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Abstract

This paper presents a heuristic for the dynamic vehicle scheduling problem with multiple resource capacity con-

straints. In the envisaged application, an automated transport system using Automated Guided Vehicles, bottleneck

resources are (1) vehicles, (2) docks for loading/unloading, (3) vehicle parking places, and (4) load storage space. This

problem is hard, because interrelated activities (loading, transportation, unloading) at several geographical locations

have to be scheduled under multiple resource constraints, where the bottleneck resource varies over time. Besides, the

method should be suitable for real-time planning. We developed a dedicated serial scheduling method and analyzed its

dynamic behavior using discrete event simulation. We found that our method is very well able to find good vehicle

schedules satisfying all resource constraints. For comparison, we used a simple approach where we left out the resource

constraints and extended the processing times by statistically estimated waiting times to account for finite capacities. We

found that our newly designed method finds better schedules in terms of service levels.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

In this paper, we present a serial scheduling

method for the real-time dynamic resource-con-

strained vehicle scheduling problem. This research
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was motivated by a study on an automated

transportation system near Schiphol Airport, the
Netherlands; see Van der Heijden et al. (2002b).

Automated Guided Vehicles (AGVs) transport

time critical products between terminals, with

distances up to 10 km. These terminals require a

serious investment in equipment (AGVs, docks)

and space (parking places, cargo storage), espe-

cially because some of them have to be constructed

underground. The system should provide a reliable
service (on-time delivery) against low costs.

Therefore, the number of docks, parking places

and cargo storage locations in the terminals should
ed.
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be minimal. Good vehicle schedules can possibly
reduce the resource requirements while still meet-

ing service level agreements (e.g. 98% on-time

delivery). Scheduling is especially critical in this

particular situation where time windows are tight

and resource utilization is high.

1.2. Problem

We consider a transportation network consist-

ing of terminals, between which cargo needs to be

transported by vehicles, and central parking areas,

where vehicles can be positioned when temporarily

not needed or when there is a lack of space in other

parts of the network. A transport job is defined as

a request to load some cargo at a certain terminal

after a given release time, to move it to its desti-
nation terminal and to unload the cargo before a

given due time. Jobs arrive over time and real-time

decision making is required, given their short inter-

arrival times and processing times (in minutes

rather than in hours). Besides the number of

vehicles, the docking, parking and cargo storage

capacity of the terminals are limited. The question

is how to integrate these capacity restrictions in the
planning procedure for the vehicles. Our goal is to

maximize the percentage of jobs served on time,

given the finite resource capacities. As a secondary

criterion, we aim to reduce the fraction of kilo-

meters driven empty to reduce operational trans-

portation costs.

1.3. Literature

The problem described above can be seen as a

dynamic resource scheduling problem (Powell,

1998). More specifically, we can characterize it as a

dynamic real-time vehicle scheduling problem

(Gendreau and Potvin, 1998; Powell, 2003).

Vehicles are scheduled over a time horizon, while

new service requests arrive in real-time. After each
arrival, the current schedule may be reconsidered

to include the new arrival, but periodic resched-

uling is also an option. In the dynamic case, the

planner has to react on events that occur in real-

time, such as job arrivals, congestion and distur-

bances. Most literature on vehicle routing and

scheduling deals with the static problem, in which
all data are known before the routes are con-
structed (see e.g. Fisher, 1995; Desrosiers et al.,

1995). The dynamic vehicle scheduling problem is

receiving increasing attention in the literature,

caused by an increasing availability of real-time

data and the need for real-time decision making to

ensure high customer service (Powell et al., 1995;

Gendreau and Potvin, 1998; Ichoua et al., 2000).

Given the requirement of real-time decision sup-
port, most authors resort to heuristics. Gendreau

et al. (1999) describe a parallel tabu search heu-

ristic for the real-time vehicle dispatching problem

and compare it with other heuristic methods. Ul-

usoy and Bilge (1993) propose an iterative algo-

rithm to integrate the vehicle scheduling with the

overall scheduling activity in a flexible manufac-

turing environment, but they do not indicate
whether this approach can be used in real-time

dynamic scheduling.

In the vehicle scheduling literature, we could

not find anything about multiple node capacity

restrictions. Only in the literature on AGV systems

some authors take buffer sizes at machine loca-

tions into account in dispatching the vehicles. Kim

et al. (1999) try to balance the workload in a
manufacturing job shop with automated guided

vehicles. The proposed procedure shows good re-

sults compared to existing dispatching rules when

the buffer sizes are limited. They indicate that it is

important to identify the most critical resource

and to make good use of this resource in the

operational control.

A research area where resource constraints are
common is resource-constrained project schedul-

ing; see Brucker et al. (1999) for an overview.

Two well-known heuristics for the resource-con-

strained project scheduling problem are the serial

and parallel scheduling scheme (Kolisch, 1996).

Van der Heijden et al. (2002a) apply a serial

scheduling method to the vehicle scheduling

problem in an automated transportation network
and show promising results compared with other

heuristics. In their method, they neglect finite

resource capacities at the terminals. In their

cases, there are no parking and storage restric-

tions, so finite docking capacity induces waiting

times of vehicles at terminals until they can be

(un)loaded.
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1.4. Novel aspects

Given the promising results in Van der Heijden

et al. (2002a) and the structure of the serial

scheduling method, sequentially selecting and

scheduling one job, it appears that this method can

be extended to the situation with terminal capacity

constraints. This is the focus of our paper. Such an
extension is not straightforward, however. Because

each job consists of a sequence of activities that

each requires a different set of (constrained) re-

sources, strong interrelations between the resource

constraints arise that complicate the scheduling.

We will illustrate this below.

A vehicle, a dock and the cargo need to be

available at the terminal of origin for the loading
activity. For a vehicle that is scheduled to arrive a

little too early, a parking place has to be available.

If parking space is insufficient, the vehicle has to

arrive later and so it has to depart later from its

current location (say another terminal), but then

the parking space at the other terminal should be

sufficient. An alternative is to select another, more

remote, vehicle. Furthermore, the time at which
the cargo is loaded determines the arrival time of

the loaded vehicle at the destination terminal. At

that time, either a dock should be available for

unloading or a parking place has to be available

until the time that the vehicle can be unloaded. If

that is not possible, loading of the vehicle at the

origin terminal has to be postponed. However,

then cargo remains longer in storage, which may
cause violation of the storage capacity. It will be

clear that resource conflicts can easily arise.

Avoiding such conflicts is not trivial; it is even not

guaranteed that a feasible schedule exists.

In practice, occasional violation of a capacity

constraint does not always cause serious problems.

For example, a temporary lack of dock and

parking capacity means that a vehicle cannot enter
the terminal and that it has to wait in front of the

terminal entrance. Because it can block other

traffic, it may cause delay of other jobs. Also,

insufficient storage capacity means that cargo

arriving at the terminal for loading cannot be

stored. As a consequence, the cargo has to be

stored at another location (in the truck delivering

the cargo, outdoor). This may induce truck delay
and/or degradation of cargo quality. Although we
could model this as soft resource constraints in

theory, costs of capacity violation can be hard to

quantify in practice (what are the costs of a vehicle

that has to wait in front of the terminal entrance?).

Therefore, we treat the capacities as hard con-

straints in our scheduling procedure and we study

the degree in which these constraints are violated

in a simulation study.
At this point, it will be clear that the scheduling

problem is hard, especially if it has to be used in

real-time. As a solution for such a scheduling

problem is not available in the literature (see Sec-

tion 1.3), we will develop a new method in the

remainder of this paper.

1.5. Approach

At first sight, it seems logical to check the var-

ious resource capacities one-by-one and to post-

pone activities if the capacity is insufficient. Then

an important issue is in which order resource

capacities should be checked such that (1) due

times are met, and (2) schedules are constructed in

an efficient way, because we focus on real-time
planning. We first design a serial scheduling pro-

cedure based on sequential capacity checking.

Next, we extend this basic serial scheduling

method with improvement heuristics to reduce the

amount of empty kilometers. Because the resulting

schedule might not be feasible with respect to

parking capacity, we solve these infeasibilities

using a post-processing method. We use discrete
event simulation to investigate the dynamic

behavior and performance of our scheduling pro-

cedure.

The paper is organized as follows. In the next

section, we present the main principles of the serial

scheduling method and we describe our problem

setting and assumptions. Then we explain how a

schedule is constructed given a set of transporta-
tion jobs (Section 3). In Section 4, we discuss the

implementation in a dynamic environment, i.e. a

rolling horizon. We tested the proposed method by

a simulation study on an automated transporta-

tion network. We describe the experimental design

in Section 5 and the numerical results in Section 6.

In the last section, we present our conclusions.



ujij

tl
loadtl

release tl
unload tl

ready tl
due

dock

tl
arrive

in-buffer

tl
depart

out-bufferdockparking

AGV

li τ

Fig. 1. Resource requirements for job l over time.
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2. The serial scheduling method, problem setting and

assumptions

2.1. Main principles

Serial scheduling, a priority rule based sched-

uling method, is an important heuristic solution

technique. This method (1) is intuitive and easy to
use, (2) is fast, and (3) shows good results com-

pared to other heuristics (Kolisch, 1996). Gener-

ally, a priority rule based scheduling heuristic

consists of two elements: a schedule generation

scheme and a priority rule. A feasible schedule is

generated by extending a partial schedule. In each

stage, an activity that is not yet scheduled is se-

lected according to the specified priority rule. Each
activity can only be scheduled once.

The original serial scheduling method consists

of J stages. At each stage, one activity is selected,

based on some priority rule, and next it is sched-

uled at its earliest resource and precedence feasible

start time (Kolisch, 1996). There are two disjoint

sets of activities, the set S which contains all

scheduled activities and the decision set D, which
contains the activities that still have to be sched-

uled and which predecessors are all in the set S.
At each stage, an activity is scheduled and

moved from the set D to the set of scheduled

activities S. The decision set D is updated and a

new activity is selected until all activities have been

scheduled.

The serial scheduling method can be used in
a single-pass or a multi-pass approach. In a single-

pass approach, the entire decision set D is

scheduled once using a single priority rule. In the

multi-pass approach, each pass uses a different

priority rule to select an activity from the decision

set D. The best schedule is selected according to

some objective function, such as minimum total

lateness.

2.2. The process to be scheduled

Fig. 1 displays the transportation process. A job

arrives at the terminal of origin and is available for

transportation at the release time. In case the job

cannot be transported directly, the cargo is stored

temporarily in the in-buffer. When a vehicle and a
dock are available, the job can be loaded and the
vehicle starts driving to the destination. When the

vehicle arrives at the destination, it is possible that

the vehicle has to wait at a parking place until

docking and storage capacity are available. The

vehicle can be unloaded when both resources are

available. After unloading, the cargo is stored in

the out-buffer until the due time. Because multiple

resources have to be available at both the origin
and the destination during linked time intervals,

resource utilization at different terminals has to be

tuned. The start time of a job has to be feasible

with respect to all resources required, which can

make it difficult to find the earliest feasible start

time.
2.3. Serial scheduling with capacity constraints

In principle, finite resource capacities do not

affect the job selection step (priority rule), but it

seriously complicates finding the earliest resource

and precedence feasible start time. As mentioned

before, an important issue is the order in which

resource capacities should be checked and how the

timing of the various activities needed to process a
job should be determined. A problem that we

encountered is the parking capacity needed for

vehicles between unloading one job and loading

the next job. Because we schedule jobs one-by-one

based on a (time-dependent) priority rule, it is not

clear when scheduling a certain job which job the

vehicle will handle next. As a consequence, we also

do not know how long the vehicle will have to wait
in which parking. If the parking capacity seems to

be exceeded, we can only prevent this by planning

an empty trip to the nearest location with sufficient

parking space. Later on, we can find out that this

is not an optimal location, so that unnecessary

empty trips are scheduled. Therefore, we decided

to take parking capacities only into account
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insofar it is required for loaded vehicles waiting
between arrival at the destination terminal and

unloading. We use two steps to move from the

preliminary schedule to the final schedule. First,

we use improvement heuristics to reduce empty

trips, for example by combining empty trips and

load jobs. Second, we use a post-processing

method to correct parking capacity infeasibilities.

We will explain these steps in more detail in the
next section.

We start the serial scheduling method as fol-

lows. All transport jobs to be scheduled are in the

decision set D; there are no precedence relations

between the jobs. The total number of vehicles is V
and we have a set of terminals T . Each transport

job entails a transport of cargo from terminal i to
terminal j, with i; j 2 T with a given release and
due time All terminals have limited docking,

storage and parking capacity. For each resource,

we define a profile, which expresses the available

capacity of that resource at a specific terminal over

time. Time is divided into discrete time intervals.

Jobs should be scheduled before their latest

departure time in order to have the possibility to

be on time at the destination. The latest departure
time does not take into account finite capacities.

Our objective is to optimize due-time performance,

or, stated otherwise, to minimize the number of

late jobs. However, other objective functions, such

as the total lateness, can be included in our method

without major modifications.

2.4. Assumptions

In the remainder of this paper, we use the fol-

lowing assumptions:

• Cargo is always transported directly from origin

to destination. Still, we note that multi-stage

routes can be modeled by separate jobs with

precedence constraints. For example, consider

a job that has to be transported from terminal
i to terminal j via terminal k. We can replace

this job by two jobs, one from i to k and one

from k to j, with the precedence constraint that

the first job has to be finished before the second

job may start. Precedence constraints can be in-

cluded in the serial scheduling method, as the

decision set D has to be updated every time a
trip has been planned. So, the second job can

be added to the decision set when the first job

has been scheduled.

• The route between two terminals is fixed and

chosen according to minimum distance.

• The terminals have separate in-buffers and out-

buffers for storage of cargo.

• The storage space in the entire system is suffi-
cient. Thus, when terminal i has limited buffer

capacity, other terminals should have sufficient

storage space to keep the products with destina-

tion i longer in storage.

• All docks are generic, i.e., they can be used for

loading and unloading. Separate docks for

loading and unloading can easily be included.

This can be attractive to separate the incoming
and outgoing flows at a dock.

• All cargo has the same loading/unloading time.

This is a realistic assumption because load bear-

ers are used in transporting the cargo and the

dock operations are automated.

• All transport jobs are unit loads, so we do not

take into account consolidation or pick-up

and delivery trips of combined loads. In our
application, consolidation is a separate decision

process preceding vehicle scheduling; see Van

der Heijden et al. (2002b).

• All handling (loading, unloading), travel and

arrival times are deterministic. These times

might actually be random variables, for exam-

ple because of variations in travel time due to

congestion. Thus, the assumption of determinis-
tic information serves as an approximation.

Usually, the variation in travel times is small

relative to the travel time itself, and therefore

a deterministic approach seems acceptable.

Also, given that the loading and unloading of

vehicles is completely automated, using load

bearers that can be rolled on or of the vehicle,

the loading and unloading times will only vary
slightly. However, variations in travel time

and docking time cause deviations between

planning and realization.

2.5. Notation

In the next sections, we will use the following

notation:
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Input to the scheduling procedure

tlrelease the time job l is available for transport

tldue the time job l has to leave the destination

terminal

DCi
t the remaining dock capacity at terminal i

at time t
IBCi

t the remaining in-buffer capacity at termi-

nal i at time t
IBCi the maximum in-buffer capacity at termi-

nal i
OBCi

t the remaining out-buffer capacity at ter-

minal i at time t
OBCi the maximum out-buffer capacity at ter-

minal i
PCi

t the remaining parking capacity at termi-

nal i at time t
sij the travel time from terminal i to terminal

j
li the loading time at terminal i
ui the unloading time at terminal i
tlLDT the latest departure time for job l:

tldue � sij � li � uj if there is no delay

Output from the scheduling procedure

tlveh the time a vehicle is available for job l
tlload the time a dock is available for job l to be

loaded

tldepart the scheduled time job l has been loaded

and the vehicle starts driving to the des-

tination

tlarrive the scheduled time job l will arrive at the

destination terminal

tlunload the scheduled time a dock will be available

for unloading job l at its destination
tlready the scheduled time job l will be unloaded

and the handling will be finished
3. Constructing a schedule

When constructing a schedule, we select the

highest priority job according to some logical
priority rule and we schedule this job at the earliest

resource feasible start time. To schedule the job,

i.e., to determine the timing of all activities needed

to process the job, we have to check all resource

capacities. As mentioned in the introduction, the

order in which the capacities are checked is
important for efficient and effective scheduling. An
important criterion in this respect is to check first

the resource for which postponement of the

activity later on (because another resource con-

straint is violated) does not cause new capacity

problems. Because the resource requirements at

the destination terminal depend on the timing of

activities at the departure terminal, it seems logical

to start at the departure terminal (timing is easier
to determine there).

At the departure terminal, we check the vehicle

capacity before the dock capacity. If a dock is

available and no vehicle, we have to re-check the

dock capacity at a later point in time, because it

could be scheduled to unload an earlier job that

arrived from another terminal. However, when a

vehicle is available but no dock, we can easily
postpone the docking operation, because we are

sure that the vehicle will still be available.

At the destination terminal we also use a fixed

order to check the capacity restrictions. The

departure time of a vehicle determines its arrival

time at the destination terminal. First, we look at

the storage space, which has to be available from

the finishing time of unloading until the due time.
Once we know from when storage space is avail-

able, we also know the time interval in which we

can unload the vehicle. Then we look at the

docking capacity and determine the time at which

we can unload the vehicle. The start of the

unloading operation determines whether a parking

place is required between arrival of the vehicle and

the unloading operation. Therefore, it is natural to
check the parking capacity after the unloading

time has been determined. Now we discuss the

steps in more detail.

I. Select the first priority rule and generate a

schedule based on that rule

Step 0: Initialization

Derive initial resource profiles for vehicles,

docks, parking places and storage locations from
the status of the system, i.e., given that all jobs that

are already started will be finished and that jobs

are rescheduled if they have not been started yet.

Step 1: Selecting the highest priority job

A job l has to be selected from the decision set

D according to a priority rule. We will address the

following options:
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• Earliest Due Time (EDT); that is, the job that

has to be finished at the earliest point in time;

• Earliest Release Time (ERT); that is, the job

that can start at the earliest point in time;

• Minimum Latest Departure Time (LDT); the

latest departure time is defined as the latest time

a job should be loaded in order to be sure that it

will arrive at its destination before the due time;
A minimum LDT rule might be more appropri-

ate than an EDT rule, because the remaining

processing time is taken into account.

• Minimum Slack; the slack is the still available

time for transporting a job, i.e. the LDT minus

the earliest departure time, which is the maxi-

mum of the release time and the current time

(t0).
We can use these four priority rules in a multi-

pass approach, where in each pass a different pri-

ority rule is used. The EDT and minimum slack

rule are also used in for example machine sched-

uling (see e.g. Enns, 1996). In selecting a job, we

should not only look at the priority of the job, but

also at the storage capacity at the terminals. The

out-buffer capacity is taken into account in the
next step, but the in-buffer capacity should be ta-

ken into account here. When the in-buffer capacity

at terminal i will be exceeded within the planning

horizon, we should first dispatch cargo from ter-

minal i. Therefore, we have to take this into ac-

count in selecting a job. In selecting a job, we first

select the terminal that will exceed its in-buffer

capacity at the earliest point in time:

min
i2T

min
t>t0

t IBCi
t

����
> IBCi

��
: ð1Þ

From this terminal, we select the highest priority

job. When there are no terminals with capacity

problems, we select the job based on the priority

rule only.

Step 2: Scheduling the highest priority job

(a) Determine the earliest resource feasible time.

To determine the start time for the highest priority

job, say job l, we have to check resource capaci-
ties: departure terminal capacity and destination

terminal capacity.

A. Resource availability at the departure termi-

nal. The earliest feasible start time for transporting
job l from terminal i to terminal j, only looking at
the resources at terminal i, is the time t for which
the following conditions hold:

1. Job l is released.
2. A vehicle is available for transporting job l.
3. A dock is available for the loading time li.
The release time of job l is tlrelease. A vehicle has to

be available for transporting job l. Let us define

tlveh;k as the earliest time a vehicle can be available
for transporting job l at terminal i, arriving from

terminal k 2 T . A vehicle is available at a terminal

k at time t when V k
t0 > 0, 8t0 > t, because the vehicle

profile at terminal k should not become negative

when we send this vehicle to terminal i. Then the

earliest time a vehicle can be available at terminal i
is

tlveh ¼ min
k2T

tlveh;k V
k
t0�ski

���n
> 0; 8t0 > tlveh;k � ski

o
ð2Þ

Note that we do not assign a specific vehicle. We
only look at vehicle profiles, i.e., the number of

vehicles available as a function of time. The

selection of a specific vehicle is left to a lower

control level (see Section 4). We also need a dock

at terminal i for a time interval li, which is repre-

sented in Equation (3). This means that the earliest

feasible start time given the resource constraints at

terminal i is tlload ¼ tldock.

tldock ¼ min t DCi
t0

���
> 0; 8t0 2 t; t½ þ li�;

t > max tlrelease; t
l
veh

� ��
ð3Þ

B. Resource availability at the destination ter-

minal. The earliest starting time for transporting

job l determines the earliest arrival time at desti-

nation terminal j: tlload þ li þ sij. At the destination

terminal, the following processes take place:

1. The vehicle possibly has to wait at a parking

place until a dock is available.

2. A dock has to be available for the unloading
time uj.

3. Out-buffer capacity has to be available from the

finishing time of the unloading operation, tlready,
until the due time of the job, tldue. At the due

time, the customer collects the cargo.

Given these capacity restrictions, the earliest

possible unloading time is the earliest time that all

these capacity constraints hold
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tlunload ¼ min t

t > tlload þ li þ sij

PCj
t0 > 0; 8t0 2 tlload þ li þ sij; t

� �
DC

j
t00
> 0; 8t00 2 t; tþ uj

� �
OBCj

t000
> 0; 8t000 2 tþ uj; tldue

� �

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð4Þ

Because tlload is given in (4), there might not be a

feasible solution with respect to the parking

capacity. When there is no parking capacity

available between arrival and unloading, the
loading operation should be postponed. This leads

to an iterative procedure that stops when a feasible

solution has been found for both tlload and tlunload.
When the time horizon is long enough, it is always

possible to find such a feasible solution, but it can

possibly lead to late delivery of job l: tlready > tldue.
Given that we always take the minimum over time,

tlunload is the earliest feasible time that we can finish
job l. Because job l has highest priority, this is

exactly what we want. Note that Eq. (4) only takes

parking capacity into account between the arrival

of a loaded vehicle and the unloading of the

vehicle. As mentioned before, we solve possible

infeasibilities in a post processing method (see Step

4). In Fig. 2, we show a graphical representation

for job l. Note that a vehicle is only claimed be-
tween tlload and tlready.

Minimize waiting time and empty kilometers. It

is possible that a scheduled job has to wait at the

destination terminal until a dock is available for

unloading (see Fig. 2). The waiting time w is equal

to tlunload � tlarrive. During this waiting time, the

vehicle cannot be used for another job. To increase

vehicle utilization, we would like to minimize this
waiting time. Given that the vehicle cannot be

unloaded earlier, the only option is to postpone

the loading operation, which can maximally be

postponed by a time w. The dock and storage

profile at terminal i have to be checked for the
tl
loadtl

release

τij

tl
veh

li

Fig. 2. Representa
possibility to postpone the loading operation.
Now we postpone the loading operation as much

as possible in order to minimize the waiting time.

Such a solution is still feasible with respect to

parking, docking and storage capacity at the des-

tination terminal.

Another improvement of the schedule might be

possible with respect to the selection of a vehicle.

Suppose that the earliest available vehicle is an
empty vehicle that has to arrive from another

terminal. When tlload > tlveh, it might be possible to

use an empty vehicle from another terminal, that

will arrive later but still in time, resulting in less

empty kilometers. Maybe there is even a vehicle

available at the terminal of origin of job l at time

tlload. We select the nearest vehicle that can be

available before time tlload.
(b) Try to combine job l with another job. When

we would use the serial scheduling method in the

way described above, there could be a lot of empty

vehicle trips between terminals, while at the same

time cargo has to be transported between these

terminals. These jobs will have lower priority than

job l, but it is probably beneficial to combine the

empty trip with the transport of cargo. This re-
duces the number of empty trips and increases

vehicle utilization.

By our definition, a job m can only be combined

with job l if the destination of job m equals the

origin of job l. If such a combination is possible, it

prevents unnecessary empty vehicle movements,

but it may also cause a delay to job l. To combine

transportation, we determine the jobs that can be
combined with job l, such that job l is still handled
before its due time. Amongst all these jobs, select

the job m that leads to the smallest delay for job l.
Planning job m requires the same procedure as the

one described for job l, taking into account the

limited docking, parking and storage capacity.

Note that when tmready > tlload, job l will be delayed.

Then it is necessary to reschedule job l, following
tl
unload tl

ready tl
due

w uj

tl
arrive

tion of job l.
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the same procedure as in the previous step, but
using tlveh ¼ tmready.

(c) Update the job list and the resource profiles.

Remove job l from the decision set D and add job l
to the set of scheduled activities S. In the case of

combined transportation do the same for job m.
Update all resource profiles.

Step 3: Termination criterion

Repeat Step 1 and 2 until all jobs have been
scheduled.

Step 4: Correcting schedule infeasibilities

Infeasibility with respect to parking capacity.

After unloading is finished a vehicle is available for

another transport job. The vehicle can start load-

ing, leave for another terminal or may have to

park temporarily. The next assignment is done at a

later stage in the planning procedure, when new
jobs will be scheduled. Thus, only after all jobs

have been planned, it is clear whether vehicles have

to park at a terminal in between two jobs. But the

parking capacity is limited, and therefore the

whole schedule might be infeasible, i.e. PCi
t < 0 for

some t > t0.
When we have a closer look at parking capacity

problems, we see that parking may occur when:
• loaded vehicles are waiting for unloading;

• empty vehicles are waiting without any further

assignment;

• empty vehicles are waiting for loading;

• empty vehicles are waiting to depart empty for

another terminal.

Loaded vehicles that have to wait for unloading

are taken into account by the planning procedure
(cf. Eq. (4)). For the empty vehicles we try to solve

this problem by postponing empty vehicle trips, by

introducing additional empty vehicle trips, or by

planning empty trips earlier.

Assume that there is a problem with parking

capacity at terminal i at time t. This means that

V i
t > PCi. First, we send empty vehicles that have

no further assignment to the central parking area.
A vehicle is not needed at terminal i anymore when

V i
t0 > 0 for all t0 > t. When all vehicles that are

present at time t are needed in the future (V i
t0 ¼ 0

for at least one t0 > t), we try to exchange empty

vehicles between terminals. An empty vehicle is

not needed until the first time t that V i
t0 ¼ 0. When

we can send an empty vehicle to terminal j at time
t, and another vehicle can arrive at terminal i from
terminal j at time t0, we have solved this infeasi-

bility. Here we try to exchange an empty vehicle

with the nearest terminal.

The last step we take to remove remaining

infeasibilities is to plan empty vehicle trips at an

earlier point in time. First, determine when the

empty vehicle is needed for an assignment, i.e. the

first time that V i
t0 ¼ 0, because at that time the last

empty vehicle is used for an assignment. When in

the interval between time t and time t0 an empty

vehicle trip is planned, we can send this empty

vehicle already at time t, instead of waiting till a

later point in time. This might cause a parking

capacity problem at the destination terminal, but

at least we have shifted the capacity problems to a

later point in time. Starting at the beginning of the
time horizon and working towards the end of the

planning horizon we try to solve all infeasibilities.

It might be impossible to solve all infeasibilities.

For example, assume the scheduling method con-

structs a feasible schedule at time t. The realization
in the simulation will differ from the proposed

schedule because of traffic congestion and distur-

bances. The next time the scheduling method is
called the starting situation, the prevailing system

state, might be such that more loaded vehicles than

the available parking capacity arrive at the same

time at a terminal. This infeasibility cannot be

solved by the scheduling method. Such problems

should be solved locally in practice. For example,

the vehicles can simply wait in front of the termi-

nal until parking capacity is available. If no space
in front of the terminal is available, it can be

decided to dispatch the vehicle into a loop, with

the same terminal as destination, so that the AGV

drives around through the system until terminal

capacity is available. Of course, the schedule

should be such, that these events are exceptions

and can be treated like exception handling, which

is a different issue than planning and scheduling.
Infeasibility with respect to in-buffer capacity.

The schedule can also be infeasible with respect to

the in-buffer capacity. That is, the number in

storage is larger than the available capacity. The

available resources, docks, vehicles and out-buffer

capacity should be sufficiently large to handle all

jobs fast enough to prevent in-buffer problems. We
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note that the in-buffer capacity is used as first
criterion when prioritizing jobs. Therefore, the in-

buffer capacity can only be exceeded if the resource

capacities are insufficient. We will illustrate this

problem in Section 6.

II. Multi-pass procedures

The serial scheduling method can be applied in

a multi-pass procedure, where in each pass a dif-

ferent priority rule is used. Step I should be re-
peated for each priority rule.

III. Select the best schedule

In a multi-pass procedure, an objective function

has to be present to evaluate the different schedules

and to select the best schedule. Possible objectives

are:

1. Minimize the number of late jobs.

2. Minimize the maximum or total lateness.
3. Minimize the empty kilometers or empty trips.

4. Maximize the total earliness.

5. Maximize the minimum slack.

Given the systems objective to maximize the

service levels, we want to minimize the number of

late jobs; this is our main objective. When all jobs

are delivered at the destination on time, the first

two objectives give the same result for each sche-
dule. Then we can use a secondary objective to

select one of the schedules, because the schedules

will probably not be the same on the last three

objective functions.

Summary of the scheduling steps

Summarizing, the following steps are distin-

guished in our (multi-pass) serial scheduling

method:
I. Select the first priority rule and generate a sche-

dule based on that rule:

0 Initialization. From the status of the system,

compute initial resource profiles for vehicles,

docks, parking places and storage at termi-

nals.

1 Select the highest priority job. Pick a job from

the decision set D based on in-buffer capaci-
ties and priority rule.

2 Schedule the highest priority job
(a) Determine the earliest resource feasible

time. Let job l be the highest priority

job selected in Step 2. Schedule job l
at the earliest resource feasible time.
Minimize waiting time and empty kilo-

meters.

(b) Try to combine job l with another job.

When an empty vehicle has to arrive from

another terminal, determine whether any

of the other jobs on the list can be com-

bined with job l.
(c) Update the job list and the resource pro-

files. Remove job l from the decision set

D and add job l to the set of scheduled

activities S. In the case of combined trans-

portation, do the same for job m. Update

all resource profiles.

3 Termination criterion. Repeat Step 1 and 2 un-

til all jobs have been scheduled.

4 Infeasibility solving. Try to solve parking
capacity infeasibilities.

II In case of a multi-pass procedure. Select the next

priority rule and repeat Step I until all priority

rules have been used.

III Schedule selection. Choose the schedule that

performs best on the performance measure(s)

chosen.
4. Implementation in a dynamic context: A case

study

4.1. Periodic rescheduling

The serial scheduling method plans the vehicles,

given the system state and known transportation
jobs. This can be seen as an off-line planning ap-

proach. A transportation system is very dynamic,

new jobs arrive over time and disruptions due to

failures or traffic congestion might change the

system state considerably. In a rolling horizon

approach, we can call the serial scheduling method

either periodically (with a fixed time interval) or

event triggered (at each job arrival). As the second
option would lead to excessive planning time be-

cause of the high job arrival rate, we chose

scheduling with a fixed time interval. One option

to make a new schedule is to use the schedule from

the previous planning and to try to insert the

newly arrived jobs. Such a method is not really

appropriate in this case, because the realization in

the simulation will deviate from this schedule.
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Thus, the previous schedule does not correctly
present the system state anymore.

We chose to periodically construct a whole new

schedule. New transportation jobs will only then

be incorporated. Therefore, for such an approach

to be fruitful, the planning period should not be

too long, since otherwise too many new transport

jobs are missed. However, it should also not be too

short either, since otherwise the efficiency of the
schedule might not be obtained. We will deal with

this issue in Section 5 when we discuss the

numerical experiments.

4.2. The Schiphol-case

To test the proposed serial scheduling method,

we use a case study on a proposed underground
transportation system near Amsterdam Airport

Schiphol, the Netherlands, see Fig. 3 (cf. Van der

Heijden et al., 2002b). This system focuses on the

processing of time-critical products between five

terminals at Amsterdam Airport Schiphol (AAS),

with 2–3 docks per terminal, two terminals at the

flower auction in Aalsmeer (VBA), with 5–6 docks

per terminal, and a rail terminal in Hoofddorp
(RT, with 8–10 docks). The terminals are con-

nected by an underground tube system. Automatic

Guided Vehicles (AGVs) carry cargo between

terminals. Depending on order patterns about

125–175 AGVs are required. AGVs that are not

needed for a while or for which there is no space at
Fig. 3. Layout Schiphol case.
a local parking place are dispatched to a central
parking area located just south of Schiphol Air-

port. Order patterns are time dependent and vary

over days in the week and over hours on a day. On

average there are about 150–200 jobs per hour,

with peaks of more than 300 jobs per hour. Most

of the system has two-way traffic; only the five

terminals at Schiphol Airport are connected by a

loop where only one-way traffic (counter clock-
wise) is possible. Travel times are up to 30 minutes

and loading and unloading times are 2 minutes on

average.

As mentioned before, the serial scheduling

method only looks at profiles of available resource

capacity at the terminals. The assignment of

vehicles to docks and the selection of a vehicle for

a transport job is done by the terminal managers.
In this way, the terminal managers can respond to

local disturbances, such as failures of vehicles or

docks. The terminal managers try to follow the

proposed schedule from the serial scheduling

method as closely as possible. For an overview of

the decision processes in such an automated

transportation network, see Van der Heijden et al.

(2002b).
5. Experimental setting

5.1. Goals of the experiment

To evaluate our serial scheduling procedure, we

constructed a discrete event simulation model. We
designed an experiment with the following three

purposes. First, we are interested in the perfor-

mance of our method compared to a much simpler

approach, based on unconstrained scheduling with

estimated waiting times to correct throughput

times for finite resource capacities. Second, we are

interested in the added value of a multi-pass ap-

proach compared to a single-pass approach.
Third, we aim to find out to which extend we are

able to satisfy resource constraints. As an example

we consider storage capacity constraints.

We can explain the unconstrained scheduling

procedure as follows. When a vehicle arrives at a

terminal and no dock and/or storage space is

available, the vehicle has to wait until both re-
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sources are available. If no parking place at the
terminal is available, the vehicle has to wait

somewhere outside the terminal (for example, in

front of the entrance), thereby possibly hindering

other traffic, or it has to be dispatched to a new

destination. During the waiting time incurred, the

vehicle is not available to transport other jobs, so

transport capacity is lost. However, we can

implicitly take resource constraints into account
by including an estimate for the delay in the han-

dling times. If we know that there are capacity

problems at a specific terminal during some time

period, we can increase the handling times (load-

ing, transport, unloading) by an estimate for the

delay caused by waiting for capacity. As a conse-

quence, all jobs that have to be transported to that

terminal will be scheduled at an earlier point in
time, because we take the expected delay into ac-

count. A simple approach to estimate the delay is

by using exponential smoothing on the observed

handling times.

Now the question is whether our more ad-

vanced serial scheduling method is better than

such a rough approach to grasp the impact of fi-

nite resource capacities. Therefore, we compare
our new procedure to the unconstrained serial

scheduling approach, where we include the delay

caused by finite resource capacities in the esti-

mated handling times.

5.2. Experimental factors

In Table 1, we give an overview of the experi-
mental factors. We compare our dedicated serial

scheduling method (SRC) with the unconstrained

serial scheduling method (S), as described above

(cf. Van der Heijden et al., 2002a). Another
Table 1

Experimental factors

Factor Range

Scheduling method Serial scheduling with

Transportation flows Case 1: balanced flows

quickly in time

Dock capacity High (utilization <70%

Parking capacity High, medium, low

In-buffer capacity Infinite, 80% of max. o
experimental factor is the distribution of trans-
portation flows. We distinguish three cases: one in

which transportation flows between locations are

equally distributed over all origin–destination

pairs (Case 1), one in which most traffic is on one

route, the route from VBA to RT, which should

make the planning rather easy (Case 2), and one in

which peak levels in transportation flows move

quickly from one route to another, which means
that it is essential to anticipate heavily fluctuating

transportation demands (Case 3).

For the dock capacity, we distinguish two sce-

narios: the dock capacity is either low (L, dock

utilization >80%) or ample (H, dock utilization

<70%). For the parking capacity, we distinguish

three scenarios. In the first scenario (L), there is

only one parking place at each dock. In the second
scenario (M) there is an additional number of

parking places on the terminal, equal to the

number of docks. In the last scenario (H) the

additional parking capacity equals two times the

number of docks.

For the storage capacity, we distinguish be-

tween a case with infinite capacity (there are no

storage problems) and a case with finite capacity at
the rail terminal (RT). In the finite capacity case,

we limit the in-buffer capacity to 80% of the

maximum occupation in the infinite capacity case

with high dock capacity. For this case, we want to

illustrate the difficulties that arise with limited in-

buffer capacities.

As objective in the multi-pass scheduling ap-

proach, we minimize the number of late jobs using
four priority rules: Earliest Due Time, Latest

Departure Time, Earliest Release Time and Min-

imum Slack. When several schedules have the

same number of late jobs, we use the total earliness
resource constraints (SRC), Serial scheduling (S)

; Case 2: one heavy link; Case 3: location of peak changes

), low (utilization > 80%)

ccupation
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as a secondary objective. Some preliminary
experiments indicated that an alternative second-

ary objective performs worse (cf. Section 3).

From some preliminary experiments, we de-

rived the rescheduling frequency. Rescheduling

every 20 minutes is too long, because in the

meantime new jobs have arrived that have to be

delivered at the destination terminal within 45

minutes. The performance of the algorithm is ra-
ther insensitive to rescheduling every 5 or 10

minutes. Based on these experiments, we chose a

rescheduling period of 10 minutes. Van der Heij-

den et al. (2002a) found similar results with respect

to rescheduling. In all cases, we select the number

of vehicles such that the service levels in the high

dock and high parking capacity case are between

90% and 100%.
6. Numerical results

6.1. Comparison constrained versus unconstrained

serial scheduling

In this section, we present the results of the
simulation experiments. In Table 2, we show ser-

vice levels for the experiments with infinite storage

capacity, i.e. the fraction of orders that is delivered

before their due time. We use a code of two letters

for the different scenarios. The first letter indicates

the dock capacity, high (H) or low (L). The second

indicates the available parking capacity, high (H),

medium (M) or low (L). SRC is the serial sched-
uling method where resource constraints are taken

into account, as opposed to the unconstrained

method, S.
Table 2

Service levels for the experiments without storage capacity restriction

Flows ! Case 1 Case

Dock–Parking capacity

#
SRC S SRC

LL 84.9 81.7 87.3

LM 88.8 85.5 89.0

LH 89.1 85.5 88.8

HL 93.1 92.6 91.5

HM 93.7 92.6 92.1

HH 93.7 92.7 91.9
When the dock capacity is low, the SRC
method performs significantly better than the

unconstrained serial scheduling approach for Case

1 and Case 3. Case 2 is easier to plan, because most

transport is on one route. There we see smaller

differences between the two methods. When dock

capacity increases, the performance difference be-

tween the methods decreases, but the SRC method

still shows better results.
We see a significant performance difference be-

tween high and low dock capacity. Low dock

capacity leads to more waiting times at the termi-

nals. The vehicle utilization drops and this leads to

worse results. To improve the performance, it is an

option to increase the number of docks or the

number of vehicles. Based on cost aspects a choice

can be made between increasing the number of
docks or the number of vehicles. It turns out that

some parking capacity is required to have some

flexibility on the terminals. Increasing the parking

capacity further, from M to H, does not increase

the service level.

6.2. Single pass versus multi pass

It is interesting to see how often a specific pri-

ority rule (ERT, LDT, EDT, Slack) is used in

selecting a schedule. In Fig. 4, we see how often

these rules are used in the different cases for the

scenario of low dock capacity and medium park-

ing capacity. The other scenarios showed similar

results for the different cases. We see that in Case 1

and Case 2 all four priority rules have a share of
about 20–30%. For Case 3, we see that the ERT-

rule only about 5% of the time results in the best

schedule of the four. The minimum LDT-rule and
s

2 Case 3

S SRC S

87.3 88.7 77.9

88.5 98.3 96.6

88.5 98.4 96.5

91.3 99.4 99.2

91.9 99.8 99.7

91.8 99.8 99.7



Fig. 4. Usage of the different priority rules in case of low dock

capacity and medium parking capacity.
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EDT-rule both have a share of about 35%. Prob-

ably, an ERT-rule only works well in relatively

quiet time periods, because it does not take into

account the priority of a job. Because there are

almost no quiet time periods in Case 3, this can
explain the low contribution of the ERT-rule. Fig.

4 does not show any redundancy of a priority rule

in a multi-pass approach.

We also looked at the benefits of a multi-pass

(MP) approach as opposed to a single pass (SP)

approach. For the single pass experiments, we

used the minimum LDT priority rule, because this

rule is used most frequently in selecting a schedule
(see Fig. 4). Constructing one schedule generally

requires less than half a second of CPU time

(Pentium III 500 MHz). Computing several

schedules in a multi-pass is therefore no problem

with respect to computation time. In Table 3, we

show the results of these experiments.

The multi-pass approach shows significant

improvements for Case 1 and Case 2. The results
for Case 3 are in line with Fig. 4, which indicates

that the minimum LDT rule is already used more

than 35% in the multi-pass approach. We do not

see a significant improvement in service levels for

Case 3. Looking at all results, we can conclude
Table 3

Service levels for a multi-pass (MP) and a single pass (SP) experimen

Flows ! Case 1 Case

Dock–Parking capacity

#
MP SP MP

LM 88.8 86.6 89.0

HM 93.7 92.4 92.1
that a multi-pass approach is more robust than a
single pass approach.

6.3. Storage capacity restrictions

For storage capacity restrictions, we will illus-

trate to which extend our new serial scheduling

method is able to meet storage capacity require-

ments. We will use Case 1 with low dock and low
parking capacity, and the opposite scenario, high

dock and high parking capacity. In this last sce-

nario, it should be easier to fulfill the storage

capacity restrictions. In the simulation, we limit the

in-buffer capacity at the rail terminal (RTH) to

about 80% of the maximum occupation in a sce-

nario with no capacity limit and sufficient resources

(HH). This means that the in-buffer capacity is set
to 40 jobs. We compare the buffer occupation over

time and we will see whether the scheduling method

gives more priority to the RTH jobs.

In Fig. 5, we see the in-buffer occupation for the

rail terminal for the two scenarios. When there is

sufficient docking and parking capacity, we see

that the in-buffer capacity limit will not be ex-

ceeded if the serial scheduling method takes the
storage limit into account (HH-40). When there is

little docking and parking capacity, it is impossible

to handle the jobs at the rail terminal in time. The

limit is exceeded a few times, because there are not

sufficient resources to handle the jobs fast enough.

In this case, it is impossible for the serial sched-

uling method to find a feasible solution. But the

profile of LL-40 is much closer to the storage limit
than the case where the serial scheduling does not

take this in-buffer capacity into account (LL-INF).

Some in-buffer overflows are easier to solve

than others. The ability to solve in-buffer problems

depends on the available resources. When there are

not a lot of high priority jobs on other routes, it is
t

2 Case 3

SP MP SP

87.0 98.3 97.7

90.6 99.8 99.9
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Fig. 5. Time dependent in-buffer occupation at the rail terminal in case of high dock and parking capacity (left figure) and low dock

and parking capacity (right figure).
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easier to attract vehicles from other routes, and the

occupation of the in-buffer stays well below the

limit, for example between 20 and 25 hours in Fig.

5.

When a system has limited storage capacity, it

turns out that it is necessary to incorporate these
capacity limits in the planning method. Otherwise,

the capacity limits will certainly be exceeded (see

Fig. 5 HH-INF and LL-INF). But to be able to

comply with the capacity limitations, it is also

necessary that sufficient other resources, such as

docks and parking places, are available at the

terminals.
7. Conclusions

From our simulation experiments, we draw the

following conclusions. Including the multiple re-

source constraints in the serial scheduling method

is possible and especially in highly constraint cases,

significant improvements in service levels can be
achieved. When constraints are less tight, the

method performs at least as good as an uncon-

strained serial scheduling method. Note that the

unconstrained procedure can be used because

violation of resource capacities is possible at the

expense of additional delay (except for storage

capacity). If the latter is not true, only our new

method provides a good quality, feasible solution.
Also, we found that a multi-pass procedure com-

bining various priority rules yields better results

than a single pass procedure with the most

attractive priority rule only.

In case of storage capacity restrictions, it is

crucial to include these restrictions into the plan-
ning method. When there is a limited storage

capacity of the in-buffer on a terminal, this ter-

minal receives higher priority to ensure that cargo

is transported before the capacity limit is reached.

Sometimes it might be impossible to transport all

cargo on time because of a large batch arrival or
because at that moment the other resources at the

terminal, docks, parking places and vehicles, are

insufficient. Therefore, sufficient other resources

should be available to be able to find a feasible

schedule with respect to in-buffer capacity.

Because of the formalization of capacity con-

straints in resource profiles and our general

description, the method can be used in other
applications where similar resource constraints

play an important role, for example in an AGV

served flexible manufacturing system or an auto-

mated container terminal such as ECT in Rotter-

dam. Furthermore, our assumptions (cf. Section 2)

do not pose a lot of restrictions on possible

applications, and it is rather straightforward to

relax some of these assumptions. For example,
separate docks for loading and unloading can

be included. Capacity profiles should be main-

tained for both dock types to present the remain-

ing capacity of that type for each time period.

For load jobs we can just look at the load dock

profile, and for unload jobs at the unload dock

profile.

Different types of cargo with different loading/
unloading times can also easily be included in the

model. The loading time (li) and the unloading

time (ui) have to be separated in a loading time and

unloading time for each type (liðtypeÞ, uiðtypeÞ).
These can then be used in Eqs. (3) and (4). It is not

directly clear how one buffer, both for incoming
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and outgoing cargo, should be included in the
method. Jobs can only be transported when there

is sufficient storage space at the destination ter-

minal, but to be able to receive cargo, the desti-

nation terminal might have to send cargo away

first. Since the arrival at the destination terminal is

in a future time period, new jobs can have been

planned in the meantime, and the storage problem

might not even be present. Despite this, we think
that a separate in- and out-buffer is an acceptable

approximation of reality.
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