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Abstract 
 

The transverse permeability for creeping flow through unidirectional random arrays of 

fibres with various structures is revisited theoretically and numerically using the finite 

element method (FEM). The microstructure at various porosities has a strong effect on 

the transport properties, like permeability, of fibrous materials. We compare different 

microstructures (due to four random generator algorithms) as well as the effect of 

boundary conditions, finite size, homogeneity and isotropy of the structure on the 

macroscopic permeability of the fibrous medium. Permeability data for different minimal 

distances collapse when their minimal value is subtracted, which yields an empirical 

macroscopic permeability master function of porosity. Furthermore, as main result, a 

microstructural model is developed based on the lubrication effect in the narrow channels 

between neighboring fibres. The numerical experiments suggest a unique, scaling power 

law relationship between the permeability obtained from fluid flow simulations and the 

mean value of the shortest Delaunay triangulation edges (constructed using the centers of 

the fibres), which is identical to the averaged second nearest neighbor fibre distances. 

This universal lubrication relation, as valid in a wide range of porosities, accounts for the 

microstructure, e.g. hexagonally ordered or disordered fibrous media. It is complemented 

by a closure relation that relates the effective microscopic length to the effective packing 

fraction, which controls the transition from disorder to order. 
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1. Introduction  

 
Understanding and predicting transport properties of porous media is essential in 

chemical, mechanical and petroleum industries [1]. This has motivated the development 

of relationships between macroscopic parameters, like permeability, and microstructural 

parameters, like fibre arrangements, shape and orientation or tortuosity (flow path) [2].  

Most porous media are particulate, but some are composed of long particles/cylinders 

and, therefore, may be considered as fibrous media. Common examples of fibrous media 

include composite materials, industrial filters, biological tissues, etc. 

Resin transfer molding (RTM) is an efficient and frequently used process for producing 

fibre reinforced polymer composites with simple or complex shapes. The permeability is 

essential in such process and can be determined by various methods, e.g., experimental 

measurements, numerical calculations or analytical predictions. Experimental 

measurements often require a large number of carefully controlled experiments and are 

normally expensive. Analytical predictions based on theoretical assumptions (and 

validated by experiments and/or numerical studies) are often applicable in a certain range 

of fibre volume fraction only.  

With the recent progress in computational and numerical tools, one can now predict the 

macroscopic properties of fibrous materials with rather complex microstructure. Chen 

and Papathanasiou [3-4] computationally investigated the flow across randomly 

distributed unidirectional arrays using the boundary element method (BEM) and found a 

direct correlation between permeability and the mean nearest inter-fibre spacing. 

Papathanasiou [5] performed a similar study for unidirectional square arrays of fibre 

clusters (tows) using the BEM. He showed that the effective permeability of assemblies 

of fibre clusters depends strongly on the intra-tow porosity only at low values of the 

inter-tow porosity (high density). Song et al. [6] calculated the permeability tensor for a 

3D circular braided preform by solving a boundary problem of a periodic unit cell. The 

flow field through the unit cell is then obtained by using a 3D finite volume method and 

Darcy’s law is utilized to obtain the permeability tensor. Their numerical results show 

that the permeability in the machine direction of the preform was the highest among three 

directions. Takano et al. [7] employed an asymptotic homogenization theory to evaluate 
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the permeability of woven fabrics with the help of finite element method (FEM). They 

investigated the effect of woven architecture on the permeability characteristics for plain-

woven fabrics with and without shearing deformation. In our recent study [8], the effect 

of several microstructural parameters such as fibre shape and orientation on the 

macroscopic permeability of 2D regular fibrous media was investigated using a large set 

of FEM simulations.  

The permeability of ordered (regular) fibrous media is known to be a deterministic 

function of their porosity in the limit of large and small volume fractions. However, the 

parameters affecting the permeability of disordered (random) fibre arrays are not very 

well understood. Random fibre arrays are, in principle, well suited for analysis using 

effective medium approaches. Based on averaging the conservation equations, Koch and 

Brady [9] derived a relation for the effective diffusivity coefficients in the limit of high 

porosity ε , however, that remains questionable in the porosity range of interest in 

composites manufacturing, e.g., 0.4<ε <0.9. Similarly, valid for large ε , Drummond and 

Tahir [10] modeled the flow around a fibre using a unit cell approach by assuming that all 

fibres in a fibrous medium experience the same flow field (i.e. no interaction between 

them) and, therefore, the permeability can be obtained by adding the resistance of 

individual particles/fibres. The dependence of permeability in this limit involves 

logarithmic, linear and quadratic functions of the solid concentration. 

Based on the lubrication approximation and assuming that the narrow gaps between 

adjacent cylinders dominate the flow resistance for small ε , Gebart [11] presented an 

expression for the transverse permeability of square or hexagonally ordered arrays. He 

found that the dependence of permeability on fibre volume fraction in this limit is a 

power law.  

The earliest and most widely applied models in the composites literature, i.e., 

intermediate porosity regimes, for predicting permeability are capillary models such as 

the Carman-Kozeny (CK) equation [12] where a constant (Kozeny constant) is supposed 

to account for the structure at different porosities. While some studies have reported 

success with this relation [13], discrepancies are also reported [14]. Results from 

numerical modeling [3] and experimental studies [15] indicate that, at best, capillary 

models represent the behavior of fibrous materials over a limited porosity range. The 
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value of the ‘Kozeny constant’, however, is usually quite different from its theoretical 

value for idealized systems like random sphere packings. In essence, a function of 

porosity alone is not sufficient to explain the observed variability in permeability data. 

The fact that the Kozeny constant needs to be experimentally measured, limits further the 

usefulness of this model for predictive purposes. For sedimentary rocks, especially 

sandstones, Katz and Thompson [16] found, using percolation theory, a power law 

relation between the macroscopic permeability and microstructural descriptors for rocks, 

i.e. the critical pore diameter. To our knowledge, relation between microstructure and 

macroscopic permeability of the fibrous medium, like composite materials, has not been 

studied systematically. 

The objective of this study is to computationally investigate the effects of micro-

structural parameters such as fibre arrangements on the macroscopic permeability by 

using a FEM for fluid flow over a wide range of porosity. To this end, the macro 

description of fluid flow equations and the numerical tool employed to solve these 

equations are presented in Section 2. Volumes of different sizes, formed by randomly 

placed non-overlapping arrays of parallel cylinders perpendicular to the flow direction, 

are constructed in four different ways in Section 3. The size effect, the homogeneity and 

the isotropy of the fibre arrangements are analyzed using several statistical tools. In 

Section 4, we present a microstructural model based on the lubrication effect of the 

narrow channels as an attempt to (i) combine our various simulations in a wide range of 

porosity and (ii) relate the micro to the macro properties of fibrous materials. The paper is 

concluded in Section 5 with a summary and outlook for future work. 

 

 
2. Mathematical formulation and methodology 

 
This Section is dedicated to the macroscopic description of the flow equations applied in 

fibrous structures and our methodology, e.g., the method of discretization of the domain 

and boundary conditions applied to our FEM based simulations. 

 

2.1. Macroscopic description of the flow equations 
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The velocity and pressure profiles through the fibrous media can be obtained from the 

solution of the conservation laws, namely, the continuity equation (conservation of mass) 

and the Navier–Stokes (NS) equations (conservation of momentum). In the absence of 

body forces and for Newtonian fluid, incompressible, steady state flow, the equations of 

conservation of mass and momentum are: 

  ( ) 2

0,

.

u

u u p uρ µ
∇⋅ =

⋅∇ = −∇ + ∇
                                                                                               (1) 

where ρ, u, p and µ are density, velocity, pressure and viscosity of the fluid, respectively. 

According to Darcy’s law for unidirectional flow through a porous medium in the 

creeping flow regime, the superficial fluid velocity 
1

fV

U udv
V

= ∫  (V, Vf  are the total 

volume and volume of the fluid) is proportional to the pressure gradient: 

  p
K

U ∇−=
µ

.                                                                                                                   (2) 

The proportionality constant K, is called the permeability of the medium, which strongly 

depends on the microstructure (such as fibre arrangement, void connectivity and 

inhomogeneity of the medium) and also on porosity. By increasing the pressure gradient, 

one can observe a typical departure from Darcy’s law (creeping flow) at sufficiently high 

Reynolds number, Re>0.1 [17]. In order to correctly capture the influence of the inertial 

term, Yazdchi et al. [17] showed that the original Darcy’s Law can be extended with a 

power law correction with powers between 2 and 3 for regular structures. Koch and Ladd 

[18] simulated moderate Reynolds number flows through periodic and random arrays of 

aligned cylinders. They showed that the quadratic inertial effect became smaller at higher 

volume fractions. Similarly, Hill et al. [19-20] examined the effect of fluid inertia in 

cubic, face-centered cubic and random arrays of spheres by means of lattice-Boltzmann 

simulations. They found good agreement between the simulations and the Ergun 

correlation at solid volume fractions approaching the closely-packed limit at moderate 

Reynolds number (Re<100). However, in the following, we restrict ourselves to creeping 

flow regime, i.e. Re≪1. 

 

2.2. Computational method 
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The FEM software ANSYS® is used to calculate the fluid velocity from discretization of 

Eq. (1) into linear triangular elements. They were then solved using the segregated, 

sequential solution algorithm. This means that element matrices are formed, assembled 

and the resulting systems solved for each degree of freedom separately. Some more 

technical details are given in Ref. [8]. Afterwards, the superficial velocity and, using Eq. 

(2), the permeability of the fibrous material is obtained. Fig. 1 shows a 3D/2D 

representation of 200 randomly distributed fibres normal to the flow direction at porosity 

ε =0.6 with minimum inter fibre distance δmin=0.05d (d is the diameter of the fibres) or 

the minimum dimensionless distance min min / 0.05dδ∆ = = . Similar to Chen and 

Papathanasiou [3, 4], a minimal distance is needed in 2D to avoid complete blockage. 

The microstructural parameters, namely the system size, method of generation, 

homogeneity and isotropy of the structure will be discussed in more details in the next 

Section. At the left and right boundary pressure is set and at the top and bottom wall 

surfaces (z direction) and at the surface of the particles/fibres no-slip boundary conditions 

are applied. Some simulations are formed with periodic boundaries instead of walls with 

normal in z direction. Fibres are assumed to be very long so that a 2D solution can be 

applied. A typical unstructured, fine and triangular FEM mesh is also shown in Fig. 1. 

The mesh size effect is examined by comparing the simulation results for different 

resolutions. The range of number of elements is varying from 5×105 to 106 depending on 

the porosity regime. The lower the porosity the more elements are needed in order to 

resolve the flow within the neighboring fibres, see Appendix A for more details. To 

obtain good statistical accuracy, the permeability values were averaged over 10 

realizations.  

  

3. Generation of the fibrous microstructure 

 
Developing a model for predicting the permeability as a function of porosity and 

structure of the fibrous materials would help to reduce the experiments in liquid 

composite molding (LCM) processes such as RTM or resin infusion. Furthermore, by 

understanding the physics of the flow through such materials, one may tailor the 

microstructure such that it has both the desired reinforcing capability and also the 
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permeability to be filled efficiently. To get reliable evidence and to quantify the non-

uniform spatial distribution of fibres, several microstructural characteristics of fibrous 

material will be discussed here in detail. 

Note that to ensure a gap between particles (∆min), we assign a virtual diameter 

( )*
min1d d= + ∆  to each fiber, leading to the virtual porosity ( )( )2*

min1 1 1ε ε= − − + ∆ , 

see Fig. 1, which has been used for packing generation in the rest of this section.  

 

3.1. Generating an appropriate random structure 

A representative volume element (RVE) is a subdivision of the material that has 

properties consistent with those of the whole system. It plays a central role in the 

mechanics and physics of random media with a goal to predict their effective properties. 

Most of them rely on the assumption of a periodic distribution of fibres, i.e. the structures 

at the boundaries are similar to those in the bulk. However, realistic media are finite and 

confined with walls. Some systems can be very large so that boundary effects can be 

neglected; on the other hand, in micro-systems, the effect of the walls might show up. 

Therefore, unless specified otherwise, in the rest of the paper we consider a 2D 

representation of the fibrous composite in which the fibres are randomly distributed in a 

square domain and confined by walls with normal in z direction. In order to understand 

the wall-effects, we will vary the system size (see Appendix B for details).  

 

3.2. Method of generation 

To generate random, non-overlapping fibre arrays, we use different algorithms, namely, 

random placement (RP), a Monte Carlo (MC) procedure, an energy minimization (EM) 

approach and molecular dynamic (MD) simulations. Note that in all methods, we have a 

minimal distance (∆min) between fibres to avoid complete blockage. 

 

3.2.1. Random placement (RP) 

In RP the position of fibres is randomly drawn from a uniform distribution; then this 

location is taken as valid if it does not overlap a previously positioned fibre. The insertion 

of fibres will continue until it reaches the desired number of fibres. This process leads to 

an asymptotic jamming limit since the space available to place successive particles 
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decreases with the addition of each new particle. The minimum porosity for RP in 2D is 

estimated to be ~0.447 [21], and has found to be ~0.453 [22] via computer simulations. 

 

3.2.2. Monte Carlo (MC) procedure 

Given an initial fibre configuration on a triangular lattice, the MC procedure perturbs 

fibre centre locations in randomly chosen directions and magnitudes [3-4, 23]. The 

perturbation is rejected if it leads to overlap with a neighboring disk. One step consists of 

trying to move each disk once. We use up to 106 steps for each realization at low 

porosities to get a good random configuration i.e. the MC process should generate a 

random position field which is short range correlated. However, at the lowest porosity, 

the particles remain ordered and show some dependence on the number of 

steps/perturbations, even for the longest simulations. For high porosities, the structures 

show no dependence on number of MC perturbations. Moreover, the MC algorithm can 

generate denser systems as compared to RP. 

 

3.2.3. Energy Minimization (EM) approach 

In the EM approach, infinitesimal disks are placed at random positions in the system. 

Then, they are gradually expanded and moved at each step to prevent particles from 

overlapping. When the desired porosity is reached the algorithm terminates [24]. We 

assume that the particles interact via the soft potential given by: 

( )
2

1 for ,
2

0 for ,

ij
ij

ij

ij

r
r d

V r d

r d

β  
 − <  =   
 ≥

.                                                                               (3) 

where β  is the characteristic energy scale and rij is the separation of particles i and j. 

Potential of this form was motivated by simulation of granular materials, see next 

subsection, where the particles do not interact except for a strong repulsive force that 

keeps the particles from overlapping/deforming too much1. With this procedure, one can 

generate very dense systems down to ε ~0.158. 

                                                 
1 After each expansion step, we check if any disks overlap by checking the condition 1−rij /d>10−5 for each 
particle pair. Below this limit, the overlap is neglected. If any particles do overlap, i.e. the total energy is 
E>0, the nonlinear conjugate gradient method is used to decrease the total energy by adjusting the position 
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3.2.4. Molecular dynamics (MD) 

Finally, a 2D discrete element method (DEM) or soft-sphere model is used to generate a 

random non-overlapping disks configuration. The motion of particles is described by 

Newton’s laws of motion. A characteristic feature of the soft-sphere models is that they 

are capable of handling multiple particle contacts, which are of importance when 

modeling dense, quasi-static systems. Particle overlaps are indicative of a collision. For 

all identified collisions, a contact model (here we use a simple spring/dash pot model, 

similar potential as Eq. (3)) is applied and the simulation is then advanced again in time 

[25]. The typical contact duration is: 

( )2

0/ , with 2 / / ,ct k m mπ ω ω η= = −                                                                       (4) 

where k, ω , 0η  and m are the spring stiffness, eigen-frequency of the contact, viscous 

damping and mass of the particles/fibres, respectively. Note that the integration of the 

equations of motion is stable only if the integration time-step, MDt∆ , is much smaller than 

ct . The difference to EM is that inertia (dynamical motion of particles) is taken into 

account in MD2. 

Having an initial fibre configuration on a regular lattice, we assign random velocities in 

random direction to each particle and run a MD simulation for sufficiently long time such 

that all particles are separated by the minimum gap (∆min). A random structure is obtained 

by taking a snapshot of the final fibre positions.  

In the following, we compare the statistics of the fibre arrangements generated by the 

four methods and investigate the influence of the packing generator algorithm on the 

macroscopic permeability of the medium, where [3-4] used the MC procedure only. 

 

3.3. Statistical analysis of the microstructure 

Various statistical descriptors have been proposed to characterize and classify 

microstructures based on the spatial arrangement of heterogeneities, see for example [26, 

                                                                                                                                                 
of disks so they no longer overlap (E=0). Therefore, in this method, the value of β will not affect the 
minimization procedure. 
2 Contact force parameters used in MD simulations: k=106 [kg/s2], m=100 kg, η0=10-4 [kg/s], ∆tMD=10-4 [s] 
with the total time of simulation tT=500 [s]. 
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27]. Popular among these is the radial (pair) distribution function g(r), which is defined 

as the probability of finding the centre of a fibre inside an annulus of internal radius r and 

thickness dr with centre at a randomly selected fibre. It is mathematically defined as: 

( )d1
( ) ,

2 d

K r
g r

r rπ
=    where  ( ) ( )2

1

.
N

k
k

A
K r I r

N =
= ∑                                                          (5) 

where ( )K r  is a second-order intensity function, also known as Ripley’s function [3-4, 

26] and ( )kI r  is defined as the number of centers of fibres that lie within a circle of 

radius r about an arbitrarily chosen fibre and N is the number of fibres in the observation 

area A. Given a Poisson point distribution, the complete randomness of the fibre 

distribution will assure that g(r)=1 (with some fluctuations) for all distances considered. 

A statistically valid fibre distribution without long-range order will have g(r) tending to 1 

when the distance r increases. The comparison of g(r) for packings generated with 

different methods is shown in Fig. 2(a). In this graph r varies from d (diameter of the 

fibre) to approximately 1/3 of the sample size to avoid the boundary (edge) effect on the 

statistics. Fig. 3 shows the actual area and the center area which we used to calculate g(r), 

in red color, for various creation methods. In all methods we have 800 fibres at constant 

porosity ε =0.6 with minimum inter fibre distance min∆ =0.05. Local maxima indicate the 

most frequent distances and local minima correspond to the least frequent distances 

between pairs. The first (highest) peak in the graph is caused by the physical area 

(excluded “volume”) of the fibres with virtual diameter d*. For larger r, we observe a 

number of oscillations until g(r) approaches the value of unity indicating the numerically 

generated microstructures are statistically random for larger r. The EM method has the 

largest peak at r/d~1.05 (minimum allowable inter fibre distance) and the most rapid 

decay with distance, followed by a second peak at r/d~2.1 (equivalent to r/d*~2), which is 

an indication of fibre agglomeration (or a clustered structure). For the RP algorithm the 

oscillations around the complete randomness value of g(r)=1 are most damped compared 

to the other methods, however, the location of local maxima/minima is almost the same 

as for MD and MC, which lead to the most similar g(r) among the four methods. For 

configurations with more fibres and different porosities (data not shown), qualitatively, 

the same trends are observed.   
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The fibre arrangement has a direct influence on the effective properties of the medium. In 

Fig. 2(b) the variation of the normalized permeability K/d2, as a function of the number of 

fibres N, is shown. As expected, the packings generated with MC, MD or RP (with 

similar fibre distribution) have practically the same permeability, especially for larger N. 

However, the clustered structure (generated by EM) has a lower permeability for all 

numbers of fibres. This is due to the fact that many particles are arranged along lines - 

sometimes with local square or triangle structure - but no evident long range order as one 

would have in a crystal (see Fig. 3 and the peak locations in Fig. 2(a)). This leads into 

more resistance to the flow (i.e. lower permeability) even at intermediate porosities (see 

next Section). By increasing the system size the standard deviation decreases but it 

remains largest – for EM – indicating correlations built into the method. For most data 

presented in Section 4, we stick to the MC procedure that generates the structures similar 

to what is observed in real composite manufacturing processes [23] and since it is faster 

than the MD method. More details on the effect of system size and boundary conditions 

on statistical descriptors and macroscopic permeability are provided in Appendix B. 

 

3.4. Isotropy and homogeneity of the packing 

Since the media studied here consist of randomly distributed fibres, they are expected to 

be isotropic (no preferential flow direction). Therefore, the normalized permeability as a 

function of porosity in both horizontal and vertical directions, as shown in Fig. 4, is 

independent of flow direction. As mentioned before, the EM approach tends to generate 

clustered packings unlike the MC procedure (or MD simulations, which create more 

homogenous structures). Fig. 4 shows that all methods (namely MC, MD and EM) create 

isotropic media (with respect to horizontal and vertical flow) for all porosities. For 

comparison, the numerical results of Sangani and Yao [28] and Chen and Papathanasiou 

[3] for transverse flow are also included in Fig. 4. The homogeneity of the packing has 

negligible effect on permeability at high porosity (ε >0.65), however, at lower porosities 

the clustered structure has lower permeability as compared to the homogenous 

configuration. The reason is that for dilute fibrous media there is no correlation between 

the solid fibre bundles, however, at lower porosities in the packing generated with the 

EM approach, we see local fibre clusters, which tend to block the channel and cause a 
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drop in permeability. This was confirmed by studying the velocity fields (not shown here) 

and is also visible in the PDF of neighbor distances. 

 

3.5. Effect of minimum inter-fibre distance (∆min) 

The minimum inter-fibre distance (∆min) was taken as 5% of the “true” fibre diameter, d 

in our simulations up to now to avoid complete blockage in 2D. In the following we scale 

the permeability values such that they collapse on a single curve valid for all values of 

∆min ranging from 0.2 to 0.005. Note that the lower the ∆min the more elements are needed 

to resolve the flow in the gaps between fibres. 

Fig. 5 shows the effect of ∆min on the fibre arrangements and fluid velocity. Note that 

large values of ∆min lead to local (triangular) ordering (Fig. 5(a)), whereas small ∆min 

result in patterns showing local fibre aggregation (Fig. 5(b)). We observe stagnancy of 

the fluid between fibre aggregates or within rings of close-by fibres, while a few major 

flow paths with relatively high flow speed exist in all configurations with disorder.  

The permeability, K/d2, for small porosity (i.e. the maximum random close packing 

fraction ~0.84 ( 0.16r
cε = ) [29], see the Appendix C.) saturates at an a-priori finite value. 

Larger minimal distances ∆min lead to over-proportionally larger permeability (plot not 

shown). When the data are scaled by the permeability expected for a periodic hexagonal 

cell as ( )
min

hex 2/K K d∆− , see Ref. [8], the data vanishes at a finite porosity, which decays 

with decaying ∆min. Therefore, we conclude that the minimal permeability of our random 

structure is somewhat lower than the one of a hexagonal lattice (see the inset in Fig. 6). In 

other words, the systems with more uniform and weak channels (Fig. 5(a)) have higher 

permeability than the systems with fewer dominant channels (Fig. 5(b)). 

Fig. 6 shows the effect of ∆min on the normalized permeability – after scaling with an 

appropriate permeability c 2/K d  that is obtained by multiplying the 
min

hex 2/K d∆  with a 

prefactor such that all the data collapse onto a single curve, i.e. Eq. (D.3) in appendix D. 

The minimal permeability for disordered fibre-arrays can then be cast into a 

formula:
min

2 hex 2/ /cK d K dη ∆≃ , with factor ( )0 min1 /η = + ∆ ∆  and 0 0.14∆ =  (fitting 

parameter) that accounts for the minimal inter fibre distance. The numerical values of the 
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critical porosity, 
min

hexε∆  and permeability 
min

hex 2/K d∆  (for a perfectly hexagonal lattice) and 

corrected permeability, c 2/K d  at different ∆min are given in Table 1. The scaling factor, 

η  was obtained by fitting the 
min

c hex/K K∆  ratios at different ∆min, using a least square 

approach. With increasing ∆min the scaling factor decreases towards unity and the 

corrected permeability values, c 2/K d , approach the hexagonal cell values. Note that the 

last data point at each ∆min branch is slightly below *order 0.3ε ≅  (see the arrows). Because 

all  * *
orderε ε>  can be considered as random (almost), whereas * *

orderε ε<  are partially 

ordered, we exclude the latter. The inset in Fig. 6 shows the zoom of permeability data 

before scaling at low porosities together with the perfectly hexagonal values obtained 

from lubrication theory [11] (red dashed line) and finite element results [8] (blue stars). 

The permeability of random fibre arrangements tends to be smaller than for hexagonally 

ordered arrays. In the next section, our attempt is to extend the lubrication theory for 

ordered arrays [11] into random configurations. 

 

3.6. Summary 

 In summary, the random generator algorithm can affect the local fibre distribution 

especially at low porosities. All methods used in this study generate isotropic structures 

with respect to vertical and horizontal direction. The EM approach used has created more 

heterogeneous packings compared to other methods.  

Note that in general, the optimum number of particles (as small as possible but large 

enough to represent bigger samples) depends on the porosity. Periodic boundary 

conditions can reduce this number since inhomogeneity at the walls is removed (see 

Appendix B). As standard N=800 was applied and, as before, the permeability is 

calculated on the center part of the system (see Fig. 3). 

Putting an artificial gap between fibres (∆min) changes the microstructure and accordingly 

the permeability of the packing, at high volume fractions (small ε ). As the main result of 

this section, correcting the permeability values with the empirical minimal permeability 

for random structures, c 2/K d , leads to perfect scaling (standard deviation discrepancy 

less than 5%) of all random/disordered structures data for all permeabilities, valid for all 



 14 

∆min, as shown in Fig. 6. Understanding the microscopic origin of this scaling is the 

subject of the next section. 

 

4. Theoretical prediction of the permeability 

 
In this section we present a microstructural model for predicting the macroscopic 

permeability based on the lubrication effect of the narrow/effective channels. 

 

4.1. Statistical characterization of effective channels 

Several statistical and structural descriptors, i.e., Delaunay triangulation (DT), Delaunay 

edges (DE), hydraulic diameter (Dh) and fibre/particle nearest neighbor distances nD , 

obtained from fibre distributions, are discussed here and used to characterize the narrow 

channels.  

 

4.1.1. Nearest neighbor distances 

Here we define the mean value of the n-th nearest neighbor distances nD  normalized 

with the diameter of the fibres ( ) /n nD d dγ = − . The diameter, d can be expressed in 

terms of macroscopic porosity as ( ) ( )4 1 /d ε λπ= −  where ( )1 / pVλ ε= −  is the 

number density (number of fibers per unit area) equal to 2 (800 fibres in a box of 20×20 

[m2]) in our simulations. Similarly, one can define the effective normalized n-th nearest 

neighbor distances as ( )* * */n nD d dγ = −  with ( )*
min1d d= + ∆ . The former, nγ , 

quantifies the channel width available for flow, while the latter is a measure for the 

effective distance due to the minimum inter fibre distance, which is relevant for 

microstructure but not so much for fluid flow.  

Fig. 7(a) and (b) show the 2nd and 1st nearest neighbor distances, respectively. Note that 

the network in Fig. 7(b) appears considerably more dilute than that in 7(a). While not 

percolating separately (a, b), the first and second neighbor network does percolate. Flow 

does less likely go through the narrowest gaps, but there are enough 2nd channels, so that 

the second neighbor distances should control the flow. 
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4.1.2. Normalized hydraulic diameter (Dh/d) 

Another measurable quantity that is frequently used in modeling of porous/fibrous 

structures is the hydraulic diameter Dh [1]. When one has obstacles like fibres (or 

particles) instead of straight pores, the hydraulic diameter can be defined as: 

( ) ( ) ( )
4 4 particle surface 4

, with
1 1 particle volume 1

v
h v

v v

SV d
D a

S a V d

ε ε ε
ε ε ε

= = = = = =
− − −

  ,              (6) 

with the total volume of the unit cell, V, the total wetted surface, Sv, and the specific 

surface area, av. Note that the hydraulic diameter, in this way, is expressed as a function 

of the measurable quantities porosity and specific surface area. The above value of av is 

for circles (cylinders) – for spheres one has av=6/d. Therefore the relation between 

normalized hydraulic diameter Dh/d and porosity for fibres will reduce to: 

( )1
hD

d

ε
ε

=
−

                                                                                                                     (7) 

Note that in the following the hydraulic diameter, even though it could be defined per 

particle or per Delaunay triangle, will only be used as averaged quantity. 

 

4.1.3. Delaunay triangulation (DT) 

A Delaunay triangulation (DT) is the set of lines joining a set of points such that each 

point is joined to its nearest neighbors [30]. It satisfies an “empty circle” property, i.e. the 

circumcircle of each triangle (formed by three points) does not contain any of the other 

points. It is the dual graph of the Voronoi diagram (VD) and has a node (fibre center) for 

every Voronoi cell and an edge between two nodes if the corresponding cells share an 

edge (see Fig. 7(c), the blue lines show the DT edges). This concept is suitable for the 

characterization of the arrangement of dispersed fibres [31]. The DT has many other 

applications such as finding the nearest neighbor, mesh generation and surface 

reconstruction, interpolation and extrapolation, strain calculation [32], etc. Here we used 

the statistics of the Delaunay edges as a descriptor to characterize the spatial dispersion of 

fibres. One average quantity is the mean value of all DT edge lengths p
DTe  normalized 

with the diameter of the fibres d, i.e. ( ) /p p
DT DTe d dγ = − . For a perfect triangular lattice 
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it reduces to exactly the inter fibre (surface-to-surface) distance and for the lowest 

porosity ( )( )* 1 / 2 3hexε π= −  one has min
p
DTγ = ∆ . 

Similarly, one can find the shortest Delaunay edges for each particle and then average 

over all particles, i.e., the first, ( )1 1 /p pe d dγ = − , the second, ( )2 2 /p pe d dγ = − , etc. 

Our numerical results show that 1,2,3 1,2,3
pγ γ≅  (for 1 1

pγ γ≅  see Fig. 8).  

 

4.1.4. Delaunay edges (DE) 

For a given Delaunay triangulation the local mass conservation implies that in steady 

state condition the net flow through all the DT edges belonging to one triangle is zero. 

Therefore, the characteristic length of these edges might also be useful to describe the 

macroscopic flow field. 

We define 1
Tγ  as the mean value of the shortest Delaunay edges 1

Te , (averaged over 

Delaunay triangles and not fibres) normalized by the fibre diameter, ( )1 1 /T Te d dγ = − . 

Fig. 7(d) shows these shortest edges. The red color shows the repeated edges of 

neighboring triangles. Note that the superposition of the network in Fig. 7(a) and (b) is 

very similar to (d) – not shown here. The shortest Delaunay triangle edges form a 

percolated edge-network, where empty “channels” indicate the regions (channels) in 

which the fluid is most likely flowing (fast). 

Fig. 8 shows the variation of all these descriptors as a function of porosity. The 

normalized mean nearest neighbor distances approach the minimum inter fibre distance 

(i.e. ∆min~0.05) at low porosities (locally crystalline structure). On the other hand, at high 

porosities we are reaching the analytical values of random point patterns at 1ε = .  

As expected, the values obtained by averaging the shortest Delaunay edges for each fibre 

1
pγ , match the results of nearest neighbor distances 1γ . Interestingly, we observe that the 

mean values of the 2nd nearest neighbors 2γ  (red squares) approximately match the 

values of the shortest DT edges 1
Tγ  (averaged over triangles). So far we have not found a 

mathematical proof for this observation. For regular (i.e. square or hexagonal) arrays, the 

statistical descriptors are the same (1 2 3 1
Tγ γ γ γ= = = ) and 1

Tγ  is thus a deterministic 
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function of porosity, see next section. Interestingly the values of p
DTγ  for random and 

hexagonal arrays are almost the same, showing that the mean value of neighboring fibre 

distances obtained by averaging over all DE does not depend much on the structure. 

Another interesting observation is that for ε <0.8 the normalized hydraulic diameter Dh/d 

has also the same trend as the shortest Delaunay edges and the 2nd nearest neighbor 

distances3 and, when scaled by a factor 1/6, even agrees quantitatively well. 

 

4.1.5. Microscopic channel width in terms of macroscopic porosity  

Based on a least square fit approach, an empirical expression is obtained for the mean 

values of the n-th nearest neighbor distances, nγ  as functions of porosity: 

/ 1n nD dγ = −          with            
1

1
1

n

n
n rp

cn

D

D

ξ
εϕ
ε

 −= +  − 
 ,                                            (8) 

where ( )min
r
cε ∆  and p

nD  are the corresponding critical porosity of a random packing 

with * 0.16cε ≅  and mean nearest neighbor distance for random points calculated 

analytically from Eq. (B.1), respectively. The quantities nϕ  and nξ  are fitting constants 

for a given n and, in general, weakly depend on ∆min. The numerical values of p
nD , r

cε , 

nϕ  and nξ  for n=1, 2, 3 and various ∆min are given in Table 2. Thus, one can easily 

estimate the n-th nearest neighbor distances of hard disc packings by only knowing its 

macroscopic porosity. Fig. 9 shows the variation of mean values of the 2nd nearest 

neighbors, 2γ  as function of porosity together with the best fits, Eq. (8), at different ∆min. 

At high porosities, ∆min has less effect on 2γ , however, by decreasing porosity, 2γ  has 

larger values at higher ∆min and approaches the limit value 2 minγ = ∆ . The inset of Fig. 9 

shows that by plotting the effective * *
2 2 / 1D dγ = −  against the effective porosity *ε , all 

data collapse and one gets the universal curve in Eq. (8) with 0.16r
cε ≅ , 2 0.35ϕ ≅  and 

2 0.7ξ ≅  corresponding to ∆min=0, i.e. *
2 2γ γ=  and *ε ε= . 

                                                 
3 This may explain the limitation/failure of capillary models such as the Carman-Kozeny (CK) equation at 
high porosities which are based on the hydraulic diameter concept. 
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One of our hypotheses is that the percolated network of the shortest (triangle) edges, 

1 2
Tγ γ≅ , controls the overall drag (permeability) of the fibrous material (which is 

confirmed a-posteriori by our numerical results below). However, the microstructure is 

controlled by *
2γ  which leads to larger excluded volume during packing generation. In the 

next subsection we show that, similar to regular fibre arrays [11], these channels between 

triangles are correlated with the macroscopic permeability of the porous medium for a 

very wide range of porosities.  

 

4.2. Permeability prediction in terms of effective channels 

Based on the Navier-Stokes equation, Gebart [11] derived the permeability of an 

idealized unidirectional reinforcement consisting of regularly ordered, parallel fibres both 

for flow along and for flow perpendicular to the fibres. The solution for flow along fibres 

has the same form as the CK equation [12], while the solution for transverse flow has a 

different form as: 

2.5

2

1
1 ,

1
cK

C
d

ε
ε

 −= −  − 
                                                                                                   (9) 

where cε  is the critical porosity below which there is no permeating flow and C is a 

geometric factor (
4

0.1, 1 0.2146
49 2

cC
πε

π
= ≅ = − ≅  for a square array and 

4
0.0578, 1 0.0931

9 6 2 3
cC

πε
π

= ≅ = − ≅  for a hexagonal array [8]). Gebart [11] 

presents numerical results, obtained using a finite difference solution of the NS equations 

that show excellent agreement with Eq. (9) up to porosities of ~0.65.  

In order to rewrite Eq. (9) in terms of 2γ  , we express the porosity as function of the 

lattice distance a and fiber-diameter d: 

( )

( )

2 2

2 2

1 1 , for hexagonal arrays
12 3

.
1

1 1 , for square arrays
4

c

c

c

d d

a a a

dd d

a a

πε ε
ε
επε ε

    − = = −     −    
⇒ = −    − = = −       

                  (10) 
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For regular arrays 1 2 3 1
Tγ γ γ γ= = = , whereas for random arrays 2 1

Tγ γ≃  (see Fig. 8), so 

that 2 2 / 1D dγ = −  can be written in terms of the lattice distance as: 

2 1
a

d
γ  = − 

 
 .                                                                                                                  (11) 

Inserting Eq. (11) into Eq. (10) and combining it with Eq. (9), leads to: 

2.5
22

K
C

d
γ=  ,                                                                                                                     (12) 

as exactly valid for regular square or hexagonal arrays at low and moderate porosities 

with corresponding C, see above.  

In this representation, the normalized permeability scales with the (for example 2nd) 

narrowest channels, i.e., 2γ , as a power law with power 2.5. Relation (12) is remarkable, 

since it enables one to accurately determine the macroscopic permeability of a given 

packing just by measuring the 2nd narrowest channels, i.e., 2γ , from particle positions or 

the narrowest Delaunay edges, i.e., 1
Tγ , from Delaunay triangles. Below, we numerically 

confirm the validity of Eq. (12) for both regular and also random configurations. 

The shortest Delaunay edges and the 2nd neighbor distances practically coincide and form 

the network of channels through which the flow must go. Therefore we expect that the 

parameter, which characterizes the system and correlates with the permeability, is 1
Tγ   or 

2γ . Fig. 10 shows the variation of the normalized permeability as a function of the 

statistical descriptors discussed in Sections 3. The macroscopic permeability almost 

correlates with the shortest Delaunay triangle edges as a power law, similar to Eq. (12) 

for regular arrays, in a wide range of porosity. The solid blue line is the best power law fit 

(with fixed power 2.5). The universal random configuration pre-factor (C~0.2) seems to 

be only weakly dependent on the minimum inter fibre distance, data not shown.  With 

decreasing porosity the data deviate from the solid line showing the appearance of 

ordering in the structure.  By correcting Eq. (12) as 

( )2.5
2 22

K
C

d
γ χ γ=        with        ( ) ( )2

2 01 me γχ γ χ −= − , 0 0.5χ ≅ , 3m ≅ .                       (13) 

we present a universal law for predicting the macroscopic permeability in terms of 2γ  

(with Eq. (8) as closing relation with porosity) in a wide range of porosities 
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( *0.3 0.95ε< < ) for disordered arrays. The exponential correction factor, ( )2χ γ  was 

obtained by least square fitting the ratio between numerical data and Eq. (12) and 

accounts for (partial) ordering effects. This observation is remarkable as it indicates that 

the Gebart lubrication theory (Eq. (12)), originally obtained for dense ordered arrays, is 

also valid for random arrays in moderate and dilute regimes by using the 2γ  or 1
Tγ  as the 

effective channel width. Fig. 11 shows the variation of the normalized permeability as 

function of 2γ  at different values of ∆min together with the proposed closed form relations 

in Eqs. (12) and (13). In contrast to Fig. 6, here, the permeability data are not corrected 

by Kc, but are collapsed as the microscopic effective channel width ( )*
2 2 2γ γ γ=  takes 

care of the effect of ∆min. For all values of ∆min, Eq. (13) correctly predicts the 

macroscopic permeability with maximum deviation of 10% for * 0.3ε > . More discussion 

on very dense regimes, i.e. * 0.3ε < , where we have long range correlations due to partial 

up to strong ordering, is given in Appendix C. For comparison, the analytical prediction 

for ordered arrays (square and hexagonal configurations), i.e. Eq. (12) with the same 

power 2.5 but different constants C, are also shown. 

 

5. Summary and conclusions 

 
A finite element method (FEM) based model has been employed to calculate the 

transverse permeability of random fibrous media composed of long unidirectional 

cylinders/fibres for a wide range of porosity. The microstructure of the fibrous media has 

been characterized using the pair distribution function and neighbor distance statistics. 

Providing information about short range correlations, these microstructure descriptors 

allow us to characterize the spatial heterogeneity of the fibre structures, construct 

computer generated microstructures for further simulation, or correlate the material 

microstructure to macroscopic properties as, e.g., permeability. The conclusions from our 

statistical analysis of the microstructures and the permeability are: 

• For relatively large systems, the packings obtained from different random 

generator algorithms are isotropic and homogenous (far away from the walls). 

Their properties are similar and independent of the system size, except for the 
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energy minimization (EM) approach, which generates clustered structures. 

Periodic boundary conditions reduce the minimum required number of fibres to 

reach size-independence. 

• By increasing porosity, the PDF of nearest neighbor distances will change from 

exponential to Gaussian, as relevant for random point patterns only. 

• The packings with higher inter fibre distance, ∆min, have more uniform and 

weaker flow channels and therefore higher permeability and the behavior is 

determined by ( ) ( )( )2*
min min, 1 1 1fε ε ε= ∆ = − − + ∆ . 

• All random structure permeability data (for all studied minimal inter-fibre 

distances) are scaled by subtracting the random packing minimal permeability  

min

2 hex 2/ /cK d K dη ∆≃  that is proportional to the equivalent minimum of a regular 

structure and a pre-factor that increases with decreasing minimal distance. The 

low porosity random regime cannot be reached, since partial ordering sets in 

below a certain threshold (* 0.3ε ≅ ). 

 

Based on the lubrication effect of the narrow channels, we found a universal power law 

relationship between the permeability values obtained from fluid flow simulations and 

the microscopic mean values of shortest Delaunay triangulation edges constructed on the 

fibre center positions. From the microscopic point of view, our numerical results show 

that the mean values of the 2nd nearest neighbors ( )2 2 /D d dγ = −  (averaged over all 

fibres) match the values of shortest DT edges ( )11 /T Te d dγ = −  (averaged over all 

triangles). Astonishingly, the proposed power law is valid for both ordered and 

disordered arrays at all porosities, given a correction dependent only on 2γ . The  

superposition of 1st and 2nd nearest neighbor channels forms a similar percolated network 

as the shortest DT edges, with average 1
Tγ , which dominate the flow since they represent 

the fluid channels through which the flow must go (with preference for the wider 2nd 

neighbor channels).  

In summary, a closed form relation for predicting the macroscopic permeability for 

ordered/disordered fibre arrangements is observed in terms of the microstructural average 
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channel width 2γ  as ( )22 2.5
2 0/ 1 mK d C e γγ χ −= − , valid for wide range of porosities and all 

values of inter-fibre distance ∆min. Note that Eq. (8) relates ( )*
2 2 2γ γ γ=  with ( )* * *

2 2γ γ ε=  

and ( )* *ε ε ε=  to macroscopic porosity and therefore closes this relation. 

The results obtained in this study and the general relationships proposed for the 

permeability, can be utilized for composite manufacturing, e.g. resin transfer moulding 

processes. Furthermore, our results can be used for validation of advanced models for 

particle-fluid interactions in a multi-scale coarse graining approach, as carried out in our 

ongoing work. By analogy, the permeability in 3D random packings should depend on 

the smallest faces of Delaunay tetrahedrons 3
1
T Dγ , possibly with the chance for similar 

unique scaling relations as in 2D, a prediction that waits for numerical/experimental 

proof.   
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Appendix A. Mesh sensitivity analysis  

 
Due to the difference in scale between domain size and gap size between neighboring 

fibers, this typically requires local mesh refinement. For different porosities, flow through 

random fiber arrangements was simulated at different mesh resolutions (number of 

elements, Ne). The dependence of the solution in terms of the calculated normalized 

permeability at dense, 0.4ε =  (in blue) and dilute, 0.8ε =  (in red) regimes is shown in 

Fig. A1. At larger porosities (dilute systems) less number of elements would be sufficient 

to get convergent solution. Our numerical results show that in all simulations we need at 

least ~10 rows of elements between neighboring particles to correctly capture the fluid 

behavior and obtain a converging solution. 

 

Appendix B. Study of the system size (edge) effects 
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The random fibrous structure should be large enough to capture the microscopic 

properties and/or the flow characteristics in the matrix. Increase in the system area 

implies a linear increase in the number of grid points in the computational mesh. 

Therefore, we need to find an optimum system size. Related to this, Grufman and Ellyin 

[33] determined a representative volume element size for composite laminate by applying 

the Kolmogorov goodness-of-fit test. Du and Ostoja-Starzewski  [34] studied the finite-

size scaling trend to RVE of the Darcy law for Stokesian flow in random porous media 

without invoking any periodic structure assumptions, but only assuming the 

microstructure’s statistics to be spatially homogeneous and ergodic. They show that the 

higher the density of random disks, the smaller the size of RVE pertaining to Darcy’s 

law. Trias et al. [35] show that the minimum system size for typical carbon fibre polymer 

composites is / 25L dΩ = =  (where d and L are the actual diameter of fibres and system 

length, respectively).  

To study the effect of system size, we use two statistical tools, namely the pair 

distribution function and the nearest neighbor distance, both measure short range 

correlations. The so-called “structure factor” for long range correlations is not addressed 

here.  

 

B.1. Pair distribution function g(r) 

In Fig. B1 the pair distribution function (g(r)) is plotted for different numbers of fibres at 

the two cases of (a) low porosity (dense system) ε =0.4 and (b) dilute system ε =0.9. At 

higher porosities, we observe that by using only the center part-away from the 

walls/boundaries, there is no systematic size dependence concerning short range order 

and increasing N does not create any substantial differences in g(r). However, for dense 

systems, the correlations reach to larger and larger distances and one need a bigger 

system so that the order does not “reach” the walls. The exponential decrease in the local 

peaks of g(r) at higher densities might explain the exponential distribution of nearest 

neighbor distances in the next subsection. The same trend was observed for periodic 

boundaries as the center area was used to calculate g(r) (data are not shown here). 
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Note that by knowing the optimum number of fibres, one can easily calculate the 

optimum system size as ( )( )/ / 4 1L d Nπ εΩ = = −  since 

( ) ( )2 21 / / 4pV V N d Lε π− ≡ =  with the volume of a single particle Vp. 

The pair distribution function, g(r), is useful in describing short- and medium- range 

averaged correlations among the fibres. 

 

 B.2. Nearest neighbor distance 

Nearest-neighbor distances are an essential class of spatial descriptors useful in materials 

science and other disciplines [36-37]. They are well established as a tool for qualitatively 

characterizing deviation from a ‘‘random’’ state. Given a set of points (fibre centers), the 

nearest neighbor distance distribution function for the n-th nearest neighbor is the 

probability density function ψn(r) such that ψn(r)dr is the probability of finding the n-th 

nearest neighbor (n=1,2,3,…, etc.) in the distance range r to (r+dr).  

The analytical prediction for the mean value of the n-th nearest neighbor distance p
nD  

is the first moment of the distribution function ψn(r), and for the uniform random spatial 

distribution of points is:  

( )
( ) 1/ 2

1/ 2
.

1 !
p

n

n
D

nπ λ
Γ +

=
−

                                                                                                (B.1) 

where ( )1 / pVλ ε= −  is the intensity (number of points per unit area) and Γ(n+1/2) is the 

gamma function4. While formulae have been derived that place bounds on p
nD  for 

equilibrium ensembles of monodisperse particles in two- and three-dimensions [32], 

exact analytical expressions are not available. Therefore, computer simulations are 

needed to calculate the mean value of the n-th nearest neighbor distances as a function of 

porosity (or volume fraction) for ensembles of mono(poly)disperse fibres, e.g. see Eq. 

(8). For more details see Section 4.1, where, among others, the mean normalized 1st and 

2nd nearest neighbor distances are used to characterize the effective/narrow channels and 

predict the sample permeability.  

                                                 
4 Note that the real unidirectional composite microstructures consist of distribution of aligned fibres of 
“finite” size that cannot be regarded as zero dimensional points. 
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The 1st nearest neighbor distance, 1
pD , is simply the minimum of all distances from one 

fibre to all others. Similar to the g(r) data, at low porosities we need more fibres (bigger 

systems) to get reasonable statistics for the distribution of short-range distances (N>800). 

However at high porosities, increasing the number of fibres will not much affect the 

probability distribution function (PDF). The distributions of 1st nearest neighbor distances 

were found to follow the exponential distribution at low porosities and normal (Gaussian) 

distribution at high porosity. By increasing the porosity the PDF of nearest neighbor 

distances will change from exponential to Gaussian, i.e. a random point patterns. 

Furthermore, by decreasing the porosity (i.e. going from 0.9 to 0.6), the probability of 

finding a particle at exactly 1.05d (i.e. minimum possible distance) becomes ~10 times 

larger (data not shown).  

 

B.3. Wall versus periodic boundaries 

Another factor that not only affects the fibre distribution but also the macroscopic 

permeability of the medium is the confining walls. In Fig. B2 the normalized 

permeability is plotted against number of fibres for different boundary conditions 

(periodic or walls at top and bottom of the cell) at (a) ε =0.4 and (b) ε =0.9. It shows that 

at low porosity, using the periodic boundary conditions can reduce the minimum required 

number of fibres (N>200). However, at high porosities the permeability becomes 

independent of the number of fibres for N>200 in both periodic and wall boundary 

conditions. It turns out that for systems with more than 800 fibres/cylinders the effect of 

finite size and type of boundary conditions (periodic/no-slip/symmetric) on the 

permeability of the given structure diminishes.  

 
Appendix C. Towards the dense regime 

 
In order to have a better model for the very dense regime, we correct the original 

lubrication theory for perfectly hexagonal arrays, i.e. Eq. (9), in this Appendix.  

As mentioned in section 3.5, the critical porosity obtained from computer simulations for 

the finite systems with walls is limited to 0.16r
cε ≅  [29]. By correcting the lubrication 
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theory of hexagonal arrays with 0.16r
cε = , one can predict the permeability at the 

random close packed limit more accurately as: 

 

2.5

*
2

1
1 .

1

rc
cK K

C
d

ε
ε

 −− = − 
 − 

                                                                                       (C.1) 

where C*~0.035 is obtained by fitting to the FEM results at low porosities.  Fig. C1 

shows the variation of the normalized permeability as a function of porosity. Note that as 

we scale the data with Kc, the permeability values for different ∆min, see the blue squares 

and the red triangles, collapse onto a single curve. As expected, Eq. (13), the proposed 

model based on shortest DT edges 1
Tγ  (or 2nd nearest neighbor distances, 2γ ) is valid at 

moderate and high porosities (i.e. the range of interest in composites manufacturing, 

* 0.3ε ≥ ), see the solid blue line. However, at very dense regime, i.e. * 0.3ε < , Eq. (C.1) 

fits better to our FE results, see the solid red line. For comparison, the analytical 

prediction for ordered arrays (square and hexagonal configurations), i.e. Eq. (12) is also 

shown with dashed lines. 

 

Appendix D. Purely empirical, macroscopic permeability-porosity relation 

based on asymptotic solutions 

 
In this appendix, based on analytical predictions of permeability for dilute and dense 

regimes, we present an empirical macroscopic relation for the permeability in terms of 

macroscopic porosity. Based on a unit cell approach, Drummond and Tahir [10] modeled 

analytically the flow around a fiber and obtained (applicable at high porosities): 

( ) ( ) ( ) ( ) ( ) ( )
( )

2 5
4

2

1 2.534 11
ln 1 1.497 2 1 0.739 1 .

32 1 2 1 1.2758 1
DK

d

ε ε
ε ε ε

ε ε
 − −

= − − − + − − − − + 
 − + − 

  (D.1) 

Similar to Ref. [8] and using the linear least square method, the linear correction, ( )g ε   

to the Drummond relation, leads to a corrected permeability for 0.7ε >  as: 

( )1 21 ,CD DK d K d ε= +      with        1 0.97d = ,  2 0.18d =  ,                                           (D.2) 
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with a maximum error of less than 5%. Similarly, the corrected lubrication theory of 

hexagonal arrays, 

2.5

2 * 1
/ 1

1

r
c

GK d C
ε
ε

 −= − 
 − 

 in Eq. (C.1) is valid with maximum 

discrepancy of less than 5% at low porosities, 0.5ε < . To combine these two limit cases, 

we propose the following empirical merging function:  

( ) ( )G CD GK K K K p ε= + −  with ( ) ( )( )1 tanh /

2
h t

p
ε ε ε

ε
+ −

= , 0.6hε ≅ , 0.1tε ≅ ,   (D.3) 

that is valid for the whole range of porosity, with maximum deviations of less than 5% 

that also includes the analytical relations for the limit cases, see the dashed blue line in 

Fig. 6. While the choice of ( )p ε  is arbitrary, the nonlinear least square fitting procedure 

is used to obtain the empirical coefficients hε  and tε .  
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Table 1: The values of the critical porosity, ( ) ( )
min

2hex *
min1 1 / 1hexε ε∆ = − − + ∆ with 

( )* 1 / 2 3 0.0931hexε π= − ≅ , and permeability (for a perfectly hexagonal lattice, 

min

hex 2/K d∆ , and corrected permeability for random lattices c 2/K d ) at different ∆min. 

∆min min

hexε∆  
min

hex 2/K d∆  c 2/K d  

0.2 0.3702 1.035 310−×  1.7 310−×  

0.1 0.2505 1.801 410−×  4.3 410−×  

0.05 0.1774 3.172 510−×  1.3 410−×  

0.025 0.1368 5.587 610−×  3.5 510−×  

0.005 0.1021 1.006 710−×  2.8 610−×  

 
 

Table 2: The numerical values of ( ) ( )2*
min1 1 / 1r

c rε ε= − − + ∆  with * 0.16rε ≅ , p
nD , 

nϕ  and nξ  for various n and ∆min which are obtained analytically from Eq. (B.1) and by 

least square fitting of numerical simulation in the range of *0.3 0.95ε< < . 

∆min n 
r
cε  p

nD  nϕ  nξ  

1 0.4167 0.3535 1.0727 0.7904 

2 0.4167 0.5303 0.3372 0.6790 0.2 

3 0.4167 0.6629 0.1049 0.2502 

1 0.3058 0.3535 1.0757 0.7910 

2 0.3058 0.5303 0.3509 0.7048 0.1 

3 0.3058 0.6629 0.1065 0.2454 

1 0.2381 0.3535 1.0732 0.7867 

2 0.2381 0.5303 0.3495 0.7017 0.05 

3 0.2381 0.6629 0.1064 0.2412 

1 0.2005 0.3535 1.0771 0.7887 

2 0.2005 0.5303 0.3557 0.7084 0.025 

3 0.2005 0.6629 0.1099 0.2567 

1 0.1683 0.3535 1.0806 0.7948 

2 0.1683 0.5303 0.3611 0.7314 0.005 

3 0.1683 0.6629 0.1123 0.2969 
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Figure captions: 

Fig. 1: Fibre distributions generated by a Monte Carlo procedure (see subsection 3.2), 
with 200 unidirectional cylinders, normal (y) to the flow direction (x), with minimum 
inter fibre distance ∆min=0.05 at porosity ε =0.6. At the top the diameter, d and virtual 
diameter ( )*

min1d d= + ∆  are shown, schematically. At the top 3D and bottom 2D 

representation of fibre distribution are shown. The zoom shows the fine, unstructured, 
triangular FEM mesh. 

Fig. 2: (a) plots of g(r) for 800 fibres generated by different methods with ∆min=0.05 at 
porosity ε =0.6, (b) comparison of the normalized permeability of the fibre arrangements 
from (a) plotted against the number of fibres. All data are averaged over 10 realizations 
with 104 perturbations. The error bars indicate the standard deviation. Larger numbers of 
perturbations do not lead to a visible difference. 

Fig. 3: Each image consists of 800 fibres with minimum inter fibre distance min∆  = 0.05 

and 0.6ε = . They are generated by (a) Random Placement (RP), (b) Monte Carlo (MC) 
procedure, (c) Energy Minimization (EM) approach and (d) Molecular Dynamics (MD) 
simulations. The red box shows the center area which has been used to calculate g(r). For 
the chosen reference particles only those in the inner red square are used, while the 
distances to all others are considered. 

Fig. 4: Normalized permeability as a function of porosity for homogenous (generated 
with MC procedure or MD simulations) and clustered correlated (generated with EM 
approach) structure in both horizontal and vertical directions. Error bars indicate standard 
deviation from 10 realizations. 

Fig. 5: Typical fibre distributions generated by a Monte Carlo (MC) procedure, each with 
800 fibres at ε =0.5 with minimum inter fibre distance (a) ∆min =0.2 ( *ε =0.28) and (b) 
∆min =0.005 ( *ε =0.49). The color code shows the horizontal velocity field in a pressure 
driven system. Only the center part of the system is shown. 

Fig. 6: Variation of corrected normalized permeability plotted against porosity for 
different minimum inter fibre distances ∆min, with N=800. The five arrows show the 
expected onset of ordering at *order 0.3ε ≈  for decreasing ∆min (from right to left). The 

dashed blue line shows the empirical merging function, Eq. (D.3), in appendix D. The 
inset shows the low permeability data without scaling at low porosities. The dashed red 
line and blue stars correspond to the periodic hexagonal cell values of lubrication theory 
[11] and finite element results [8], respectively. 

Fig. 7: Various microstructural descriptors used in this study: (a) The 2nd and (b) the 1st 
nearest neighbor distances plotted for each fibre. (c) The blue lines delineate the 
Delaunay triangles. (d) The minimum Delaunay edges plotted for each DT. The red lines 
show the repeated edges from neighboring triangles. All graphs show the center part of 
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800 randomly distributed fibres generated by the MC procedure at ε =0.6 with minimum 
inter fibre distance ∆min=0.05. 

Fig. 8: Variation of normalized mean nearest neighbor distances (1st, 2nd and 3rd), the 

mean length of all Delaunay edges ( )p
DTγ , the mean shortest Delaunay edge averaged 

over particles ( )1
pγ  and triangles ( )1

Tγ  and the normalized hydraulic diameter ( )/hD d as 

a function of porosity. Average is taken over 10 realizations with 800 randomly 
distributed fibres. Only the center part of the system is considered to avoid edge effects. 

Fig. 9: Variation of mean values of the 2nd nearest neighbors, 2γ  as function of porosity 
together with the best fits from Eq. (8) (solid lines) at different ∆min. The inset shows the 
scaled data by plotting *2γ  as function of effective porosity *ε . 

Fig. 10: Variation of normalized permeability, plotted as function of various statistical 
descriptors. 2nd nearest neighbor distance 2γ  (or shortest Delaunay edges, 1

Tγ ) show the 

best (almost power law) correlation in a wide range of porosity at ∆min=0.05. The solid 
blue line shows the power law fit. 

Fig. 11: Variation of normalized permeability as function of mean value of 2nd nearest 
neighbor distance, 2γ  at different values of ∆min.  

Fig. A1: Plot of normalized permeability for different resolutions (number of elements, 
Ne) at porosity 0.4ε =  (in blue) and 0.8ε =  (in red). 

Fig. B1: Plot of g(r) for different number of fibres (system size) at (a) porosity ε =0.4 
and (b) ε =0.9 from 10 realizations. The dashed line at g(r)=1 indicates a completely 
random point structure. The drop of the data comes from the finite size of the center area 
used for averaging (see Fig. 3). 

Fig. B2: Variation of normalized permeability versus number of fibres with different 
boundary conditions at (a) porosity ε =0.4 and (b) ε =0.9. Fibre distributions generated 
by MC procedure with 104 perturbations and minimum inter fibre distance ∆min =0.05. 

Fig. C1: Variation of scaled normalized permeability plotted against porosity. 
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