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Summary 

To explain the cause of axial rotation in a scoliotic vertebral column, the influence of the 
gravitation force on a spine with a C-scoliosis has been investigated by means of a 
mechanical model. In this model the gravitation force takes hold of the three-dimensionally 
curved vertebral column eccentrically. From these reflections it appears that the axial 
rotation in the scoliotic spine can be explained by the moment distribution caused by this 
eccentrical gravitation force. The moment distribution, necessary for correction of the 
spine, is supposed to be opposite to the moments caused by the gravitation force. The 
moment distribution caused by the Harrington and the Luque spinal correction systems are 
compared to the calculated optimum correction moments. It appears that the moment 
distribution for the Harrington and Luque methods, necessary for the correction of the 
lateral deviation, are almost the same as the calculated correction moments. But the axial 
rotation appears to be increasing instead of decreasing in both correction systems. 

Relevance 

The mechanical analysis as described in this article will be used to design a new system to 
correct the lateral deviation and the axial rotation of the scoliotic spine. 
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Nomenclature 

x y, z Global coordinates 

x, y, .? Local coordinates 
UX, UY, Z/Z Distances in the global coordinate 

system 
ux, uy, uz Distances in the local coordinate 

system 
@x, @y, 427 Rotations in the local coordinate 

system 
Superscript” Gravitation 

Superscript” Harrington 
Superscript’ Luque 
F Force 
M Moment 
L Length of the vertebral column, L5-T, 
A Amplitude of the scoliotic curve 
B Distance to the outer fixation points 

(Luque) 
E Step function 
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Introduction 
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Scoliosis is a pathological lateral deviaton of the 
vertebral column coupled with an axial rotation of the 
vertebrae. Due to this axial rotation the spinous 

0 1991 Butterworth-Hcinemann Ltd processes rotate towards the concavity of the scoliotic 
0268-0033/91/030179-Oh curve. So far, no satisfactory explanation of the axial 
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Figure 1. A transverse cross section of two motion 
segments at the level of the facet joints, showing the 
axial rotation centres, 0. a, the rotation centre of a 
thoracic motion segment; b, the rotation centre of a 
lumbar motion segment. 

rotation of the scoliotic vertebrae has been presented in 
literature. To assess the cause of the axial rotation is 
important for the design of a new operative correction 
system. Therefore, there has been a search for a model 
to explain and predict the axial rotation in a scoliotic 
spine. 

It is also interesting to consider the influence of the 
existing correction systems on axial rotation. Therefore 
the correction for two commonly applied systems, the 
Harrington and the Luque systems, have been 
investigated. 

Method 

In order to explain the axial rotation, the effect of the 
gravitation force on the C-scoliotic spine has been 
modelled and calculated. In this model the position of 
the axes of axial rotation are important. 

Position of the axes of axial rotation 

The axis of axial rotation of a motion segment is the 
position of a longitudinal axis around which a vertebra 
rotates with respect to the upper or lower vertebra, 
when loaded by a moment of torsion. 

The location of this axis of rotation is not the same 

a x-I b I-z 
Figure2 Motion segment with a global and a local 
coordinate system. 

for every level of the spine. In the thoracic region the 
axes of rotation go through the vertebral body whereas 
the axes in the lumbar region go through the arch. The 
reason for this shift of the axis of axial rotation is the 
change of the inclination of the facet joints between T1, 
and T12 I-‘; the axes of axial rotation are mainly 
determined by the facet joints4.” (Figure 1). 

Influence of the gravitation force on the scoliotic spine 

At first a global and a local coordinate system are 
defined (Figure 2). The global coordinate system is 
attached to the earth with the origin on the line of 
action of the gravitation force. The origin of the local 
coordinate system is positioned in the centre of the 
intervertebral disc of the motion segment. A motion 
segment consists of two vertebrae with one 
intervertebral disc between. The x-axis points in the 
lateral direction, the y-axis points in the cranial 
direction and the z-axis in the ventral direction. The 
Euler angles @z and @x represent respectively the 
lateral flexion and the sagittal flexion/extension angle of 
the motion segment. For the transformation from the 
global to the local coordinate system the following 
rotation matrix can be derived: 

x=RxX (I) 

COS@Z cos @x sin@ z -sin @x sin @z 
R = -sin@z cos @x coscpz -sin@x cos@z (2) 

0 sin Ox cos ax 1 
Next the position of the motion segment, with respect 
to the line of action of the gravitation force has to be 
considered (see Figure 3). The gravitation force in the 
global coordinate system, the force in the local 
coordinate system and the resulting moments in the 
centre of the motion segment are shown in Figure 3a, b 
and c, respectively. With the help of equations (1) and 
(2) the following local moments can be derived: 

MY(Y) = w@(Y) x UZ(Y)) - VZYY) x UX(Y) 

= ( - Fg( Y) cos @x(y) sin @z(y) x -K?y)- 
cos@x(y) > 

UX(Y) - 
( 

-P(Y) sin@x(y) x ~-__ 
cos@z(y) > 

= (-P(Y) sin@z(y) x UZ(Y) 

+ ( P(Y) sin @x(y) x UX(Y) 
cos @z(y) > 

MZ(Y) = FYg(Y) x UX(Y) 

= -P(Y) cos@x(y) COS@Z(Y) x 
UX(Y) (-- 1 cos @z(y) 

= -P(Y) cos@x(y) x UX(Y) (4) 
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Figure 3. Influence of gravitation force on a motion segment. a, gravitation force in the global coordinate system; 
b, gravitation force in the local coordinate system; c, the resulting moments in the local coordinate system. 

The force P(Y) is the gravitation force of the part of 
the body which lies above the spinal level (Y). This 
gravitation force is modelled by a linear function with 
the value 200 N at level T, and 400 N at level Lg. 

The line of action of the gravitation force is modelled 
by a straight line. This is a simplification of the reality, 
but it will hardly influence the qualitative results, which 
are the purpose of this analysis. 

P(Y) = 400 - (0.4 x Y) (5) 

The function UX(Y) represents the distance in the X 
direction between the axis of axial rotation of the 
motion segment and the line of action of the gravitation 
force (see Figure 3). The function U(Y) represents 
the distance in the Z direction between the axis of 
rotation of the motion segment and the line of action of 
the gravitation force. These distances UX and I/Z are a 
function of the level Y (Figure 4a and b). Figure 4 
shows a distance function UX (Y) , from level Ls to T, , 
each step representing one vertebra. This distance to 
the C-scoliosis is modelled by a cosine function and a 
constant: 

UX(Y) = A x [-,,.(Y x T) + Oh] 

A = 35 mm, 

L=5OOmm (6) 

The function UZ(Y) consists of two parts. 
The first, I/Z, (Y), describes the sagittal curvature of 

the spine with a thoracic kyphosis and a lumbar lordosis 
(Figure 4b). In this figure the line I/Z,(Y) = 0, 
represents the line of action of the gravitation force. 
The distance function UZ, (Y) is modelled by a 
third-degree polynomial function, which is an 
approximation of the curve of a scoliotic spine as 
described previously by Snijde&. In this distance 
function the vertebrae T,, T12 and St lay on one line. 

The line of action of the gravitation force is positioned 
40 mm ventrally of S, . 

The second part consists of a translation of 40 mm 
below level T, r, caused by a shift of the axis of 
rotation*. 

UZ,(Y) = 40 - (6.25 x 1O-6 x Y3 - 4.375 x 1O-3 

xY* $6.25 x 10-l x Y) 

UZ(Y) = LIZ,(Y) + 40 x ~(180 - Y) 
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Figure 4. a, UX(Y) is the dorsal distance of the line of 
action of the gravitation force to the scoliotic spine and 
b, UT(Y) is the sagittal distance. 
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From these distance functions UX(Y) and UZ,(Y) the 
lateral flexion angle @z(y) and the flexion/extension 
angle @x(y) are derived. The Cobb angle for this 
configuration, @Z,,, - @Z,i”, is approximately 0.9 
radians. 

@z(y) = arctan 
( ) 

; UX(Y) 

d 
= arctan UX( Y) cos@z 

cos@x cos@z dY 

& UX(Y) 
1 

= arctan 
cos @X(Y) > 

(8) 

WY) = 
1 

arctan 
( 

-jY UZ,( Y) ~- 
cos@z(y) > 

(9) 

lnfzuence of correction systems on the scoliotic spine 

The influence of the Harrington and the Luque systems 
on the lateral deviaton and the axial rotation has been 
investigated. 

The Harrington system uses longitudinal forces to 
correct the spine (Figure 5). In this model it is assumed 
that there are no correction forces in the local z 
direction. From Figure 5 the local correction moments 
can be derived with the help of equations (1) and (2). 

Myh(y) = -Fxh(y) x Uzh(y) 

Mzh(y) = Fyh(y) x Uxh(y) 

(10) 

= Fh cos@z(y) x 
(Z$li$j) 

= Fh x UXh(Y) (11) 

The force Fh, the Harrington correction force, is 
modelled by a constant force of 300 N. 

In this case the upper hook is positioned at level Th 
and the lower hook at Li. The distance LIZh (Y) is 
modelled by a constant between Th and T, , . Because of 
the shift of axes of axial rotation UZh(Y) has a 
negligible value under T , , , which is represented by the 
first step function. The second step function defines the 
position of the upper fixation level of the correction 
system: 

UZh(Y) = 40 X’E (Y - 180) x ~(380 - Y) (12) 

In the model it is assumed that the deviation of the 
spine is a half of the original deviation when the load is 
fully appliedh. Therefore, the distance function 
UXh(Y) is defined as: half the value of lJX(Y), 
reduced by 5 mm to correct the distance to the fixation 
points. The two step functions represent the lower and 
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Figure 6. Reproduction of the Harrington correction 
forces showing rotational centre, 0. a, dorsal view of the 
end vertebra; b, cranial view of the end vertebra. 

the upper fixation level of the correction system: 

UXh( Y) = [(=f;Tj) - S]xr(Y- 12O)xc(380 - Y) 

The Luque system uses transverse forces to correct the 
spine (Figure 6). From Figure 6 the local moments can 
be derived: 

(14) 

Figure 6. A reproduction of the Luque correction forces. 
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Length (mm) -’ M?(y) = F’ x B(Y) (15) 

The Luque system is modelled by a three-point loading 
at the levels Th, Tg and L,. The function B(Y) describes 
the distance of a spinal level (Y) to the outer fixation 
points at Th and L,: 

B(Y) = IY - 380) x E(Y - 250) x ~(380 - Y) 

+ (Y - 1201 x E(Y - 120) x e(250 - Y) 

(16) 

The value of the Luque force F’, is calculated so that 
the maximum lateral flexion moments for the Luque 
and the Harrington systems have the same value. 

To describe the form of this corrected scoliotic spine 
the same functions are used as for the Harrington 
system. 

Results 

When the equations (4-9) are substituted in equations 
(2) and (3) the following moment diagrams, caused by 
the gravitation force, can be calculated (Figure 7a and 
b). 

The axial rotation moment My is negative from Ls up 
to T12, with a maximum at L3 and L2. This causes a 
rotation of the spinous processes towards the concave 
side of the scoliotic curve, which has its apex between 
Trt and T,c. From T,, up to T, the axial rotation 
moment is positive, with a maximum at T,. This causes 
a rotation back to the unrotated position. Therefore the 
moment diagram for the axial rotation is consistent 
with the axial rotation in the scoliotic spine, as 
described in literature’.‘.h-X. For instance, Stokes’ 
states that ‘the direction of relative axial rotation 
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Figure 7. a, Local axial rotation moment and 
b, local lateral flexion moment. 
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Figure 8. a, Local axial rotation moment and 
b, local lateral flexion moment, caused by a Harrington 
system, as a function of the level y. 
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between vertebrae is in an opposite sense above and 
below the curve apex’. And according to Veldhuizen” 
‘in structural scoliosis. rotation of the vertebrae is 
towards the concave side of the curve’. 

The lateral flexion moment, as shown in Figure 7a, is 
negative in almost the total curve. This means that the 
lateral flexion moment has a tendency to increase the 
existing lateral deviation. 

The moments necessary for the correction of the 
scoliotic spine should rotate the vertebra in the 
opposite direction to the rotations caused by the 
gravitation force. It is therefore plausible that the 
correction moments have to be the opposite to the 
gravitation moments. 

When the equations (12) and (13) are substituted in 
(10) and (11) the moment diagrams Myh and Mzh for 
the Harrington correction can be calculated (Figure 8a 
and b). These moment diagrams Myh and Mzh should, 
as stated before, be the opposite of My and Mz 
(Figures 7a and b). This is correct for the lateral flexion 
moment Mzh as shown in Figure 7b but the axial 
rotation moment Myh has the same sign as My at level 
Ta-T, and will therefore increase the rotation in this 
part of the spine. At level Ttr-T,,, the axial rotation 
moment Myh has the opposite sign of My and will 
therefore decrease the axial rotation. 

Next the correction moments for the Luque system 
are calculated, by substituting equations (12), (13) and 
(16) in equations (14) and (15) (Figure 9a and b). Here 
too, the moment diagram for the lateral flexion Mz’ is 
the opposite of Mz which is the correct shape. But the 
moment diagram for axial rotation Mz’ is totally 
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Figure 9. a, Local axial rotation moment and 
b, local lateral flexion moment, caused by a Luque 
system, as a function of the level y. 

different and will enlarge the rotation, mainly between 
T9 and T6. 

Discussion 

In the model, as presented before, the influence of an 
eccentrical gravitation force on a spine with a lateral 
deviation has been investigated. The influence of other 
forces, as muscle or ligament forces, have not been 
included in the model. These forces will try to 
compensate for the moments caused by the 
gravitational force. But if they, for some reason, are 
not capable of doing so, the resulting moments will 
tend to worsen the slightest deviation. This means an 
increasing lateral deviation and an axial rotation 
towards the concave side of the curve. This explanation 
is the opposite to that given by White’, who states that 
an’ imbalance causes axial rotation which in its turn 
causes the lateral deviation. It is the view of Stokes’ 
that there cannot be a simple coupling between lateral 
bending and axial rotation. The authors agree with this 
statement because the sagittal curvature of the spine 
and the position of the axis of axial rotation have to be 
considered for the explanation of the coupling between 
lateral bending and axial rotation. 

In the model, the spine is modelled in the form of a 
C-scoliosis, but the results of another model with an 

S-scoliosis were consistent with the results as presented 
before. 

For both the investigated correction systems, 
Harrington and Luque, the moments for the correction 
of the axial rotation are very unfavourable. The 
maximum values for these moments are almost the 
same for the given spinal form. But when a less severe 
scoliosis is investigated, the influence of the Luque 
system on the axial rotation is worse than the 
Harrington system. 

Conclusions 

1. 

2. 

3. 

The axial rotation in the scoliotic spine can be 
explained by the influence of the eccentrical 
gravitation force. 
The Harrington and Luque systems tend to increase 
the axial rotation in the scoliotic spine. 
The Harrington and Luque systems produce 
favourable moment diagrams for correction of the 
lateral flexion. 
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