
Graphical modelling language for specifying
concurrency based on CSP

G. H. Hilderink

Abstract: A graphical modelling language for specifying concurrency in software designs is
presented. The language notations are derived from the communicating sequential process (CSP)
language and the resulting designs form CSP diagrams. The notations reflect both data-flow and
control-flow aspects of concurrent software architectures. These designs can automatically be
described by CSP algebraic expressions that can be used for formal analysis. The designer does
not have to be aware of the underlying mathematics. The techniques and rules presented provide
guidance to the development of concurrent software architectures. One can detect and reason
about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and
priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram
collaborates with object-oriented modelling languages and structured methods.

1 Introduction

Real-time and embedded systems require safety, reliability,
robustness, and the guarantee that its processes meet their
deadlines. Those systems are inherently concurrent since
they have to communicate, react, and respond to a concur-
rent world. These requirements complicate the artefacts of
software engineering; analysing, designing, implementing,
and testing become more complex. It becomes even more
complicated if we abandon concurrency and end up with a
sequential design and implementation. Multithreading
makes things even worse since it is too artificial, too
low-level and too fine-grained to reason about concurrency
in a natural way. This is common practice when we use
sequential programming languages (e.g. C, Cþþ, Java)
and object-oriented modelling languages, like the UML.
These languages are simply not properly equipped to
model concurrency in an easy and elegant way. In order
to create control software that fulfils the above require-
ments we move away from multithreading to a higher level
of abstraction that is closer to the way we think about
concurrent systems, which is the communicating sequen-
tial process (CSP) language. CSP provides concepts that
are mathematical sound and without surprises. These
concepts are very practical and useful for software and
for hardware engineering, and are an excellent basis for
hardware=software co-design. For instance, parallel
programming languages like Ada and occam are based
on CSP and they show that CSP concepts are very useful
for creating real-time and embedded software. Further-
more, occam programs can be mapped directly on hard-
ware. Thus, CSP can be applied for software and for

hardware. Despite the high quality of these secure
programming languages, these languages and the CSP
concepts are not well-known by the majority of software
engineers. There is no modelling language on top of these
programming languages that supports CSP at higher levels
in design and analysis that immediately shows the benefits
of using CSP. In order to make these concepts useful for
designing concurrent systems, we developed a graphical
modelling language that supports these concepts and thus
one can benefit from the use of CSP. Ada and occam can
implement these designs almost directly. Also sequential
programming languages (e.g. C, Cþþ, Java) can imple-
ment these designs but in these cases a CSP library is
required. Such a CSP library consists of a small set of
design patterns of CSP primitives that encapsulate
multithreading in a simplified and secure way. The result
will be the use of threads without directly programming
with threads.

CSP is a process algebra for describing and analysing
concurrent systems [1, 2]. CSP embraces formal mathe-
matics so we can specify requirements precisely and prove
that they are satisfied by our implementations. However, a
process algebra, such as CSP, in its textual form is not a
pleasant modelling language for developing software.
Usually, we prefer a graphical modelling language and
we leave the mathematics to the tools we use. This does not
mean that we should ignore CSP. On the contrary, CSP
provides fundamental elements for specifying, designing
and analysing (reasoning and proofing) concurrent soft-
ware that is relevant to software engineering. In other
words, CSP provides a design concept and at the same
time it can give guarantees about the reliability and safety
of software architectures at every level in the development
from design model down to its implementation. Further-
more, developing reliable and robust software for
embedded real-time systems is crucial. This is not solely
an implementation issue, but also a modelling issue. This is
why the CSP essentials are so important for developing
concurrent software.

A graphical modelling language is now introduced for
specifying concurrency in software design. The language

IEE, 2003

IEE Proceedings online no. 20030132

DOI: 10.1049/ip-sen:20030132

Paper received 17th June 2002

The author is with Control Laboratory, Department of Electrical
Engineering, University of Twente, The Netherlands

108 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

notations are derived from CSP and the resulting designs
form CSP diagrams. The notations reflect both data-flow
and control-flow aspects, along with CSP algebraic expres-
sions that can be used for formal analysis. The designer
does not have to be aware of the underlying mathematics.
Associated systematic techniques and rules provide
guidance to detect and reason about compositional
conflicts (i.e. errors in design), potential deadlocks (i.e.
errors at run-time), and priority inversion problems (e.g.
performance burden) at a high level of abstraction. The
discussion of these topics can be found in Sections 2.14
and 2.15. The CSP diagram collaborates with object-
oriented and structured methods [3–5]. The CSP diagram
is UMLable and can be presented as a process diagram for
the UML [6–8] to capture concurrent, real-time, and event-
flow oriented software architectures. The extension to the
UML will not be discussed in this paper but it is a topic of
further research.

In this paper, the word ‘process’ is used many times and
implies implicitly to the CSP process. In many ways, CSP
represents the most fundamental properties commonly
meant by a ‘process’. Therefore we are free to use ‘process’
without referring to CSP.

2 The CSP diagram

A CSP diagram is a graph of processes and their inter-
relationships. A CSP diagram enables us to specify parallel
and real-time software architectures. The graphical presen-
tation expresses the execution model of a network of
processes. The validity of the graph indicates the validity
of the execution model. Any valid execution model can be
transformed into code or into machine readable CSP for
formal analysis. The analysis can guarantee the robustness
and reliability of the resulting software. A mathematical
analysis in CSP is outside the remit of this paper.

The theory of CSP [2] defines a few fundamental
primitives that are necessary for describing the essentials
of concurrent systems. Although CSP has no notion of
priorities, we have added extended prioritised primitives to
deal with priorities in software. These are similar primi-
tives to those found in the programming languages Occam
and Ada for achieving real-time requirements. We will
represent these fundamental primitives as relationships
between processes. Relationships are displayed as lines
and processes are displayed as circles, bubbles, or rectan-
gles. Some relationships are communication-oriented and
some are composition-oriented. Therefore, we distinguish
the communication-oriented view and the composition-
oriented view of the model. The communication-oriented
view presents a communication-graph, which expresses the
communication relationships between the processes. The
composition-oriented view presents a composition-graph,
which expresses the compositional relationships between
the processes. Each graph can be viewed as an individual
diagram. Therefore, the CSP diagram is a hybrid diagram
consisting of a communication diagram and a composi-
tional diagram. A mixed view of both is also conceivable.
The sets of processes in the communication diagram and
the composition diagram are usually the same. An over-
view of these relationships is given in Fig. 1.

Data-flow models have a great potential to specify
parallelism with deployable processes and communication
between processes. Unfortunately, commonly those models
are not capable of expressing concurrency. Concurrency
reflects the entire parallel, sequential, and alternative beha-
viours of a (sub)system which allows us to study the

behaviour (e.g. reactiveness, responsiveness, synchronisa-
tion, timing, deadlock, livelock, starvation) of the (sub)sys-
tem. Many data-flow languages, such as those found in
structured methods, do not specify whether processes run
in parallel or in some sequence. Instead, the semantics of
the execution framework of a data-flow diagram is
decoupled from its implementation. What originally
seemed to be a benefit is what we now consider to be a
very important disadvantage of data-flow modelling since
no necessary changes can be enforced to the execution
framework by the designer. For example, for the underlying
hardware the distributive character of the application, and
real-time requirements determine the concurrent nature of
the software architecture. These properties are significant
for the architecture of the model and they should be
specified within the model by the designer. For this
purpose the compositional relationships extend data-flow
modelling (in a different layer) for specifying those aspects
that are not expressed by data-flow diagrams that consist
solely of nodes and arrows. The communication diagram
expresses a basic form of data-flow modelling. This
language illustrates that data-flow modelling is very intui-
tive in the capture of concurrency in systems with the use
of CSP concepts.

Besides the graphical notations, the language inherently
supports a few basic techniques for checking the correct-
ness of the composition diagram. With these modelling
techniques, the designer is able to determine, and to reason
about, compositional conflicts, potential deadlocks, and
priority inversion problems in the design. Of course, this
model checking can be automated by a design tool.

2.1 Processes

A process is an entity that performs a sequence of events.
An event is an occurrence in time and space in which at
least two processes participate. A process encapsulates its
own workspace, its data structure, and the operations that
operate on this data structure. Although these properties
have strong similarities with objects, it is important to
notice that a process is not an object and as such a process
should not be treated as an object. Objects can only operate
in a workspace and that workspace is defined by a process.

Fig. 1 Overview of CSP relationships

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 109

Usually, objects know each other, but processes do not
know each other. Processes communicate with each other
through intermediary communication objects, that are
called channels. In Section 2.3, a few different kinds of
channels are discussed. There are several ways whereby
processes can be applied to object-oriented paradigms; a
process can be implemented using objects. Another impor-
tant property of processes is that processes can be
composed and described by simpler processes. A process
is depicted as a vertex in the form of a labelled rectangle or
labelled bubble in the graph.

A process has a functional task description and each
process is identified with a unique name. Process names
should be nouns representing the role, functionality or
responsibility they perform. This is similar to naming
objects [8]. Identifying ‘active’ objects and identifying
processes have lots in common because they share a similar
task identification process. From a design point of view, the
relationships between processes and the relationships
between objects are different. Each relationship between
processes itself forms a process. We discuss the relation-
ships between processes resulting in process diagrams (or
CSP diagrams). Object diagrams are omitted in this paper.

2.2 Interrelationships

Even when processes do not see nor communicate with
each other, they are always mutually related to each other
since they share the same world. The simplest relationship
is concurrency whereby processes execute independently
of each other. Concurrency involves synchronisation
between processes. Processes execute and synchronise in
many ways, which can be expressed by relationships
between the processes. The interrelationship is depicted
as a labelled line (or edge) between two processes as shown
in Fig. 2. Additional symbols can be attached to the peer-
ends of the line to indicate a directional relationship.

These symbols and labels specify the kind of relation-
ship between processes. The graphical modelling language
specifies a set of CSP-based relationships in the following
Sections. As previously mentioned, the CSP-based rela-
tionships have been divided into communication relation-
ships and compositional relationships.

It is important to note that the line should be seen as
distinct from the symbols that can be attached to each end
of the line. The line renders an event in which both
processes can engage. Depending on the kind of relation-
ship, the associated event can be a communication event,
termination event, exception event, or a timeout event. The
line itself is undirected because events are symmetric and
undirected [2]. The symbols are a gloss on this and they
indicate the polarisation of message passing or they assist
in composing processes.

2.3 Communication relationships

Two processes participate in a communication relationship
when they communicate with each other. Message passing
and data-exchange are two common forms of communica-
tions between processes that are supported by the commu-
nication relationships. A communication relationship is a
labelled and directed relationship, which represents

message flow between a sender process and receiver
process.

A communication relationship is symbolised by an
arrow between two processes as depicted in Fig 3. The
arrow symbolises a channelled message passing between
processes in a communication diagram.

The arrow designates the role of the processes in the
relationship. The arrow head symbol ‘c’ is attached to the
receiver or the invoked process and the tail of the arrow is
attached to the sender or invoker process. This does not
necessarily imply that data are moving strictly from tail to
head at communication. Data may very well be returned at
the end of the invocation. The communication relationship
specifies that communication can take place between the
related processes, but it does not specify exactly when
communication takes place. The actual channel invocations
can be specified by a few primitive communication
processes as described in Section 2.13.

Communication relationships can be divided into
producer-consumer relationships or client-server relation-
ships. The label expresses the type of message passing.
The label can be an abstract data type (usually a class
name) or a method name.

An abstract data type specifies the producer-consumer
relationship. The class name specifies the type of
messages (i.e. instances of that class) that can be passed
from the producer process to the consumer process on
rendezvous. An optional role name before ‘:’, for example
length:Integer specifies messages of type Integer and
plays the role of length. See Fig. 4a. This type of relation-
ship is implemented using data-channels. Data-channels
send data and do not return anything and are therefore
data-unidirectional. The abstract data type determines a
data-channel and a data-channel can be one out of several
possibilities, namely:

� rendezvous channel;
� buffered channel (fifo, supersampling, or subsampling);
� unsynchronised channel or variable.

The compositional relationship is orthogonal to the
communication relationship, but there is also an invaluable
relationship between the two. This relationship between
the two diagrams enables formal techniques to determine
appropriate channels that can improve the performance of
the software architecture in a reasonable way.

A method name specifies a client-server relationship.
The client process invokes the method and it is executed

Fig. 2 Inter-relationship between processes

Fig. 3 Communication relationship

Fig. 4

a Producer–consumer
b Client–server

110 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

when the server accepts the call. Both participating
processes must rendezvous whereby the processes are
willing to engage at the same time, i.e. one process
calls the method on the call-channel and the other
process calls accept on the call-channel. For example,
setLength(length:Integer):Boolean represents a
method with an argument of type length:

Integer. The arguments are similar as with data-
channels. The method passed to the server returns true or
false to the client. See Fig. 4b. This type of relationship is
implemented using call-channels. Call-channels can be
data-unidirectional or data-bidirectional. The method
name determines a rendezvous call-channel independent
of the compositional relationship. In this version, buffered
calls and unsynchronised calls between processes are not
supported.

The process’ inputs and outputs specify the channel
type. Each pair of input and output must be of the same
type otherwise they are incompatible. Incompatible inputs
and outputs cannot be connected. For example, a channel-
output of message type Integer cannot communicate with a
channel-input of message type Float. Also, a producer
process cannot communicate with a server process,
because the producer process requires a data-channel and
the server process requires a call-channel. This is similar
for a consumer process and client process.

Commonly, data-channels are low-level communication
primitives and are optimised for low-level communication.
Call-channels are higher-level communication primitives
and are used when the data-channel interface is too
restrictive. Data-channels can efficiently establish commu-
nication through hardware. Their abstract and primitive
interface provides hardware independency. Data-channels
are very efficient and simple to use for building data-driven
applications like control systems.

The previous communication relationships express
unconditional communications, i.e. if both participating
processes are ready for communication then they are
committed in communication. They will engage in a
communication event and withdrawing is impossible.
Conditional communication is a circumstance where by
the readiness of the channel is required as a condition. A
process may commit in communication when the other side
is ready otherwise it will avoid the commitment and carry
on. Conditional communication requires a guard at the
input or output side of the relationship. The relationship
may select the guarded process based on the readiness of
the channel and based on an additional Boolean expres-
sion. The nature of selection is specified by the alternative
relationship (Section 2.4.3) as expressed in the composi-
tion diagram.

Channels can be shared between two or more processes.
The arrow may consist of branches of multiple tails and=or
multiple arrow heads. This is rendered as a fish bone. We
can identify four different channel configurations, as
shown in Fig. 5.

Channels provide a peer-to-peer connection between two
processes at a time. A channel communication event is
two-way, i.e., only two processes (one inputting and one
outputting) can engage in the event.

The configuration displayed in Fig. 5a depicts channel
communication between two processes. The configurations
in Fig. 5b and 5c implement a non-deterministic choice of
service between multiple writers. The configurations in
Fig. 5c and 5d implement a non-deterministic choice of
delivering messages between multiple readers. The service
or delivery is uncertain and is likely to be unfair. In
practice and in a worst case, a reader may read all the

time and other readers have no chance to get a message.
This is similar for multiple writers. There is a risk of
starvation. A deterministic form is more common, for
example, when readers or writers fairly (timely ordered)
alternate on the channel. Virtually, the configurations
shown in 5b, 5c, and 5d swap to the configurations in 5a
with alternating fairly reader and=or writer processes. The
access time and the priority are important parameters for
fair scheduling.

2.3.1 Barrier: Another communication primitive is the
barrier synchronisation primitive. A fixed number of
processes is required to synchronise their execution at
some point before proceeding. A barrier is depicted as a
bidirectional communication relationship whereby each
end is symbolised with a diamond ‘r’ symbol (concatena-
tion of bþc). See Fig. 6.

When all processes reach the barrier synchronisation
then the barrier construct communicates information
between the processes in a unidirectional or bidirectional
way. A barrier communication event can be multi-way, i.e.
more than two processes can engage in the same event. All
processes continue after communication is performed. An
example of six processes that synchronise on a single
barrier is depicted in Fig. 7.

A barrier synchronisation pattern could be described in
terms of a protocol of channel communications [9]. The
point of synchronisation is not rendered by this
relationship. The actual point of synchronisation is
rendered by a primitive communication process as
described in Section 2.13.

2.3.2 Internal and external channels: An arrow
that connects each end to a different process and at the
same level of abstraction is an internal channel. An arrow
that connects one end to a process and the other end to a
process at a different or distinct level of abstraction is an

A

A A

A

B

B

B

B

c c

cc

D

D

D

C

C C

a b

E

F

c d

Fig. 5 Channel configurations

aOne2One
bAny2One
c One2Any
dAny2Any

Fig. 6 Barrier synchronisation relationship

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 111

external channel. External channels are open ended and
this open end is virtually connected to some other process
that is out of the scope of the parent process or diagram.
This happens when:

� hierarchies of processes are involved;
� software processes separately run on distributed system;
� or when software processes communicate with hard-

ware processes.

The tool should be able to distinguish between internal
and external channels. The tool should facilitate means to
link channels from different levels with each other or the
tool should be able to assign device drivers (or link drivers)
to the channels so that channels can communicate through
intermediate devices. This implies support for hierarchies,
reuse, and portability of processes.

2.4 Compositional relationships

A compositional relationship is a labelled relationship
between two processes whereby the label is a binary
operator that expresses their compositional behaviour.
Thus, compositional relationships are a kind of relation-
ship between processes that are useful for describing the
execution order of communicating processes. A composi-
tional relationship is a companion to a communication
relationship. Fig. 8 shows two processes in relation to each
other. This represents a composition of two processes
whose semantics are described by the operator specified
by the label.

Where operator2 {! , , k,

~

k, ~kk, &,

~

&, ~&&,

~

4, ~44}. The
operators with an arrow are directed operators whilst the
remainder are undirected operators. Each compositional
relationship is explained in the following Sections.

Optionally, an action attribute can be specified next to
the associated process connected with a thin line to show
its association. The action attribute does by no means
belong to the associated process. Here, action can be
used to specify a global body in which variables can be
declared and=or assignment statements change the state of
those variables. If an action attribute is specified then it
will be executed right before the process will be executed,
i.e. actionP;P and actionQ;Q. The scope of action is
determined by the parenthesising compositional relation-
ships (see Section 2.5). The action attribute is very
useful for conditional communications (Section 2.4.3)
and for finite looping constructs (Section 2.12). The rules
that are applied to action are not described in this paper.

2.4.1 Sequential relationship: A sequential rela-
tionship between processes P and Q is denoted by the

label ‘! ’. This sequential composition is written as
P!Q. This has strong similarities with CSP’s single
action transition P!

p

Q. This process will behave as Q if
P has successfully terminated otherwise this process
behaves as P. We will relax these semantics by saying P
is executed before Q. This relationship (being a process)
terminates when Q successfully terminates (

p
-event). We

will use notation (P, Q, !) to represent a sequential
relationship between P and Q, see Fig. 9. A sequential
composition in CSP is usually represented as P;Q whereby
Q immediately follows P when P terminates. The relation-
ship (P, Q, !) is more relaxed as described above and
represents P!Q. The notation P;Q is a special case of
P!Q as described below. The ‘;’ and ‘! ’ operators have
no symmetry laws.

The reasons why we use the arrow ‘! ’ instead of
semicolon ‘;’ are because the arrow gives more design
freedom and the arrow denotes the direction of execution
more clearly than ‘;’.

Multiple compositions are represented with more than
two processes in the relationship, for example, (P, Q, R,
S,!). See Fig. 10a. (P, Q, R, S,!) also represents other
partial relationships, such as, (P, Q,!), (P, R,!),
(P, S,!), (Q, R,!), (Q, S,!), (R, S,!), (P, Q, S,!),
and (P, R, S,!), see Fig. 10b. Partial relationships can be
derived from the main multiple relationships.

These partial relationships cannot all be represented
with ‘;’. It is obvious that (P, S,!) does not represent
P;S. Only process (P, Q, R, S,!) is represented as P;Q;R;S.
Formally, what we mean by (P, S,!) is:

ðP;X ; S;!ÞnX

where X is a set of processes belonging to a second and
longest path between P and S, thus here X¼ {Q, R}. This
algebraic expression has resemblance with the hiding
operation ‘PnX’ in CSP. In CSP, X is a set of events and
here X is a set of processes. Basically, this means that if no
other processes can be found between P and S that forms
the main path between P and S then this means that X is
empty. If X is empty then

ðP; fg; S;!Þnfg ¼ ðP; S;!Þø ¼ P;S

In case of a multiple relationship we can write

ðP;Q;R; S;!Þø ¼ ðP;Q;!Þø; ðQ;R;!Þø; ðR; S;!Þø

¼ P;Q;R;S

Fig. 10

aMultiple sequential relationship
bMultiple sequential relationship with derived relationships

Fig. 7 Barrier synchronisation

Fig. 8 Compositional relationship between two processes

Fig. 9 Sequential relationship

112 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

In the graph this expression means the longest paths or
main path between the processes P and S from P to S. The
importance of this form is that we can index processes in
the compositional construct so that processes are succes-
sively ordered. We could write:

ðP0; . . . ;Pn�1;!Þø ¼ ;
i¼0 :: n�1

Pi

This form allows immediate transformation to sequential
code-constructs in CSP-based programming languages or
using a CSP library in non-CSP-based programming
languages.

2.4.2 Parallel relationship: A parallel relationship
between processes P and Q is denoted by the label ‘k’.
This parallel composition is written as PkQ. This process
will behave as P and as Q in parallel. This process
terminates when all participating processes, i.e. P and Q,
have terminated.

We will use notation (P, Q, k) to represent a parallel
relationship between P and Q, see Fig. 11.

A multiple composition (P, Q, R, S, k) represents
PkQkRkS. Operator k has symmetry laws and therefore
all partial relationships can be represented with ‘k’, see
Fig. 12.

Therefore, we can write:

ðP0; . . . ;Pn�1; kÞ ¼ k
i¼0 :: n�1

Pi

The processes P0 ..Pn�1 can be randomly ordered since
operator k has symmetry laws.

When action attributes are specified on parallel
processes then these action attributes will be executed
in parallel. Any race hazards between shared variables in
multiple action attributes must be prevented and there-
fore it is important that assignments can not update shared
variables.

2.4.3 Alternative relationship: An alternative rela-
tionship between processes P and Q is denoted by label
‘&’. This alternative composition is interpreted as P & Q.
This process will behave as P if P can engage in a
communication event or it behaves as Q if Q can engage

in a communication event. If both processes can engage in
a communication event then the alternative construct will
choose one arbitrarily. This process terminates when the
selected guarded process terminates.

The notation (P, Q, &) represents an alternative relation-
ship between P and Q, see Fig. 13.

A guard is depicted with a guard expression event

[cond]action next to the guarded process with a thin
line connecting the expression with the guarded process in
the alternative relationship. A guarded process has only
one guard expression attached to it. If the Boolean expres-
sion cond (or condition) is true and the guarded process
can engage in event then the choice operator may select
the guarded process. If cond is false then event will be
omitted and the guarded process will not be selected. Once
the guarded process is selected then action will be
executed prior to the guarded process being executed.
Here, event can indicate a channel-input-guard,
channel-accept-guard, channel-output-guard, channel-
call-guard, skip-guard, or an else-guard. If event specifies
time instead of a channel then we mean a timeout-guard. A
timeout-guard becomes ready when the specified
time expires starting from execution of the alternative
relationship.

A skip-guard does not require a channel-input or channel-
output and the guard is ready all the time. An else-guard
cannot be found in CSP but it is like a skip-guard with the
difference that it will be selected if no other guard is ready.
The else-guard can be modelled as a skip-guard in a special
prioritised alternative construction, see Fig. 14.

The guard is said to be unconditional when cond is
always true (or not specified) and the guard is said to be
conditional when cond is some Boolean expression.

Guards can also be applied to shared channels but not to
barrier configurations. It is important to notice that a
channel-input-guard and a channel-output-guard specified
at different processes in the same alternative relationship
will never commit in communication [10]. All guards
sharing the same alternative relationship must be disjoint
in such a way that no pair of channel-input-guards and
channel-output-guards can become simultaneously ready.
This guideline prevents unwanted race hazards.

The composition (P, Q, R, S, &) represents multiple
relationships. See Fig. 15.

Here, (P, Q, R, S, &) is written as P & Q & R & S because

ðP0; . . . ;Pn�1;&Þ ¼ &
i¼0 :: n�1

Pi

Operator & has symmetry laws and so the processes
P0 ..Pn�1 can be randomly ordered.

2.4.4 Prioritised parallel relationship: A prioritised
parallel relationship between processes P and Q is denoted
by label ‘

~

k’. This parallel composition is written as P

~

kQ.

Fig. 11 Parallel relationship

a Parallel relationship between P and Q
b Parallel relationship between P, Q, R and S

Fig. 12

aMultiple parallel relationship
bMultiple parallel relationship with derived relationships

Fig. 13 Alternative relationship

Fig. 14 Else-guarded construct

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 113

If process P cannot engage in an event (i.e., communica-
tion events, termination events, and timeout events) then it
will behave as Q otherwise it behaves as P. In other words,
process P is executed with higher priority than process Q.
This process terminates when all participating processes
terminate.

We will use notation (P, Q,

~

k) to represent a prioritised
parallel relationship between P and Q, see Fig. 16.

The multiple relationship (P, Q, R, S,

~

k) represents
P

~

kQ

~

kR

~

k S when P, Q, R, and S belong to the longest
part between P and S in the graph, see Fig. 17.

As with the sequential composition, the directed
operator

~

k has no symmetry laws. Therefore, we mean by
(P, S,

~

k):

ðP;X ; S;

~

kÞnX

where X is a set of processes belonging to a second and the
longest path between P and S, thus, X¼ {Q, R}. If X is
empty then

ðP; fg; S;

~

kÞnfg ¼ ðP; S;

~

kÞø ¼ P

~

kS

In the case of a multiple relationship we can write

ðP;Q;R; S;

~

kÞø ¼ ðP;Q;

~

kÞø; ðQ;R;

~

kÞø; ðR; S;

~

kÞø

¼ P

~

kQ

~

kR

~

k S

In the graph this expression is the longest path or main
path between the processes P and S from P to S. The
importance of this form is that we can index processes in
the compositional construct so that processes are succes-
sively ordered and with declining priorities. We can write:

ðP0; . . . ;Pn�1;

~

kÞø ¼

~

k
i¼0 :: n�1

Pi

This form allows immediate transformation to prioritised
parallel code-constructs.

When action attributes are specified on parallel
processes in a prioritised parallel relationship then these
action attributes can be pre-empted. Any race hazards
between shared variables in multiple action attributes
must be prevented and therefore it is important that assign-
ments can not update shared variables.

2.4.5 Prioritised alternative relationship: An alter-
native relationship between processes P and Q is denoted
by the label ‘

~

&’. This prioritised alternative composition is
written as P

~

&Q. This process is almost similar to the
alternative relationship, except that when both processes
can engage in a communication event then process P will
be chosen in preference to Q. Process P is guarded with
higher preference or priority.

We will use notation (P, Q,

~

&) to represent a prioritised
alternative relationship between P and Q. See Fig. 18.

A multiple relationship (P, Q, R, S,

~

&) represents
P

~

&Q

~

&R

~

& S. See Fig. 19.
We mean by (P, S,

~

&):

ðP;X ; S;

~

&ÞnX

where X is a set of processes belonging to the longest path
or main path between P and S, thus, X¼ {Q, R}. If X is
empty then

ðP; fg; S;

~

&Þnfg ¼ ðP; S;

~

&Þø ¼ P

~

& S

In case of a multiple relationship we can write:

ðP;Q;R; S;

~

&Þø ¼ ðP;Q;

~

&Þø; ðQ;R;

~

&Þø; ðR; S;

~

&Þø

¼ P

~

&Q

~

&R

~

& S

In the graph this expression is the longest path or main
path between the processes P and S from P to S. Operator~

& has no symmetry laws. The importance of this form is
that we can index processes in the compositional construct
so that processes are successively ordered and with declin-
ing guard priorities.

We can write:

ðP0; . . . ;Pn�1;

~

&Þø ¼

~

&
i¼0 :: n�1

Pi

This form allows immediate transformation to prioritised
alternative code-constructs.

2.4.6 Exception (interrupt) relationship: An excep-
tion relationship between processes P and Q is denoted by
the label ‘ ~44’. This exception composition is written as
P ~44Q. The process as rendered in Fig. 20 behaves as Q

Fig. 15

aMultiple alternative relationship
bMultiple alternative relationship with derived relationships

Fig. 17

aMultiple prioritised parallel relationship
bMultiple prioritised parallel relationship with derived relationships

Fig. 18 Prioritised alternative relationshipFig. 16 Prioritised parallel relationship

114 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

when P unsuccessfully terminates; otherwise this process
behaves as P. If P successfully terminates then Q will be
omitted.

This exception relationship is not formally defined in
CSP. The exception operator originates from the interrupt
operator PDiQ in CSP. This process behaves like P until Q
can engage in event i at which point it behaves as Q. Q is
initially awaiting for some event i from its environment.
The exception operator is a simplified version of the
interrupt operator whereby event i is represented as an
internal event that is observable as a termination event of P.
In this case, process P terminates unsuccessfully as a result
of an error somewhere in the process. The unsuccessful
termination causes the exception operator to execute the
exception handling process Q.

If an exception is thrown in P then this indicates an
exceptional state and P returns immediately with a
message indicating the type of the exception. The excep-
tional state or throw action represents an invisible internal
event in the process. This internal event is then mapped
onto the unsuccessful termination event. This simplifies the
process description. Therefore, this approach does not
require additional notations to render an exceptional state
or a throw action. This is implicit in the model. In this
version, the actual exception message or exception hand-
ling is coded in a programming language and not in the
CSP diagram. Computations or primitive communication
processes (Section 2.13) render points in the model where
exceptions can rise. Thus, channels and barriers can be
sources of errors and they are allowed to throw exceptions
at both sides of the communication. This way an erroneous
process cannot lock a channel or barrier. This can be
implemented with try-and-catch clauses as found in Java
and Cþþ.

In design, exception handling can be composed with
multiple exception relationships (see Fig. 21a) and with
redundant exception relationships (see Fig. 21b).

2.5 Parenthesised compositional relationships

As with algebraic compositions, the use of parentheses is
inevitable to write more complex expressions. Parentheses
are also required in this modelling language. Consider a
model with three processes P, Q and R as shown in Fig. 22.

In this example, we specify that process P should be
executed before Q and Q should be executed in parallel
with R. The behaviour between P and R is not specified and
leaves open certain ambiguity. This means that there are
more than one valid solutions and any of these solutions is
accepted. Here, the valid solutions are P;(QkR) or (P;Q)kR.

Every solution should satisfy the requirements. If a
solution exist that does not satisfy the requirements then
further refinement steps are necessary in order to exclude
this solution from the set of solutions. A unique and
unambiguous solution can be achieved by specifying a
relationship between P and R, as shown in Fig. 23. Each
cycle eliminates ambiguous interpretations.

Imagine that for a large model any unique and unambig-
uous solution would require many relationships. All these
lines would make the model complex and likely unread-
able. In order to keep the model simplified, we introduce
the parenthesis symbol on compositional relationships.
This is represented by an open dot ‘s’ (concatenation of
(þ)) at the peer-end of the compositional relationship. For
example, Fig. 23a and Fig. 23b are the equivalence of,
respectively, Fig. 24a and Fig. 24b. Using parenthesises
symbols reduces the number of relationships.

A compositional relationship without any dots is the
strongest possible relationship. A compositional relation-
ship with a dot at one end becomes a directed relationship.
This is a parenthesising relationship. A parenthesised
relationship is a stronger relationship than its neighbour
parenthesising relationships which are directed to a
process in the parenthesising relationship. A chain of
parenthesising relationships can make one relationship
stronger or weaker than the other. A stronger relationship
is considered before a weaker relationship. These stron-
ger=weaker relations are useful for describing anonymous
groups or hierarchies of compositions.

2.6 Indexed parenthesising relationships

A dot in the parenthesising relationships can be
indexed with an integer greater than zero. See Fig. 25,
where i2 [1, !). The index is an instrument useful for
reallocating relationships in order to maintain the algebraic
expression. This is discussed in Section 2.9.

Fig. 21

a Cascade of exception handling
bMultiple exception relationships with derived relationships

Fig. 19

aMultiple prioritised alternative relationship
bMultiple prioritised alternative relationship with derived relationships

Fig. 20 Exception relationship Fig. 22 Example of a model with ambiguity

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 115

Indices greater than 1 should be rendered next to the dot
to indicate the index. A dot with no index implicitly means
that it has index 1.

2.7 Hidden compositional relationships

In reality and virtually, all processes are compositionally
related to each other. In a CSP diagram, the compositional
relationships that are specified by the designer are
expressed by visual connections between processes. All
other relations are hidden connections. We say that a
process is unconnected or standalone when it is solely
related by hidden connections. In the visual view it has
no neighbours. Processes that are unconnected can be
executed in any order, i.e., in parallel or in some sequence.
By not specifying connections, we mean that we do not
care what the execution order is and therefore we let the
tool or environment decide. A hidden connection is an
indexed parenthesising compositional relationship, with
parenthesis symbols at both ends of the line, as shown in
Fig. 26.

The choice between P kQ, P;Q or Q;P is internally
determined by the tool or environment. Of course, the
solutions must be valid, i.e., each solution must be conflict-
free. The tool should choose the most optimal solution for
the final implementation. The causality that is expressed
by the data dependency between processes in the commu-
nication-graph can provide the necessary input in order to
determine an optimal execution framework.

The hidden connections of the final solution can be
visualised for understanding the generated framework at
the same level of abstraction. For example by using grey
lines. These hidden relationships can clarify reading the
execution framework and code structures of the architec-
ture in more detail. Normally, we are not concerned about
hidden connections, but a CSP diagram allows us to
express the detail of the execution framework. The ability
to visualise the hidden relationships is an ultimate solution
for debugging and studying the behaviour of the model at
the design level.

Showing every connection makes the graph easily
unreadable. Fortunately, not every connection has to be
shown. Redundant relationships could be removed from
the graph in order to make the graph more readable as
illustrated in the second solution at the right-hand side of
Fig. 26. Also a tree-graph which contains a minimised

number of visible relationships without leaving informa-
tion out can be easily constructed.

2.8 Undefined relationships

A connection between two processes can be specified
without an operator or label. These undefined relationships
can be useful for grouping processes together and
combined with a parenthesising relationship, i.e. being
strong relationships. These undefined relationships
become parenthesised relationships. As with hidden rela-
tionships, the operator of an undefined relationship can be
determined by the tool or environment.

2.9 Reallocation rules

In a process diagram, as in the CSP diagram, processes
are usually located near to the processes with the highest
relationship density. The designer has the freedom to
move processes around while the model grows. The
connections between processes are usually kept short
and crossings should be avoided as much as possible.
However, reallocating processes can result in longer
connections and possibly create crossings with other
connections. In the case of a process that is related to a
group of processes, we present a technique that allows the
process to be related to the nearest process in the group.
The technique allows reallocating relationships with
another (nearest) process in the group while maintaining
the original relationship or original algebraic expression.
Sometimes this technique can significantly shorten the
connection or eliminate crossings, which makes the model
better readable.

Fig. 27a shows a process P that is originally related to
process Q, but it has been moved to another location in the
diagram closer to other processes it is related to. These
other processes are not shown in the figure. The technique
presented here shows that the relationship between P and Q
can be reallocated to a relationship between P and T as
illustrated in Fig. 27d. The steps are illustrated in
Fig. 27b–27d.

The dot represents an arrow head pointing to a direction.
Each reallocation step along a compositional relationship
represents an index increment, decrement, increment and
decrement, or equality. Fig. 28a–27f shows six basic rules
for reallocating relationships.

The operators above the relationships don’t really matter
for this technique and therefore we will omit operators for
the moment. We assume that the operators are conflict-free
and that they satisfy the requirements. We use the general
operator% and its complement %̄ to show the commutative
properties.

Fig. 23 Unambiguous solutions using cycles of relationships
(complete graph)

a P;(Q kR)
b (P;Q) kR

Fig. 24 Unambiguous solutions using parenthesised relation-
ships

a P;(Q kR)
b (P;Q) kR

P Q P Q
i j

unconnected or
stand-alone
processes

hidden
compositional

relationship

Fig. 26 Stand-alone processes and hidden compositional
relationship

Fig. 25 Indexed parenthesising relationship with index i

116 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

Let operator % represent a binary CSP operator, where
by %2 { , k,

~

k, &,

~

&}. Operator %̄ is the complement
of %, where by %̄2 {! , k, ~kk, &, ~&&}. These operators
are directional commutative

P � Q ¼ Q ���P

The processes P and Q are relationship equivalent: (P, Q,
%)¼ (Q, P, %̄). For example, P kQ¼Q kP, P&Q¼
Q&P, P!Q¼Q P, P

~

kQ¼Q

~

kP, P ~&&Q¼Q ~&&P.

In Fig. 28 the rules c and f illustrate the boundaries of
reallocation. Once a relationship is given a parenthesis
symbol then its index is 1 or higher. Illegal indexing
(index< 1) indicates an illegal reallocation in that direction
and indicates a dead end. In Fig. 28c and Fig. 28f it is
trivial to see that process R is not a member of the group
and therefore reallocation should not be applied.

In the example of Fig. 27, the connection (P, Q, %) has
been reallocated to (P, T, %). The connection (P, T, %) is
the shortest connection. Although the distance between P
and U is shorter, no reallocation with U is possible, see
Fig. 27e. This reallocation is prohibited according to the
rule as depicted in Fig. 28c. The index may not go below 1.

The algebraic expressions of Fig. 27a and Fig. 27d are
equal:

P �1 ðQ�2 ðR�3 SÞ �4 T Þ �5 U ¼

P �1 ðT ���2 ðS ���3 RÞ ���4 QÞ �5 U

The algebraic expression of (P, U, %) results in the
inequality:

ðP �1 U Þ �2 ðT ���3 ðS ���4 RÞ ���5 QÞ 6¼

P �1 ðQ�2 ðR�3 SÞ � T Þ �5 U

This method can be automated. For example, while drag-
ging processes around the CSP diagram, the tool could
automatically reallocate connections to sustain the shortest
connections according to these rules.

2.10 Balanced and unbalanced parenthesised
cycles

Cycles of parenthesising relationships in a design should
be balanced. This means that in a cycle the number of
parenthesising relationships pointing in one direction
should compensate the number of parenthesising relation-
ships pointing in the other direction. The counting starts
and ends in one process of the cycle. If these parenthesis-
ing relationships do not compensate opposite parenthesis-
ing relationships in the cycle then one cannot completely
determine the algebraic expression of this so-called unba-
lanced cycle. In an unbalanced parenthesised cycle, the
algebraic expression reasoned in one direction is not the
same as the algebraic expression reasoned in the other
direction. A balanced cycle results in a single algebraic
expression reasoned from both directions.

2.11 Compositional conflict checking technique

The CSP language provides several features to determine
compositional conflicts in design and requirements. We
have developed a systematic approach that will combine
these features to find compositional conflicts [11].
A compositional conflict is a failure of two compositional
relationships that are in contradiction.

The systematic approach basically transforms the design
to a normal form. The procedure of creating a normal form
is the basis for compositional conflict checking. The
systematic approach of finding compositional conflicts is
based on temporarily reallocating redundant relationships
on top of each other. Both relationships should have the
same operator and the same index otherwise they are in
conflict. If the operators match and the indices match then
one relationship can be eliminated from the graph. Hier-
archies of processes are transformed into parenthesising
relationships. This procedure ends when no more cycles
exist and the model is totally flattened into a tree-based
model. The resulting model is called the normal form.

dragging
P

Q

Q

Q

Q

Q

R

R

R

R

R

S

S

S

S

S

T

T

T

T

T

U

U

U

U

U

P

P

P

P

P

illegal

0?

0=illegal

1

1

1

1

1

+1

+1

+1

+1

+0

+0

+0

–1

–1

–1

2

2

a

b

c

d

e

Fig. 27 Example of reallocating a connection

aOriginal configuration
b Reallocation step 1
c Reallocation step 2
d Reallocation step 3, final configuration
e Illegal reallocation, boundary crossed

P P P

P P P

Q Q Q

Q Q Q

R R R

R R R

1

1 1

1

1 1

12

2 2

2
+1

+1 +1

–1

–1 –1

–1
0

+0

index

indexindex=1

<1

<1

error

error

a b c

d e f

Fig. 28 Reallocation rules

a Incremental indexing
bDecremental indexing
c Decremental illegal indexing
d Equal indexing
e Equal indexing
f Equal illegal indexing

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 117

This is a typical operation a tool can perform to check if
the designer is applying a correct operator or index for
each added relationship. During design the tool could
assist the designer by showing warnings when operators
or indices are in conflict. These warnings will become
errors before code generation, because the model cannot be
code generated.

2.12 Recursion based on anonymous hierarchies

As with many programming languages this graphical
language supports recursion. A process can represent
‘nameless’ recursion involving X, as in

mX � ðP;X Þ ¼ P;P;P;P; . . .

Similarly, recursion is depicted by a special m-process for
constructing looping=recursive constructs as shown in
Fig. 29.

The m-process is a leaf process that can participate in
only one compositional relationship with one other
process. The m-process is different from other processes.
Firstly, its interface is decoupled from any other process
interface and therefore the m-process overcomes the inter-
facing problem as described in [11]. Secondly, no matter
what kind of compositional relationship is specified, it will
always repeatedly execute the other process until some
additional conditional expression becomes false. The
conditional expression is evaluated in the order that is
specified by the compositional relationship. This also gives
rise to a dynamic form of recursion or looping.

A few different kinds of loops are shown in Fig. 30 that
can also be found in many programming languages. These
loops can be modelled with the m-process and action

attachments.
The m-process can also be used with other compositional

relationships other than sequential.

2.13 Primitive communication processes

All CSP relationships in the communication diagram and
in the composition diagram are all synchronisation points
in the design model. This section introduces three commu-
nication primitives that express synchronisation points in
the design model. We model these synchronisation points
as primitive communication processes. These primitive
processes are depicted in Fig. 31.

The termination events of these processes correspond to
their shared communication events. Fig. 31a illustrates a
channel-output or a channel-call. Fig. 31b illustrates a
channel-input or a channel-accept. Fig. 31c illustrates a
barrier synchronisation entry on a shared barrier. These
primitive processes are useful for

� showing the points of interaction between processes;
� showing hardware access points [12];
� checking for deadlocks in design;
� checking for priority inversion problems in design;
� throwing exceptions on lower-level errors.

2.14 Deadlock analysis using compositional
relationships

Compositional conflicts in a CSP diagram found between
the primitive communication processes reflects deadlock.
A compositional conflict is an error in the design. As a
result of a compositional conflict the model cannot be code
generated—no solution can be found. If the model is
conflict-free then there might still arise a type of conflict
which we call deadlock. Deadlock is a synchronisation
conflict in software that occurs at run-time. Potential
deadlock can be traced in the model before run-time and
before code generation. The primitive communication
processes in Fig. 31 play an important role in analysing
the model for potential deadlocks. A deadlock is a failure
of two processes to cooperate with each other because of

Fig. 29 Infinite recursion

Fig. 30 Looping and recursion

Fig. 31 Primitive processes

a Channel output=call process
b Channel input=accept process
c Barrier sync process

118 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

not being able to agree on a common event, although they
are willing to participate in other events.

A good solution to finding deadlocks and other phenom-
ena is the use of formal deadlock checkers. For example,
the model could be translated into readable CSP and
analysed by a tool such as FDR [13]. The tool will proof
if the design is deadlock free. This is only possible if the
model is conflict-free, but not necessarily deadlock-free.

During design it would be convenient to detect and to
warn about the presence of potential deadlocks before
finishing the model. The language provides enough infor-
mation. Here, we describe a technique for finding and for
reasoning about deadlocks in the design phase of the
project. This is based on the conflict-free checking techni-
ques involving these primitive communication processes.

For example, Fig. 32a shows a model that is conflict-
free. The model can be code generated and executed. At
run-time, these processes synchronise on channel commu-
nication or on barrier synchronisation and they maintain in
a locked state forever, they deadlock. In the procedure of
finding conflicts we define a preliminary step that allows us
to detect potential deadlocks.

Given the fact that a channel-input=call=sync and chan-
nel-output=accept=sync synchronise at both sides always
rendezvous, we can consider the channel-input=call=sync
process and the channel-output=accept=sync process as a
single rendezvous process (i.e. in the form of an anon-
ymous process), see Fig. 32b. The relationships between
the primitive processes must be parallel or prioritised
parallel, see Fig. 33.

It is necessary that the model is flattened, i.e., all
processes are brought to the same level in the hierarchy.
First we merge the pair of primitive communication
processes together into rendezvous processes and watch
the compositional relationships between the rendezvous
processes. The procedure of finding conflicts should be
applied in order to find sequence conflicts in every path
between these rendezvous processes. A sequence conflict is
a compositional conflict where by sequential operators are
in contradiction. For example, Fig. 33a is conflict-free but
not deadlock-free. One can see after merging that the
sequential relationships are in contradiction. This sequence
conflict is a potential deadlock. This is the same for barrier
synchronisation.

2.15 Priority inversion analysis using
compositional relationships

With the same technique as in the previous section one can
find priority conflicts whereby prioritised parallel operators
are in contradiction, see Fig. 34b. In this case, the model
suffers from priority inversion. The priority inversion
problem can place a significant burden on the performance

of the software. It this case, a higher priority process can be
blocked by the lower priority process and as a result of that
it may be that the deadlines of the higher priority process
cannot be met.

Usually, eliminating this design conflict by correcting
prioritised compositional relationships will result in a
better design. In the case where priority inversion is
inevitable in the design, which is possible, one could
solve the problem by use a special channel (i.e. a tuned
communication relationship) between processes executing
at different priorities in order to delay blocking. A simple
buffered channel can help to solve priority inversion
problems. The communication relationships in the commu-
nication-graph between processes that are in priority
conflict specify the location of a buffered property. A
tool could use this information to change the rendezvous
channels into buffered channels. This information together
with the direction of communication and the frequency of
the processes can be used to determine special buffers, like
oversampling and subsampling buffers. The notion of time

! !? ?

* ** *

a b

Fig. 32

aOriginal design
b Compositional conflict-free

! !? ?

* * * *

a

b

Fig. 33

a Channel comm. to rendezvous process
b Barrier comm. to rendezvous process

! !

! !

? ?

? ?

* *

* *

* *

* *

a

b

Fig. 34

a Sequence conflict¼ deadlock
b Priority conflict¼ priority inversion problem

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 119

is not discussed in this paper and is the subject of further
research.

3 Related work

The graphical language as presented here is immediately
useful for drawing models by hand or with some drawing
tool. These CSP diagrams can be used for documenting
concurrency of a real-time software architecture. However,
in order to fully benefit from the language and the
techniques behind it, then tool support is inevitable.
Therefore, we are developing a prototype tool that allows
us to design sophisticated control software at our control
laboratory.

The tool will be developed in Java and it will become
available for everyone who is interested in this develop-
ment. Information about the tool can be found at our web
site [14]. The tool will support two add-in facilities to
allow extending the tool with self-made model-checking or
code-generation modules. We hope to encourage research-
ers to be able to use and to extend this technology.

4 Conclusions

Designing CSP diagrams provides a new way of designing
concurrent software. A CSP diagram represents the blue-
print of an execution model of a concurrent-software-
architecture. The presented graphical modelling language
acts as a glue-logic between structured methods and
object-orientation—providing continuation between the
two paradigms. A CSP diagram is UMLable and can be
used as a process diagram for the UML to capture
concurrent, real-time, and event-flow oriented software
architectures. Processes and their relationships can easily
be implemented using objects. For example, the CSP for
Java packages CTJ [14] and JCSP [15] can be used to
implement CSP diagrams.

A CSP diagram is mainly responsible for the architec-
tural execution framework. A CSP diagram is not respon-
sible and not detailed enough for the entire coding. Each
process can be further detailed using other diagrams (e.g.,
state-charts, UML diagrams) and other tools.

This graphical modelling language can be used at every
level of abstraction with the same graphical notations and
semantics. The design freedom is high and the design
process is guided by simple rules and semantics that can
guarantee consistency and correctness. A CSP diagram can
be mathematically analysed, checked, simulated, and
finally executed on a dedicated embedded real-time
system. Design tools are required to support this graphical
modelling language so that a software architect can really
benefit from CSP diagrams. In this paper we introduced the
basics of the graphical modelling language and further
research is required to enhance the graphical modelling
language and to build tools for designing CSP diagrams
and for code-generation.

5 References

1 HOARE, C.A.R.: ‘Communicating sequential processes’ (Prentice-Hall,
London, UK, 1985)

2 ROSCOE, A.W.: ‘The theory and practice of concurrency’ (Prentice-
Hall, Hertfordshire, 1998)

3 WARD, P.T., and MELLOR, S.J.: ‘Structured development techniques
for real-time systems’ (Prentice-Hall, Englewood Cliffs, NJ, 1985)

4 HATLEY, D.J., and PRIBHAI, I.A.: ‘Strategies for real-time system
specification’ (Dorset House Publishing, New York, NY, 1987)

5 YOURDON, E.N.: ‘Modern structured analysis’ (Prentice Hall, Engle-
wood Cliffs, NJ, 1989)

6 DOUGLASS, P.B.: ‘Real-time UML: developing efficient objects for
embedded systems’ (Addison Wesley Longman, Inc., Reading,
Massachusetts, 1998)

7 BOOCH, G., RUMBAUGH, J., et al.: ‘The unified modeling language—
user guide’ (Addison-Wesley, Reading, Massachusetts, USA, 1999)

8 DOUGLASS, B.P.: ‘Doing hard timer: developing real-time systems
with UML, objects, frameworks, and patterns’ (Addison Wesley
Longman, Inc., Reading, 1999)

9 ROSCOE, A.W.: ‘Routing messages through networks: an exercise
in deadlock avoidance’. 7th Occam User Group & International
Workshop on Parallel programming of transputer based machines,
14–16 September, 1987, Grenoble, LGI-IMAG

10 JONES, G.: ‘On Guards’. 7th Occam User Group & International
Workshop on Parallel programming of transputer based machines,
14–16 September 1987, Grenoble, LGI-IMAG

11 PASCOE, J.S., WELCH, P.H., et al.: ‘Communicating process architec-
tures 2002’. Proceedings of Communicating Process Architectures, IOS
Press, Reading, 15–18 September 2002

12 HILDERINK, G.H., BROENINK, J.F., et al.: ‘Software design method
for heterogeneous embedded systems’. Presented at 17th Benelux Meet-
ing, 4–6 March 1998, Mierlo, NL

13 FDR, Formal Systems Ltd.: ‘FDR2’, http://www.formal.demon.co.uk /
14 HILDERINK, G.H.: ‘Communicating Threads for Java (CTJ) home

page’, http://www.ce.utwente.nl/javapp, accessed 5 September 2002
15 WELCH, P.H., and AUSTIN, P.D.: ‘The JCSP home page’, http://

www.cs.ukc.ac.uk/projects/ofa/jcsp, accessed 5 September 2002

120 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

