1.The weak-links model The sample is considered as an array of superconducting grains connected by weak-links. It can be approximated by an equivalent superconducting loop with a well defined transition temperature, T_{C1} = T_{1} , and a critical current J_{C1} which shows a temperature behaviour depending on the type of weak-links considered (3).All experimental diagrams lay below the theoretical FIGURE 1 χ' and χ'' curves for samples I and VIII, v=120 Hz, h₀=110 mOe (full line);11 Oe (dashed line). The inset shows enlarged area for sample VIII. | SAMPLE | PREPARATION METHOD | X-RAY IMPURITIES | GRAIN SIZE (μm) | To(x') | T ₁ (x') | 4nx"max | |--------|----------------------------|------------------|----------------------|--------|---------------------|---------| | I | Liquid mix (7) | Y2BaCuO5, BaCuO2 | 3-5 | 90,5 K | 85,7 K | 0.190 | | II | Solid state reaction (2) | Y2BaCuO5 | Inhomogeneous | 88,0 | 75,0 | 0.150 | | III | Solid state reaction | Y2BaCuO5 | 3-10 | 88,5 | 88,5 | 0.110 | | IV | Metallorganic precursor(8) | | 3 | 87,7 | 84,2 | 0.110 | | V | Citrate route (9) | | 10-100 | 91,5 | 85,0 | 0.060 | | VI | Solid state reaction | - | 3-10 | 88,4 | 84,1 | 0.060 | | VII | Citrate route (9) | Y2BaCuO5 | 10-100 | 91,9 | 85,0 | 0.060 | | VIII | Solid state reaction (10) | | 0.5 and Crystallites | 92,5 | | 0.002 | TABLE 1: Relevant parameters of the eight sintered samples curve a in figure 2, probably due to rounding effects in the magnetic hysteresis loop. These could be due to the existence of many weak loops with a random distribution of transition temperatures and critical currents centered at T_{C1} and J_{C1} . The existence of two peaks in $\chi^{\prime\prime}$ of sample VII could be explained as caused by random distributions centered at (T_{c1}, J_{c1}) and $(T_{C2}=T_0, J_{C2})$ respectively. The zero offset on the experimental $\chi''-\chi'$ diagrams reflects that for samples I to VII T_1 < To. This may be understood if a transition from a paracoherent state of superconducting grains, with transition temperature To, to a coherent state of weakly connected grains occurs at $T_1=T_C$ (4). The negligible field dependence and the absence of anomaly in $\chi'(T)$ for sample VIII yields the conclusion that electrical connectivity has not weak-link nature, the FIGURE 2 $\chi^{\prime\prime}$ vs χ^{\prime} diagrams for samples I to VIII. Curve a: Weak-links single loop model. Curve b: simplest bulk pinning case of the critical field model. shielding effect being not so efficient as in the other samples. The very small grains of average size 0.5 μm and crystallites of 10 μ m × 5 μ m may be responsible of the observed behaviour. Following the model proposed in (3) we conclude that specimen I is a good example of weakly coupled grains, while specimen VIII shows mainly bulk effects. 3.2. The critical field model In a type II superconductor hysteresis losses can be due to flux penetration subject to pinning forces, when ho exceeds the lower critical field. Curve b, figure 2, corresponds to a prediction for the bulk pinning case (5). Flux pinning at low fields in the ceramic superconductors has been evidenced from magnetic hysteresis loop measurements (4). x" vs x'curves for samples I to ÌIÍ agree qualitatively with the model. If pinning is considered weaker in the surface layer than in the bulk core, lower hysteresis losses are expected (5), in agreement with IV-VIII curves. Finally, the existence for some of the samples of two peaks in $\chi''(T)$ has been already explained as caused by two superconducting components with different critical fields (6). ### **ACKNOWLEDGEMENTS** The financial support of the Spanish C.A.I.C.Y.T. is acknowledged (grant 3380/83). ### REFERENCES - (1) D.X. Chen et al. J. Appl. Phys. 63 (1988) - (2) J. García et al. J. Magn. Magn. Mat. 69 (1987) L225. - T. Ishida and H. Mazaki, J. Appl. Phys. 52 (1981) 6798, and Jpn. J. Appl. Phys., 26 (1987) L1296. - P. Pureur and J. Schaf, J. Magn. Magn. (4) Mat., 69 (1987) L215. - (5) D. Klerk and C. A. M. van der Klein, J. Low Temp. Phys. 6 (1972) 1 - (6)R.B. Goldfarb et al Cryogenics 27(1987)475 - X. Obradors et al. This volume. - (8) D. Beltrán-Porter et al European Workshop on High T_C Superconductors (1987) 317. - D.H.A. Blank et al. preprint. - F. García-Alvarado et al. Sol. St. Comm. (10)63 (1987) 507.