Micro-Macro relations for flow through random arsayf cylinders

K. Yazdchi, S. Srivastava and S. Luding

Multi Scale Mechanics (MSM), Faculty of Engineering Technol ogy,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

The transverse permeability for creeping flow tlgiownidirectional random arrays of
fibres with various structures is revisited themadty and numerically using the finite
element method (FEM). The microstructure at varipasosities has a strong effect on
the transport properties, like permeability, ofrfibs materials. We compare different
microstructures (due to four random generator #lyos) as well as the effect of
boundary conditions, finite size, homogeneity asdtropy of the structure on the
macroscopic permeability of the fibrous medium.nReability data for different minimal
distances collapse when their minimal value is gbed, which yields an empirical
macroscopic permeability master function of pososkurthermore, as main result, a
microstructural model is developed based on thedation effect in the narrow channels
between neighboring fibres. The numerical experimsnggest a unique, scaling power
law relationship between the permeability obtaifreen fluid flow simulations and the
mean value of the shortest Delaunay triangulatages (constructed using the centers of
the fibres), which is identical to the averagedoselcnearest neighbor fibre distances.
This universal lubrication relation, as valid invade range of porosities, accounts for the
microstructure, e.g. hexagonally ordered or dis@ddibrous media. It is complemented
by a closure relation that relates the effectiveroscopic length to the effective packing

fraction, which controls the transition from diserdo order.

Keywords: A. Fibres; B. Transport properties; C. StatistiCs;Finite element analysis
(FEA); Random structure

B Corresponding author: K. Yazdchi (k.yazdchi@uttean), Tel: +31534893345, Fax: +31534893695



1. Introduction

Understanding and predicting transport propertiesparous media is essential in
chemical, mechanical and petroleum industries Thjs has motivated the development
of relationships between macroscopic parametéws,dermeability, and microstructural
parameters, like fibre arrangements, shape andtatien or tortuosity (flow path) [2].
Most porous media are particulate, but some areposed of long particles/cylinders
and, therefore, may be considered as fibrous mé&timmmon examples of fibrous media
include composite materials, industrial filtersylbgical tissues, etc.

Resin transfer molding (RTM) is an efficient andduently used process for producing
fibre reinforced polymer composites with simplecomplex shapes. The permeability is
essential in such process and can be determine@rigus methods, e.g., experimental
measurements, numerical calculations or analytigakdictions. Experimental
measurements often require a large number of direfontrolled experiments and are
normally expensive. Analytical predictions based theoretical assumptions (and
validated by experiments and/or numerical studaes)often applicable in a certain range
of fibre volume fraction only.

With the recent progress in computational and nigaktools, one can now predict the
macroscopic properties of fiborous materials witthea complex microstructure. Chen
and Papathanasiou [3-4] computationally investdjatte flow across randomly
distributed unidirectional arrays using the bougdgement method (BEM) and found a
direct correlation between permeability and the mnewearest inter-fibre spacing.
Papathanasiou [5] performed a similar study fordimactional square arrays of fibre
clusters (tows) using the BEM. He showed that fifrecBve permeability of assemblies
of fibre clusters depends strongly on the intra-foevosity only at low values of the
inter-tow porosity (high density). Song et al. [@lculated the permeability tensor for a
3D circular braided preform by solving a boundargljtem of a periodic unit cell. The
flow field through the unit cell is then obtained brsing a 3D finite volume method and
Darcy’s law is utilized to obtain the permeabilitgnsor. Their numerical results show
that the permeability in the machine directionhe preform was the highest among three

directions. Takano et al. [7] employed an asymptbtimogenization theory to evaluate



the permeability of woven fabrics with the helpfofite element method (FEM). They
investigated the effect of woven architecture anpgkrmeability characteristics for plain-
woven fabrics with and without shearing deformatibnour recent study [8], the effect
of several microstructural parameters such as fidnape and orientation on the
macroscopic permeability of 2D regular fibrous naedias investigated using a large set
of FEM simulations.

The permeability of ordered (regular) fiborous mediaknown to be a deterministic
function of their porosity in the limit of large drsmall volume fractions. However, the
parameters affecting the permeability of disordefreshdom) fibre arrays are not very
well understood. Random fibre arrays are, in ppglesi well suited for analysis using
effective medium approaches. Based on averagingahservation equations, Koch and
Brady [9] derived a relation for the effective diivity coefficients in the limit of high
porosity £, however, that remains questionable in the porosihge of interest in
composites manufacturing, e.g., 0&<0.9. Similarly, valid for larges, Drummond and
Tahir [10] modeled the flow around a fibre usingrat cell approach by assuming that all
fibres in a fibrous medium experience the same fli@ld (i.e. no interaction between
them) and, therefore, the permeability can be obthiby adding the resistance of
individual particles/fibres. The dependence of peability in this limit involves
logarithmic, linear and quadratic functions of #wdid concentration.

Based on the lubrication approximation and assuntivag the narrow gaps between
adjacent cylinders dominate the flow resistancesfoall £, Gebart [11] presented an
expression for the transverse permeability of sguarhexagonally ordered arrays. He
found that the dependence of permeability on fiowkime fraction in this limit is a
power law.

The earliest and most widely applied models in twmposites literature, i.e.,
intermediate porosity regimes, for predicting peabibty are capillary models such as
the Carman-Kozeny (CK) equation [12] where a caonstdozeny constant) is supposed
to account for the structure at different porositigvhile some studies have reported
success with this relation [13], discrepancies ale reported [14]. Results from
numerical modeling [3] and experimental studies] [tlicate that, at best, capillary

models represent the behavior of fibrous matemwaisr a limited porosity range. The



value of the ‘Kozeny constant’, however, is usuallyite different from its theoretical
value for idealized systems like random sphere ipgsk In essence, a function of
porosity alone is not sufficient to explain the etved variability in permeability data.
The fact that the Kozeny constant needs to be erpatally measured, limits further the
usefulness of this model for predictive purposest Bedimentary rocks, especially
sandstones, Katz and Thompson [16] found, usingopsion theory, a power law
relation between the macroscopic permeability amgostructural descriptors for rocks,
i.e. the critical pore diameter. To our knowledgelation between microstructure and
macroscopic permeability of the fibrous mediumeltomposite materials, has not been
studied systematically.

The objective of this study is to computationallywestigate the effects of micro-
structural parameters such as fibre arrangement@mmacroscopic permeability by
using a FEM for fluid flow over a wide range of psity. To this end, the macro
description of fluid flow equations and the numalitool employed to solve these
equations are presented in Section 2. Volumes ftérednt sizes, formed by randomly
placed non-overlapping arrays of parallel cylindeespendicular to the flow direction,
are constructed in four different ways in SectiodBe size effect, the homogeneity and
the isotropy of the fibre arrangements are analyzgidg several statistical tools. In
Section 4, we present a microstructural model basedhe lubrication effect of the
narrow channels as an attempt to (i) combine otiowa simulations in a wide range of
porosity and (i) relate the micro to the macrog@dies of fibrous materials. The paper is

concluded in Section 5 with a summary and outl@vkdture work.

2. Mathematical formulation and methodology

This Section is dedicated to the macroscopic detsoni of the flow equations applied in
fibrous structures and our methodology, e.g., tie¢hod of discretization of the domain
and boundary conditions applied to our FEM baseuiksitions.

2.1. Macroscopic description of the flow equations



The velocity and pressure profiles through thediilsr media can be obtained from the
solution of the conservation laws, namely, the icwitly equation (conservation of mass)
and the Navier—Stokes (NS) equations (conservaifomomentum). In the absence of
body forces and for Newtonian fluid, incompressilsteady state flow, the equations of
conservation of mass and momentum are:
O =0,
p(ulDu) =-0Op+ pJu.

wherep, u, p andu are density, velocity, pressure and viscosityheffluid, respectively.

(1)

According to Darcy’s law for unidirectional flow ribugh a porous medium in the

1
creeping flow regime, the superficial fluid veIgciLJ :VI uav (V, V; are the total
Vf

volume and volume of the fluid) is proportionalthe pressure gradient:

u=-Fmp. @)

U

The proportionality constang, is called the permeability of the medium, whittosgly
depends on the microstructure (such as fibre aeraegt, void connectivity and
inhomogeneity of the medium) and also on poroftyincreasing the pressure gradient,
one can observe a typical departure from Darcyis(taeeping flow) at sufficiently high
Reynolds number, Re>0.1 [17]. In order to correctdpture the influence of the inertial
term, Yazdchi et al. [17] showed that the origiBercy’s Law can be extended with a
power law correction with powers between 2 andr3dgular structures. Koch and Ladd
[18] simulated moderate Reynolds number flows tghoperiodic and random arrays of
aligned cylinders. They showed that the quadratctial effect became smaller at higher
volume fractions. Similarly, Hill et al. [19-20] emined the effect of fluid inertia in
cubic, face-centered cubic and random arrays oérgghby means of lattice-Boltzmann
simulations. They found good agreement between siheulations and the Ergun
correlation at solid volume fractions approachihg tlosely-packed limit at moderate
Reynolds number (Re<100). However, in the followiwe restrict ourselves to creeping

flow regime, i.e. R 1.

2.2. Computational method



The FEM software ANSY%is used to calculate the fluid velocity from distization of
Eq. (1) into linear triangular elements. They wénen solved using the segregated,
sequential solution algorithm. This means that elemmatrices are formed, assembled
and the resulting systems solved for each degrekeefilom separately. Some more
technical details are given in Ref. [8]. Afterwartise superficial velocity and, using Eq.
(2), the permeability of the fibrous material istaibed. Fig. 1 shows a 3D/2D
representation of 200 randomly distributed fibresmmal to the flow direction at porosity

£=0.6 with minimum inter fibre distanck,,=0.05d (d is the diameter of the fibres) or
the minimum dimensionless distanca,,, =9,,,/d =0.05. Similar to Chen and

Papathanasiou [3, 4], a minimal distance is neede&2D to avoid complete blockage.
The microstructural parameters, namely the systére, smethod of generation,
homogeneity and isotropy of the structure will becdssed in more details in the next
Section. At the left and right boundary pressurses and at the top and bottom wall
surfaces (z direction) and at the surface of thieégbes/fibres no-slip boundary conditions
are applied. Some simulations are formed with jgiciboundaries instead of walls with
normal in z direction. Fibres are assumed to bg larg so that a 2D solution can be
applied. A typical unstructured, fine and trianguEM mesh is also shown in Fig. 1.
The mesh size effect is examined by comparing thailation results for different
resolutions. The range of number of elements igingrfrom 5x10° to 1 depending on
the porosity regime. The lower the porosity the enelements are needed in order to
resolve the flow within the neighboring fibres, s&ppendix A for more details. To
obtain good statistical accuracy, the permeabiliglues were averaged over 10

realizations.

3. Generation of the fibrous microstructure

Developing a model for predicting the permeabildg a function of porosity and
structure of the fibrous materials would help taluee the experiments in liquid
composite molding (LCM) processes such as RTM emranfusion. Furthermore, by
understanding the physics of the flow through suchterials, one may tailor the

microstructure such that it has both the desiradfarcing capability and also the



permeability to be filled efficiently. To get retike evidence and to quantify the non-
uniform spatial distribution of fibres, several mustructural characteristics of fibrous
material will be discussed here in detalil.

Note that to ensure a gap between particlesn), we assign a virtual diameter
d =d(1+4,,) to each fiber, leading to the virtual porosity=1-(1-¢)(1+A,,.)",

min

see Fig. 1, which has been used for packing geoeriatthe rest of this section.

3.1. Generating an appropriate random structure

A representative volume element (RVE) is a subdimisof the material that has

properties consistent with those of the whole systd plays a central role in the

mechanics and physics of random media with a goptedict their effective properties.

Most of them rely on the assumption of a periodstridbution of fibres, i.e. the structures
at the boundaries are similar to those in the ddtkwever, realistic media are finite and
confined with walls. Some systems can be very |lagdhat boundary effects can be
neglected; on the other hand, in micro-systems effext of the walls might show up.

Therefore, unless specified otherwise, in the @& stthe paper we consider a 2D
representation of the fibrous composite in whiah fibres are randomly distributed in a
square domain and confined by walls with normat idirection. In order to understand

the wall-effects, we will vary the system size (8gpendix B for details).

3.2. Method of generation

To generate random, non-overlapping fibre arraysuge different algorithms, namely,
random placement (RP), a Monte Carlo (MC) procedaneenergy minimization (EM)
approach and molecular dynamic (MD) simulationsteNibat in all methods, we have a

minimal distanceAmin) between fibres to avoid complete blockage.

3.2.1. Random placement (RP)

In RP the position of fibres is randomly drawn fr@amuniform distribution; then this
location is taken as valid if it does not overlapraviously positioned fibre. The insertion
of fibres will continue until it reaches the desineumber of fibres. This process leads to

an asymptotic jamming limit since the space avélao place successive particles



decreases with the addition of each new partidie minimum porosity for RP in 2D is

estimated to be ~0.447 [21], and has found to b4530[22] via computer simulations.

3.2.2. Monte Carlo (MC) procedure

Given an initial fibre configuration on a trianguliattice, the MC procedure perturbs
fibre centre locations in randomly chosen dirediand magnitudes [3-4, 23]. The
perturbation is rejected if it leads to overlaphnat neighboring disk. One step consists of
trying to move each disk once. We use up t8 4@ps for each realization at low
porosities to get a good random configuration ttee MC process should generate a
random position field which is short range correthtHowever, at the lowest porosity,
the particles remain ordered and show some depeadem the number of
steps/perturbations, even for the longest simulatid-or high porosities, the structures
show no dependence on number of MC perturbatiomse®er, the MC algorithm can

generate denser systems as compared to RP.

3.2.3. Energy Minimization (EM) approach

In the EM approach, infinitesimal disks are plaeedandom positions in the system.
Then, they are gradually expanded and moved at stghto prevent particles from
overlapping. When the desired porosity is reached @lgorithm terminates [24]. We
assume that the particles interact via the so#mgal given by:

©)

where S is the characteristic energy scale apds the separation of particlesandj.

Potential of this form was motivated by simulatioh granular materials, see next
subsection, where the particles do not interacepixfor a strong repulsive force that
keeps the particles from overlapping/deforming mech'. With this procedure, one can

generate very dense systems dowg td).158.

! After each expansion step, we check if any diskslap by checking the condition t:IH—/d>10‘5 for each
particle pair. Below this limit, the overlap is hegted. If any particles do overlap, i.e. the taakrgy is
E>0, the nonlinear conjugate gradient method is tigetecrease the total energy by adjusting thetipasi



3.2.4. Molecular dynamics (MD)

Finally, a 2D discrete element method (DEM) or sphere model is used to generate a
random non-overlapping disks configuration. The iorotof particles is described by
Newton’s laws of motion. A characteristic featuffetloe soft-sphere models is that they
are capable of handling multiple particle contactdiich are of importance when
modeling dense, quasi-static systems. Particlelap®iare indicative of a collision. For
all identified collisions, a contact model (here wse a simple spring/dash pot model,
similar potential as Eq. (3)) is applied and thawdation is then advanced again in time

[25]. The typical contact duration is:

t, =7/ w, with a)=\/2k/m—(/70/m)2, (4)
wherek, w, 77, andm are the spring stiffness, eigen-frequency of thetact, viscous

damping and mass of the particles/fibres, respegtilNote that the integration of the

equations of motion is stable only if the integyattime-step At,,, , is much smaller than
t.. The difference to EM is that inertia (dynamicabtran of particles) is taken into

account in MB.

Having an initial fibre configuration on a regulattice, we assign random velocities in
random direction to each particle and run a MD satmon for sufficiently long time such
that all particles are separated by the minimum(gap). A random structure is obtained
by taking a snapshot of the final fibre positions.

In the following, we compare the statistics of fitee arrangements generated by the
four methods and investigate the influence of thekpg generator algorithm on the

macroscopic permeability of the medium, where [3ig8d the MC procedure only.

3.3. Satistical analysis of the microstructure
Various statistical descriptors have been proposedcharacterize and classify

microstructures based on the spatial arrangememetefogeneities, see for example [26,

of disks so they no longer overlag=0Q). Therefore, in this method, the valuefofwvill not affect the
minimization procedure.

2 Contact force parameters used in MD simulatiémd0® [kg/s], m=100 kg,7,=10* [kg/s], Atyp=10" [s]
with the total time of simulatioy=500 [s].



27]. Popular among these is the radial (pair) ithstion functiong(r), which is defined
as the probability of finding the centre of a filmside an annulus of internal radiuand

thickness dwith centre at a randomly selected fibre. It igmeanatically defined as:

1 dK(r Ad
g(r):E#, where K(r):WkZ:;‘Ik(r). (5)

where K(r) Is a second-order intensity function, also knowrRapley’s function [3-4,

26] and |, (r) is defined as the number of centers of fibres tigawvithin a circle of

radiusr about an arbitrarily chosen fibre aNds the number of fibres in the observation
area A. Given a Poisson point distribution, the completmdomness of the fibre
distribution will assure thag(r)=1 (with some fluctuations) for all distances caesed.

A statistically valid fibre distribution without fig-range order will havg(r) tending to 1
when the distance increases. The comparison gfr) for packings generated with
different methods is shown in Fig. 2(a). In thiggnr varies fromd (diameter of the
fibre) to approximately 1/3 of the sample size void the boundary (edge) effect on the
statistics. Fig. 3 shows the actual area and theecarea which we used to calculg(e),

in red color, for various creation methods. Inm#thods we have 800 fibres at constant

porosity £=0.6 with minimum inter fibre distanc&,,,=0.05. Local maxima indicate the

most frequent distances and local minima correspnthe least frequent distances
between pairs. The first (highest) peak in the lgr&p caused by the physical area
(excluded “volume”) of the fibres with virtual diaterd. For largerr, we observe a
number of oscillations untd(r) approaches the value of unity indicating the nucady
generated microstructures are statistically rand@margerr. The EM method has the
largest peak at/d~1.05 (minimum allowable inter fibre distance) ah@ most rapid
decay with distance, followed by a second peakda®.1 (equivalent to/d ~2), which is
an indication of fibre agglomeration (or a clustestructure). For the RP algorithm the
oscillations around the complete randomness valggrp=1 are most damped compared
to the other methods, however, the location ofllocaxima/minima is almost the same
as for MD and MC, which lead to the most simi¢fr) among the four methods. For
configurations with more fibres and different paties (data not shown), qualitatively,

the same trends are observed.
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The fibre arrangement has a direct influence oreffextive properties of the medium. In
Fig. 2(b) the variation of the normalized permeapK/d?, as a function of the number of
fibres N, is shown. As expected, the packings generated M€, MD or RP (with
similar fibre distribution) have practically thensa permeability, especially for largiir
However, the clustered structure (generated by BEBY a lower permeability for all
numbers of fibres. This is due to the fact that ynparticles are arranged along lines -
sometimes with local square or triangle structuset-no evident long range order as one
would have in a crystal (see Fig. 3 and the peaétions in Fig. 2(a)). This leads into
more resistance to the flow (i.e. lower permealilgven at intermediate porosities (see
next Section). By increasing the system size tlaadstrd deviation decreases but it
remains largest — for EM — indicating correlatidnslt into the method. For most data
presented in Section 4, we stick to the MC procedioat generates the structures similar
to what is observed in real composite manufactupirggesses [23] and since it is faster
than the MD method. More details on the effectysftem size and boundary conditions

on statistical descriptors and macroscopic perntigalre provided in Appendix B.

3.4. Isotropy and homogeneity of the packing

Since the media studied here consist of randondyiduted fibres, they are expected to
be isotropic (no preferential flow direction). Théare, the normalized permeability as a
function of porosity in both horizontal and vertiahirections, as shown in Fig. 4, is
independent of flow direction. As mentioned befdhe EM approach tends to generate
clustered packings unlike the MC procedure (or MBugations, which create more
homogenous structures). Fig. 4 shows that all nustifipamely MC, MD and EM) create
isotropic media (with respect to horizontal andtieat flow) for all porosities. For
comparison, the numerical results of Sangani anal [28] and Chen and Papathanasiou
[3] for transverse flow are also included in Fig.The homogeneity of the packing has
negligible effect on permeability at high porog(ty>0.65), however, at lower porosities
the clustered structure has lower permeability asnpared to the homogenous
configuration. The reason is that for dilute fibsomedia there is no correlation between
the solid fibre bundles, however, at lower poresitin the packing generated with the

EM approach, we see local fibre clusters, whickdtemblock the channel and cause a

11



drop in permeability. This was confirmed by studythe velocity fields (not shown here)

and is also visible in the PDF of neighbor distance

3.5. Effect of minimum inter-fibre distance (Amin)

The minimum inter-fibre distance i,) was taken as 5% of the “true” fibre diametér,
in our simulations up to now to avoid complete kbkge in 2D. In the following we scale
the permeability values such that they collapsea @ingle curve valid for all values of
Amin ranging from 0.2 to 0.005. Note that the lowerAhg the more elements are needed
to resolve the flow in the gaps between fibres.

Fig. 5 shows the effect af,, on the fibre arrangements and fluid velocity. Nttat
large values of\n, lead to local (triangular) ordering (Fig. 5(a))heveas smalhmin
result in patterns showing local fibre aggregati{brg. 5(b)). We observe stagnancy of
the fluid between fibre aggregates or within rimjsclose-by fibres, while a few major
flow paths with relatively high flow speed existatt configurations with disorder.

The permeability,K/d?, for small porosity (i.e. the maximum random clgsacking
fraction ~0.84 €, =0.16) [29], see the Appendix C.) saturates at an arifiiote value.
Larger minimal distanceAnmi, lead to over-proportionally larger permeabilityafpnot

shown). When the data are scaled by the permaabijiected for a periodic hexagonal

cell as(K —ngx )/dz, see Ref. [8], the data vanishes at a finite poroshich decays

with decayingAnin. Therefore, we conclude that the minimal permésilf our random
structure is somewhat lower than the one of a henadattice (see the inset in Fig. 6). In
other words, the systems with more uniform and wa#nnels (Fig. 5(a)) have higher
permeability than the systems with fewer domindranmels (Fig. 5(b)).

Fig. 6 shows the effect af.,, on the normalized permeability — after scalinghwain
appropriate permeabilityK®/d?* that is obtained by multiplying thé('g:ij /d? with a
prefactor such that all the data collapse ontmglsicurve, i.e. Eq. (D.3) in appendix D.
The minimal permeability for disordered fibre-agsaycan then be cast into a
formula:K®/d? =nK,* /d?, with factor 7=(1+A,/A,,) and A,=0.14 (fiting

parameter) that accounts for the minimal interefidistance. The numerical values of the

12



critical porosity, £, and permeabilitng‘:z /d? (for a perfectly hexagonal lattice) and

corrected permeabilityk ®/d? at differentAn, are given in Table 1. The scaling factor,
n was obtained by fitting theKC/KK:i: ratios at differentAm, using a least square

approach. With increasingmin the scaling factor decreases towards unity and the

corrected permeability value® °/d?, approach the hexagonal cell values. Note that the

last data point at eadkmin branch is slightly belowe, .. [10.3 (see the arrows). Because

rder

all & >¢

order

can be considered as random (almost), wheeease, ., are partially

rder
ordered, we exclude the latter. The inset in Fighéws the zoom of permeability data
before scaling at low porosities together with pesfectly hexagonal values obtained
from lubrication theory [11] (red dashed line) dimdte element results [8] (blue stars).
The permeability of random fibre arrangements tdondse smaller than for hexagonally
ordered arrays. In the next section, our attempb isxtend the lubrication theory for

ordered arrays [11] into random configurations.

3.6. Summary

In summary, the random generator algorithm caecafthe local fibre distribution
especially at low porosities. All methods usedhis tstudy generate isotropic structures
with respect to vertical and horizontal directidihe EM approach used has created more
heterogeneous packings compared to other methods.

Note that in general, the optimum number of paticlas small as possible but large
enough to represent bigger samples) depends onpdhesity. Periodic boundary
conditions can reduce this number since inhomogerai the walls is removed (see
Appendix B). As standardN=800 was applied and, as before, the permeabity i
calculated on the center part of the system (sge3fi

Putting an artificial gap between fibres,{,) changes the microstructure and accordingly
the permeability of the packing, at high volumectians (smallg). As the main result of

this section, correcting the permeability valueshwhe empirical minimal permeability
for random structuresiK®/d?, leads to perfect scaling (standard deviationrdsancy

less than 5%) of all random/disordered structueda tbr all permeabilities, valid for all

13



Amin, @S shown in Fig. 6. Understanding the microscapigin of this scaling is the
subject of the next section.

4. Theoretical prediction of the permeability

In this section we present a microstructural mofiel predicting the macroscopic

permeability based on the lubrication effect of tlagrow/effective channels.

4.1. Satistical characterization of effective channels

Several statistical and structural descriptors, Delaunay triangulation (DT), Delaunay
edges (DE), hydraulic diameteDy) and fibre/particle nearest neighbor distantBs),

obtained from fibre distributions, are discussererand used to characterize the narrow

channels.

4.1.1. Nearest neighbor distances

Here we define the mean value of tivh nearest neighbor distancé®,) normalized

with the diameter of the fibreg, =((D,)~d)/d. The diameterd can be expressed in

terms of macroscopic porosity as$=,/4(1-¢)/(Am) where A=(1-¢)/V, is the
number density (number of fibers per unit area)aétmu 2 (800 fibres in a box of 2@0

[m?]) in our simulations. Similarly, one can define taffective normalized-th nearest
neighbor distances ay/, =((Dn>—d*)/d* with d" =d(1+A,,). The former, y,,

guantifies the channel width available for flow, ilghthe latter is a measure for the
effective distance due to the minimum inter fibristahce, which is relevant for
microstructure but not so much for fluid flow.

Fig. 7(a) and (b) show thé2and £' nearest neighbor distances, respectively. Note tha
the network in Fig. 7(b) appears considerably nahate than that in 7(a). While not
percolating separately (a, b), the first and seaw#ighbor network does percolate. Flow
does less likely go through the narrowest gapsthre are enougH'®channels, so that

the second neighbor distances should control dve. fl
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4.1.2. Normalized hydraulic diameter (Dy/d)
Another measurable quantity that is frequently usedmodeling of porous/fibrous
structures is the hydraulic diametBy, [1]. When one has obstacles like fibres (or

particles) instead of straight pores, the hydradigeneter can be defined as:

_4eV 4 : _ particle surface. S, :
D, = = = ., with a, = : = -
S (1-&a (1-¢) particle volume ( &)V d

, (6)

with the total volume of the unit celN/, the total wetted surfac&, and the specific
surface areag,. Note that the hydraulic diameter, in this wayexpressed as a function
of the measurable quantities porosity and spesiiitace area. The above valueapis
for circles (cylinders) — for spheres one h@s6/d. Therefore the relation between
normalized hydraulic diamet&;/d and porosity for fibres will reduce to:

(7)

Note that in the following the hydraulic diameteken though it could be defined per
particle or per Delaunay triangle, will only be dses averaged quantity.

4.1.3. Delaunay triangulation (DT)

A Delaunay triangulation (DT) is the set of lin@snjng a set of points such that each
point is joined to its nearest neighbors [30] atisfies an “empty circle” property, i.e. the
circumcircle of each triangle (formed by three pgjrdoes not contain any of the other
points. It is the dual graph of the Voronoi diagr&rid) and has a node (fibre center) for
every Voronoi cell and an edge between two nodekeifcorresponding cells share an
edge (see Fig. 7(c), the blue lines show the DTegddrhis concept is suitable for the
characterization of the arrangement of disperskredi [31]. The DT has many other
applications such as finding the nearest neighboesh generation and surface
reconstruction, interpolation and extrapolatiomaist calculation [32], etc. Here we used

the statistics of the Delaunay edges as a desctiptharacterize the spatial dispersion of

fibres. One average quantity is the mean valudl @B edge Iengths<e§T> normalized

with the diameter of the fibreg i.e. yg; :(<e§T>—d)/d . For a perfect triangular lattice

15



it reduces to exactly the inter fibre (surface-tiofzce) distance and for the lowest
porosity &, = (1— ﬂ/(Z\fB)) one hasy®, =4,
Similarly, one can find the shortest Delaunay edgesach particle and then average

over all particles, i.e., the first :(<ef>—d)/d , the secondy;} :(<e§>—d)/d, etc.

Our numerical results show thgf, , Oy, , . (for y;° Oy, see Fig. 8).

4.1.4. Delaunay edges (DE)

For a given Delaunay triangulation the local magsservation implies that in steady
state condition the net flow through all the DT esldpelonging to one triangle is zero.
Therefore, the characteristic length of these edgght also be useful to describe the

macroscopic flow field.

We define ); as the mean value of the shortest Delaunay e@d@s (averaged over

Delaunay triangles and not fibres) normalized by fibre diameter,; :(<ef>—d)/d.

Fig. 7(d) shows these shortest edges. The red &hlows the repeated edges of
neighboring triangles. Note that the superpositbithe network in Fig. 7(a) and (b) is

very similar to (d) — not shown here. The shortestaunay triangle edges form a
percolated edge-network, where empty “channelsicatd the regions (channels) in
which the fluid is most likely flowing (fast).

Fig. 8 shows the variation of all these descriptass a function of porosity. The

normalized mean nearest neighbor distances apptbacminimum inter fibre distance

(i.e. Amin~0.05) at low porosities (locally crystalline sttui@). On the other hand, at high
porosities we are reaching the analytical valueswiom point patterns at=1.

As expected, the values obtained by averaginghbgest Delaunay edges for each fibre

¥, match the results of nearest neighbor distanpcesnterestingly, we observe that the
mean values of the"® nearest neighbory, (red squares) approximately match the

values of the shortest DT edggs (averaged over triangles). So far we have notdaan
mathematical proof for this observation. For regqil#. square or hexagonal) arrays, the

statistical descriptors are the same £y, =y,=y;) and ), is thus a deterministic
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function of porosity, see next section. Interediinpe values ofy}. for random and

hexagonal arrays are almost the same, showinghbanean value of neighboring fibre
distances obtained by averaging over all DE doésieend much on the structure.
Another interesting observation is that f0x0.8 the normalized hydraulic diamet@y/d
has also the same trend as the shortest Delaurg®s exhd the "3 nearest neighbor

distance¥and, when scaled by a factor 1/6, even agreesitatarely well.

4.1.5. Microscopic channel width in terms of macroscopic porosity

Based on a least square fit approach, an empeigalession is obtained for the mean

values of then-th nearest neighbor distancgs, as functions of porosity:

_ _ | (D.) _,,, (1=
Vv, =(D,)/d-1 with <an>_1+¢n g (8)

) and <Dn"> are the corresponding critical porosity of a randeacking

where € (A,
with & [00.16 and mean nearest neighbor distance for random spaiatculated
analytically from Eq. (B.1), respectively. The qtiaes ¢, and ¢, are fitting constants
for a givenn and, in general, weakly depend®dgn,. The numerical values (2<an>, £,

@, and ¢, for n=1, 2, 3 and varioudn, are given in Table 2. Thus, one can easily

estimate then-th nearest neighbor distances of hard disc packingsnby knowing its

macroscopic porosity. Fig. 9 showise variation of mean values of th&® hearest

neighbors,y, as function of porosity together with the best,fiEq. (8), at differemmin.
At high porositiesAmin has less effect ory,, however, by decreasing porosity, has
larger values at highé¥,» and approaches the limit valye =A .. The inset of Fig. 9
shows that by plotting the effectivg =(D,)/d" -1 against the effective porosity , all
data collapse and one gets the universal curvegin@ with & 00.16, ¢, 10.35 and

&, 00.7 corresponding tdmin=0, i.e. ), =y, and& =¢.

% This may explain the limitation/failure of capiffamodels such as the Carman-Kozeny (CK) equation a
high porosities which are based on the hydraubenditer concept.
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One of our hypotheses is that the percolated n&twbrthe shortest (triangle) edges,
y; Oy,, controls the overall drag (permeability) of thieréus material (which is
confirmed a-posteriori by our numerical resultsodgl However, the microstructure is
controlled byy, which leads to larger excluded volume during pagldeneration. In the

next subsection we show that, similar to regularefiarrays [11], these channels between
triangles are correlated with the macroscopic pabitiéy of the porous medium for a

very wide range of porosities.

4.2. Permeability prediction in terms of effective channels

Based on the Navier-Stokes equation, Gebart [1livel® the permeability of an
idealized unidirectional reinforcement consistirigegularly ordered, parallel fibres both
for flow along and for flow perpendicular to théres. The solution for flow along fibres
has the same form as the CK equation [12], whiéesthlution for transverse flow has a
different form as:

2.5
K _ 1-¢
=

where &, is the critical porosity below which there is nermeating flow andC is a

geometric factor ((:—— 00.1, ¢, = 1—2 [0 0.214(¢ for a square array and

92

C——DO 0578, ¢, = [0 0.093 for a hexagonal array [8]). Gebart [11]

/6 2\/_3

presents numerical results, obtained using a faifference solution of the NS equations
that show excellent agreement with Eq. (9) up tegities of ~0.65.

In order to rewrite Eq. (9) in terms of, , we express the porosity as function of the

lattice distancex and fiber-diameted:

2 2
1-¢=_7(d =(1-¢,) d , for hexagonal arrays
23\ a a 1-& _a
c =2 (10)
(d ) d)? l-¢ d
1-e==|=| =(1-¢,)|—| , for square arrays
4\ a a
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For regular arrayy, =y, =y, =y, , whereas for random arrays = y; (see Fig. 8), so

that y, =(D,)/d -1 can be written in terms of the lattice distance as

v, :(3]—1 . (11)

Inserting Eq. (11) into Eq. (10) and combining ithwEqg. (9), leads to:
K
? = Cy225 y (12)

as exactly valid for regular square or hexagonedyar at low and moderate porosities
with correspondin@, see above.
In this representation, the normalized permeab#itales with the (for example’“d)z

narrowest channels, i.ey,, as a power law with power 2.5. Relation (12)esarkable,

since it enables one to accurately determine theroseopic permeability of a given

packing just by measuring th8harrowest channels, i.ey,, from particle positions or

the narrowest Delaunay edges, i €., from Delaunay triangles. Below, we numerically

confirm the validity of Eq. (12) for both regulancgalso random configurations.
The shortest Delaunay edges and tHen@ighbor distances practically coincide and form

the network of channels through which the flow mgst Therefore we expect that the

parameter, which characterizes the system andlatesewith the permeability, ig] or
¥,. Fig. 10 shows the variation of the normalizednpeability as a function of the

statistical descriptors discussed in Sections 3 Wacroscopic permeability almost
correlates with the shortest Delaunay triangle sedggea power law, similar to Eq. (12)
for regular arrays, in a wide range of porositye Bolid blue line is the best power law fit
(with fixed power 2.5). The universal random couofagfion pre-factor@~0.2) seems to
be only weakly dependent on the minimum inter fidigtance, data not shown. With
decreasing porosity the data deviate from the sliid showing the appearance of
ordering in the structure. By correcting Eq. (28)

K . —m
—=Cy°x(¥,) with )((y2)=(1—)(0e VZ), X, 00.5, mO3. (13)

d2
we present a universal law for predicting the msoopic permeability in terms of,

(with Eq. (8) as closing relation with porosity) ia wide range of porosities
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(0.3<& < 0.9%) for disordered arrays. The exponential correcfiactor, )((yz) was

obtained by least square fitting the ratio betweemerical data and Eq. (12) and
accounts for (partial) ordering effects. This olvaéion is remarkable as it indicates that
the Gebart lubrication theory (Eq. (12)), origigatibtained for dense ordered arrays, is

also valid for random arrays in moderate and ditatémes by using thg, or J; as the

effective channel width. Fig. 11 shows the variatad the normalized permeability as

function of y, at different values afmi, together with the proposed closed form relations
in Egs. (12) and (13). In contrast to Fig. 6, héhe, permeability data are not corrected

by K¢, but are collapsed as the microscopic effectivanolel width y, = yz( y’;) takes

care of the effect ofAnn. For all values ofAmin, Eq. (13) correctly predicts the
macroscopic permeability with maximum deviatiorl6®6 for £ > 0.3. More discussion

on very dense regimes, i.e. <0.3, where we have long range correlations due tagbart
up to strong ordering, is given in Appendix C. Eomparison, the analytical prediction
for ordered arrays (square and hexagonal configmst i.e. Eq. (12) with the same

power 2.5 but different constar@s are also shown.

5. Summary and conclusions

A finite element method (FEM) based model has besployed to calculate the
transverse permeability of random fibrous media posed of long unidirectional
cylinders/fibres for a wide range of porosity. Throstructure of the fibrous media has
been characterized using the pair distribution fiencand neighbor distance statistics.
Providing information about short range correlasiothese microstructure descriptors
allow us to characterize the spatial heterogeneftythe fibre structures, construct
computer generated microstructures for further Etman, or correlate the material
microstructure to macroscopic properties as, paymeability. The conclusions from our
statistical analysis of the microstructures andpéeneability are:
* For relatively large systems, the packings obtairfienn different random
generator algorithms are isotropic and homogentarsafvay from the walls).

Their properties are similar and independent of shstem size, except for the
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energy minimization (EM) approach, which generatdgstered structures.
Periodic boundary conditions reduce the minimunuiregl number of fibres to
reach size-independence.

* By increasing porosity, the PDF of nearest neightistances will change from
exponential to Gaussian, as relevant for randomtgatterns only.

» The packings with higher inter fibre distanc®y,, have more uniform and
weaker flow channels and therefore higher permialdind the behavior is
determined bye” = f (¢,4,,,) =1-(1-&)(1+A,,.)".

* All random structure permeability data (for all died minimal inter-fibre
distances) are scaled by subtracting the randorkingaeninimal permeability
K®/d? :OKAh:: /d? that is proportional to the equivalent minimumeaofegular
structure and a pre-factor that increases withedstng minimal distance. The
low porosity random regime cannot be reached, spar#ial ordering sets in

below a certain threshold( J0.3).

Based on the lubrication effect of the narrow cl@sinwe found a universal power law
relationship between the permeability values ole@ifrom fluid flow simulations and
the microscopic mean values of shortest Delaunaggdulation edges constructed on the

fibre center positions. From the microscopic pahtview, our numerical results show

that the mean values of th&hearest neighborg, =(<D2>—d)/d (averaged over all

fibres) match the values of shortest DT edgés= (<elT>—d)/d (averaged over all

triangles). Astonishingly, the proposed power lasv valid for both ordered and
disordered arrays at all porosities, given a céwecdependent only orny,. The
superposition of Land 2% nearest neighbor channels forms a similar peredlaetwork

as the shortest DT edges, with averagge which dominate the flow since they represent

the fluid channels through which the flow must gtl§ preference for the wider'®
neighbor channels).
In summary, a closed form relation for predictifge tmacroscopic permeability for

ordered/disordered fibre arrangements is observégelins of the microstructural average
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channel widthy, asK/d* = Cy22'5(1—)(0e‘my2) , valid for wide range of porosities and all
values of inter-fibre distanc&nin. Note that Eq. (8) relateg, = yz(y*z) with ), = y2(£ )

ande =¢ (5) to macroscopic porosity and therefore closesréiation.

The results obtained in this study and the genesdtionships proposed for the
permeability, can be utilized for composite mantifeing, e.g. resin transfer moulding
processes. Furthermore, our results can be usedafolation of advanced models for
particle-fluid interactions in a multi-scale coagining approach, as carried out in our

ongoing work. By analogy, the permeability in 3Dhdam packings should depend on
the smallest faces of Delaunay tetrahedrpfi®, possibly with the chance for similar

unique scaling relations as in 2D, a predictiont tvaits for numerical/experimental

proof.
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Appendix A. Mesh sensitivity analysis

Due to the difference in scale between domain arm gap size between neighboring
fibers, this typically requires local mesh refinerhd-or different porosities, flow through
random fiber arrangements was simulated at differaesh resolutions (number of
elements,Ng). The dependence of the solution in terms of takEutated normalized
permeability at denseg =0.4 (in blue) and diluteg =0.8 (in red) regimes is shown in
Fig. Al. At larger porosities (dilute systems) laessnber of elements would be sufficient
to get convergent solution. Our numerical resuiswsthat in all simulations we need at
least ~10 rows of elements between neighboringgbestto correctly capture the fluid

behavior and obtain a converging solution.

Appendix B. Study of the system size (edge) effects
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The random fibrous structure should be large enotgylcapture the microscopic
properties and/or the flow characteristics in thatrm. Increase in the system area
implies a linear increase in the number of gridnpoiin the computational mesh.
Therefore, we need to find an optimum system $adated to this, Grufman and Ellyin
[33] determined a representative volume elemeiet feizcomposite laminate by applying
the Kolmogorov goodness-of-fit test. Du and Ost®jarzewski [34] studied the finite-
size scaling trend to RVE of the Darcy law for S&sian flow in random porous media
without invoking any periodic structure assumptionisut only assuming the
microstructure’s statistics to be spatially homagmrs and ergodic. They show that the
higher the density of random disks, the smallerdize of RVE pertaining to Darcy’s
law. Trias et al. [35] show that the minimum syst&@e for typical carbon fibre polymer
composites i) =L/d =25 (whered and L are the actual diameter of fibres and system
length, respectively).

To study the effect of system size, we use twoissiedl tools, namely the pair
distribution function and the nearest neighbor atise, both measure short range
correlations. The so-called “structure factor” fong range correlations is not addressed
here.

B.1. Pair distribution function g(r)

In Fig. B1 the pair distribution functiom(f)) is plotted for different numbers of fibres at
the two cases of (a) low porosity (dense system.4 and (b) dilute systera=0.9. At
higher porosities, we observe that by using onlg tenter part-away from the
walls/boundaries, there is no systematic size diég®re concerning short range order
and increasing\ does not create any substantial differencegrin However, for dense
systems, the correlations reach to larger and dadiigggances and one need a bigger
system so that the order does not “reach” the walie exponential decrease in the local
peaks ofg(r) at higher densities might explain the exponerdiatribution of nearest
neighbor distances in the next subsection. The daemel was observed for periodic

boundaries as the center area was used to calg@ia(elata are not shown here).
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Note that by knowing the optimum number of fibregsie can easily calculate the

optimum system size as  Q=L/d=Nn/(4(1-¢)) since

(1-&)=V, IV =Nm® /(4L2) with the volume of a single particig.

The pair distribution functiong(r), is useful in describing short- and medium- range

averaged correlations among the fibres.

B.2. Nearest neighbor distance

Nearest-neighbor distances are an essential dagmtal descriptors useful in materials
science and other disciplines [36-37]. They ard esthblished as a tool for qualitatively
characterizing deviation from a “random” stateivén a set of points (fibre centers), the
nearest neighbor distance distribution function foe n-th nearest neighbor is the
probability density functionys(r) such thaty,(r)dr is the probability of finding the-th
nearest neighbon£1,2,3,..., etc.) in the distance rang® (r+dr).

The analytical prediction for the mean value of thia nearest neighbor distanéé)n">

is the first moment of the distribution functien(r), and for the uniform random spatial
distribution of points is:

Jr(n-1)mt?
where A = (1—5) IV, is the intensity (number of points per unit ar@adil’(n+1/2) is the

gamma functioh While formulae have been derived that place bemei<Dn”> for

equilibrium ensembles of monodisperse particleswn- and three-dimensions [32],
exact analytical expressions are not available.r@fbee, computer simulations are
needed to calculate the mean value ofrtile nearest neighbor distances as a function of
porosity (or volume fraction) for ensembles of m@uby)disperse fibres, e.g. see Eq.
(8). For more details see Section 4.1, where, anotingrs, the mean normalizet 4nd

2" nearest neighbor distances are used to charactbezeffective/narrow channels and

predict the sample permeability.

* Note that the real unidirectional composite mitmestures consist of distribution of aligned fibres
“finite” size that cannot be regarded as zero disi@mal points.
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The T' nearest neighbor distancB/”, is simply the minimum of all distances from one

fibre to all others. Similar to thg(r) data, at low porosities we need more fibres (higge
systems) to get reasonable statistics for theilligion of short-range distancedX800).
However at high porosities, increasing the numbefilwes will not much affect the
probability distribution function (PDF). The didiritions of ' nearest neighbor distances
were found to follow the exponential distributian@w porosities and normal (Gaussian)
distribution at high porosity. By increasing thergsity the PDF of nearest neighbor
distances will change from exponential to Gaussiag, a random point patterns.
Furthermore, by decreasing the porosity (i.e. gdmogn 0.9 to 0.6), the probability of
finding a particle at exactly 1.65i.e. minimum possible distance) becomes ~10 times
larger (data not shown).

B.3. Wall versus periodic boundaries

Another factor that not only affects the fibre dlstition but also the macroscopic
permeability of the medium is the confining wallky Fig. B2 the normalized
permeability is plotted against number of fibreg fdifferent boundary conditions
(periodic or walls at top and bottom of the cetlfa £=0.4 and (b)e =0.9. It shows that
at low porosity, using the periodic boundary coiedit can reduce the minimum required
number of fibres N>200). However, at high porosities the permeabilitycomes
independent of the number of fibres fdP200 in both periodic and wall boundary
conditions. It turns out that for systems with mtran 800 fibres/cylinders the effect of
finite size and type of boundary conditions (peicdab-slip/symmetric) on the
permeability of the given structure diminishes.

Appendix C. Towards the dense regime

In order to have a better model for the very deresgme, we correct the original
lubrication theory for perfectly hexagonal arrays, Eq. (9), in this Appendix.

As mentioned in section 3.5, the critical porosibtained from computer simulations for

the finite systems with walls is limited tg] [10.16 [29]. By correcting the lubrication
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theory of hexagonal arrays witls; =0.16, one can predict the permeability at the

random close packed limit more accurately as:

2.5
K-K®_ .| -
=C —c -1 . C1
d? ( 1-¢ } (€.1)

where C'~0.035 is obtained by fitting to the FEM resultsl@w porosities. Fig. C1

shows the variation of the normalized permeabdsya function of porosity. Note that as
we scale the data witk®, the permeability values for differest.,, see the blue squares
and the red triangles, collapse onto a single cukgeexpected, Eqg. (13), the proposed
model based on shortest DT edgés (or 2% nearest neighbor distanceg,) is valid at

moderate and high porosities (i.e. the range ddr@st in composites manufacturing,
£ >20.3), see the solid blue line. However, at very deeggme, i.e.” <0.3, Eq. (C.1)

fits better to our FE results, see the solid rew.liFor comparison, the analytical
prediction for ordered arrays (square and hexagowmafigurations), i.e. Eq. (12) is also

shown with dashed lines.

Appendix D. Purely empirical, macroscopic permeagbporosity relation

based on asymptotic solutions

In this appendix, based on analytical predictiohgp@meability for dilute and dense
regimes, we present an empirical macroscopic ogldor the permeability in terms of
macroscopic porosity. Based on a unit cell approBcimmond and Tahir [10] modeled
analytically the flow around a fiber and obtainaglicable at high porosities):

2.534 &)’
I+ 1.2758 t¢)

J (D.1)

=g e 4ea-E - omspasys

Similar to Ref. [8] and using the linear least sguaethod, the linear correctiog,(s)

to the Drummond relation, leads to a corrected pabiiity for £ >0.7 as:

Kep =dK, (1+d,e),  with  d,=0.97, d,=0.18, (D.2)
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with a maximum error of less than 5%. Similarlyge tborrected lubrication theory of

25
hexagonal arrays,KG/dZ:C*[Jll——if —1} in Eg. (C.1) is valid with maximum

discrepancy of less than 5% at low porosities,0.5. To combine these two limit cases,

we propose the following empirical merging function

1+tanh(e-¢,) fe,)
2

that is valid for the whole range of porosity, wittaximum deviations of less than 5%

K =Kg +(Kg = Kg) p(€) with p(e) = ,&,00.6, & 00.1, (D.3)

that also includes the analytical relations for lih@t cases, see the dashed blue line in

Fig. 6. While the choice ofJ(s) Is arbitrary, the nonlinear least square fittimggedure

is used to obtain the empirical coefficiestsand &, .
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Table 1: The values of the critical porosity,™ =1—(1— £;ex) I(1+4,,,) with
& =1-ml (2\/_3) [0 0.093, and permeability (for a perfectly hexagonal &atfi

Kggx /d?, and corrected permeability for random latti¢€s/ d?) at differentA min.

Awin £ Ko /d? Ke/d?
02 | 03702 1.035¢10° 1.7x10°
01| 02505 1.801x10™ 4.3x10™
0.05|  0.1774 3.172x10° 1.3x10*
0.025|  0.1368 5.587x10° 3.5x10°
0.005|  0.1021 1.006x10" 2.8x10°

Table 2: The numerical values of; =1-(1-¢ ) /(1+A,;,)” with & 00.16, (D!},
¢, and &, for variousn andAnin which are obtained analytically from Eq. (B.1) dnd

min

least square fitting of numerical simulation in thege 0f0.3<&” < 0.9E.

Amin | N b (DP) 8, ¢,
1 0.4167 0.3535 1.0727 0.7904
0.2 2 0.4167 0.5303 0.3372 0.6790
3 0.4167 0.6629 0.1049 0.2502
1 0.3058 0.3535 1.0757 0.7910
0.1 2 0.3058 0.5303 0.3509 0.7048
3 0.3058 0.6629 0.1065 0.2454
1 0.2381 0.3535 1.0732 0.7867
0.05 2 0.2381 0.5303 0.3495 0.7017
3 0.2381 0.6629 0.1064 0.2412
1 0.2005 0.3535 1.0771 0.7887
0.025 2 0.2005 0.5303 0.3557 0.7084
3 0.2005 0.6629 0.1099 0.2567
1 0.1683 0.3535 1.0806 0.7948
0.005 2 0.1683 0.5303 0.3611 0.7314
3 0.1683 0.6629 0.1123 0.2969
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Figure captions:

Fig. 1. Fibre distributions generated by a Monte Carlo pdure (see subsection 3.2),
with 200 unidirectional cylinders, normal (y) toetlilow direction (x), with minimum
inter fibre distance\nyi,=0.05 at porositys =0.6. At the top the diameted, and virtual

diameter d” =d(1+A,,,) are shown, schematically. At the top 3D and bott2n

representation of fibre distribution are shown. Ho®m shows the fine, unstructured,
triangular FEM mesh.

Fig. 2. (a) plots ofg(r) for 800 fibres generated by different methods with=0.05 at
porosity £ =0.6, (b) comparison of the normalized permeabdityhe fibre arrangements
from (a) plotted against the number of fibres. ddita are averaged over 10 realizations
with 10" perturbations. The error bars indicate the stahdawiation. Larger numbers of
perturbations do not lead to a visible difference.

Fig. 3: Each image consists of 800 fibres with minimuneirftbre distanced ,, = 0.05

and € =0.6. They are generated by (a) Random Placement (BPMonte Carlo (MC)
procedure, (c) Energy Minimization (EM) approacld §d) Molecular Dynamics (MD)
simulations. The red box shows the center areahnims been used to calculg(e). For
the chosen reference particles only those in timerimed square are used, while the
distances to all others are considered.

Fig. 4: Normalized permeability as a function of porodity homogenous (generated
with MC procedure or MD simulations) and clusteirelated (generated with EM

approach) structure in both horizontal and verttiedctions. Error bars indicate standard
deviation from 10 realizations.

Fig. 5: Typical fibre distributions generated by a Mon&lG (MC) procedure, each with
800 fibres ate=0.5 with minimum inter fibre distance (A}, =0.2 (¢ =0.28) and (b)

Amin =0.005 (¢'=0.49) The color code shows the horizontal velocity figlda pressure
driven system. Only the center part of the sys&eshown.

Fig. 6: Variation of corrected normalized permeability tfdd against porosity for
different minimum inter fibre distancesy,,, with N=800. The five arrows show the

expected onset of ordering &} =0.3 for decreasing\min (from right to left). The

dashed blue line shows the empirical merging femctEqg. (D.3), in appendix D. The

inset shows the low permeability data without swplat low porosities. The dashed red
line and blue stars correspond to the periodic pexal cell values of lubrication theory

[11] and finite element results [8], respectively.

Fig. 7: Various microstructural descriptors used in thislyg: (a) The * and (b) the I

nearest neighbor distances plotted for each filieg. The blue lines delineate the
Delaunay triangles. (d) The minimum Delaunay eddetted for each DT. The red lines
show the repeated edges from neighboring triangliggraphs show the center part of
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800 randomly distributed fibres generated by the pd@cedure at =0.6 with minimum
inter fibre distance ,;,=0.05.

Fig. 8 Variation of normalized mean nearest neighboradisgs (T, 2" and &), the
mean length of all Delaunay edg(a;ng), the mean shortest Delaunay edge averaged

over particles(ylp) and triangles(yf) and the normalized hydraulic diame{&d, /d) as

a function of porosity. Average is taken over l@limations with 800 randomly
distributed fibres. Only the center part of theteysis considered to avoid edge effects.

Fig. 9: Variation of mean values of th&hearest neighborg,, as function of porosity
together with the best fits from Eq. (8) (solideg) at differenf\n. The inset shows the
scaled data by plotting;, as function of effective porosity .

Fig. 10: Variation of normalized permeability, plotted asidtion of various statistical
descriptors. ¥ nearest neighbor distange (or shortest Delaunay edgesg,) show the

best (almost power law) correlation in a wide rapfi@orosity atAmin=0.05. The solid
blue line shows the power law fit.

Fig. 11: Variation of normalized permeability as functionroBan value of ¥ nearest
neighbor distancey, at different values of .

Fig. Al: Plot of normalized permeability for different réasiions (number of elements,
Ne) at porositye =0.4 (in blue) ande =0.8 (in red).

Fig. B1: Plot of g(r) for different number of fibres (system size) at gayosity £ =0.4
and (b) £=0.9 from 10 realizations. The dashed linegg@)=1 indicates a completely
random point structure. The drop of the data coimes the finite size of the center area
used for averaging (see Fig. 3).

Fig. B2: Variation of normalized permeability versus numioérfibres with different
boundary conditions at (a) porosig=0.4 and (b)e=0.9. Fibre distributions generated
by MC procedure with T0perturbations and minimum inter fibre distangg, =0.05

Fig. C1: Variation of scaled normalized permeability ploteeghinst porosity.
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