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Abstract: In KGd1-xLux(WO4)2:Yb3+ channel waveguides grown onto 
KY(WO4)2 substrates by liquid phase epitaxy and microstructured by Ar+ 
beam etching, we produced 418 mW of continuous-wave output power at 
1023 nm with a slope efficiency of 71% and a threshold of 40 mW of 
launched pump power at 981 nm. The degree of output coupling was 70%. 
By grating tuning in an extended cavity and pumping at 930 nm, we 
demonstrated laser operation from 980 nm to 1045 nm. When pumping at 
973 nm, lasing at 980 nm with a record-low quantum defect of 0.7% was 
achieved. 
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1. Introduction 

In the coming years, many applications in photonics will take advantage of miniaturization by 
on-chip integration of optical components, may it be for biomolecule detection and 
manipulation, optical coherence tomography or Raman spectroscopy, trace-gas detection, 
atom spectroscopy, optical clocks, optical computing, data communication, or laser beam 
steering, to name a few. In most applications, high-performance integrated lasers are required 
that provide high output power [1] and efficiency [2], excellent beam quality, broad 
wavelength selectivity [3] and tunability, ultrashort pulses [4], ultra-narrow bandwidth [5], or 
ultra-low heat generation, potentially by applying a low-cost, straight-forward fabrication 
process [6]. 

The potassium double tungstates KGd(WO4)2, KY(WO4)2, and KLu(WO4)2 are excellent 
candidates for solid-state lasers [7] because of their high refractive index of ~2.0-2.1 [8], the 
large transition cross-sections of rare-earth (RE) ions doped into these hosts [9], a long inter-
ionic distance of ~0.5 nm that allows for large doping concentrations without lifetime 

quenching [10], and a reasonably large thermal conductivity of ~3.3 W m1 K1 [11]. These 
advantages have been exploited to demonstrate thin-disk lasers [12], broadly tunable [13] and 
high-energy ultrashort-pulse lasers [14], low-quantum-defect lasers [15], as well as planar 
[16–18] and channel [19] waveguide lasers. Co-doping of grown KY(WO4)2:RE thin films 
with Gd and Lu ions for lattice matching and enhanced refractive index contrast of up to 7.5 × 

103 with respect to the undoped KY(WO4)2 substrate [20] has enabled waveguide lasers with 
tight pump and laser mode confinement of ~10 µm2, resulting in excellent slope efficiencies 
in Yb-doped planar and microstructured channel waveguide lasers of 82.3% [21] and 62% 
[22], respectively. 

In this work we fabricate a double tungstate microstructured channel waveguide with 
further enhanced refractive index contrast of 1.5% and demonstrate a laser with an output 
power of 418 mW at 1023 nm, limited only by the available pump power. The obtained slope 
efficiency of 71% versus launched pump power is, to the best of our knowledge, the highest 
value reported for a dielectric channel waveguide laser with unidirectional output. In two 
other resonator configurations, broad tunability of the laser wavelength from 980 to 1045 nm 
as well as a record-low quantum defect of 0.7% when pumping at 973 nm and lasing at 980 
nm is obtained, thereby minimizing heat dissipation in the device. These results show a great 
potential of double tungstate channel waveguide lasers to excellently fulfill many of the 
aforementioned requirements. 

#136239 - $15.00 USD Received 7 Oct 2010; revised 12 Nov 2010; accepted 14 Nov 2010; published 30 Nov 2010
(C) 2010 OSA 6 December 2010 / Vol. 18,  No. 25 / OPTICS EXPRESS  26108



  

2. Sample fabrication 

The composition of the active layer was chosen to provide the maximum refractive index 
contrast and simultaneously minimal lattice mismatch with the KY(WO4)2 substrate. The 
lattice parameters [23, 24] of the a and c crystallographic axes within the plane of the 
monoclinic layer were calculated as weighted averages of the lattice parameters of the 
stoichiometric compositions KGd(WO4)2, KLu(WO4)2, and KYb(WO4)2 and were matched to 
the parameters of the KY(WO4)2 substrate. No Y3+ was incorporated in the active layer in 
order to achieve a maximal refractive index contrast of 1.5% between layer and substrate. A 

KGd0.49Lu0.485Yb0.025(WO4)2 layer was grown by liquid phase epitaxy onto an undoped, 

(010)-orientated, laser-grade polished KY(WO4)2 substrate of 1 cm2 size in a K2W2O7 solvent 
[11] at temperatures of 920-923°C. Subsequently, the layer surface was polished parallel to 
the layer-substrate interface to a uniform thickness of 5 µm with a measured rms surface 
roughness of 1.5 nm. A photoresist (908/35) mask was deposited and patterned by 
lithographic steps. These patterns were then transferred by Ar+ beam milling [25] to obtain 
1.4-µm-deep ridge waveguides along the Ng optical axis, with a channel width of 7 µm [22]. 
The structure was overgrown by an epitaxial layer of KY(WO4)2, resulting in buried channel 
waveguides with a length of 6.6 mm, which guide only the fundamental mode around 1 µm. 
The KY(WO4)2 overlay reduces the propagation losses, improves the mode overlap with the 
active region, and simplifies endface polishing. 
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Fig. 1. (a) Experimental setup for high laser output power; (b) input-output curve of the  
KGd1-xLuxW:Yb3+ channel waveguide laser pumped at 981 nm and lasing at 1023 nm. 

3. Laser experiments 

The sample was placed on an aluminum mount without active cooling, thus indicating room 
for further power scaling. Pump light at 980.6 nm from a broadly tunable Ti:sapphire laser 
was end-coupled by a × 16 microscope objective into the waveguide. The light outcoupled at 
the other end of the waveguide was collimated by a × 20 microscope objective. A reflective 
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grating was used to separate the residual transmitted pump power from the laser emission and 
the laser light was directed to a powermeter or a spectrometer. At the input side a dielectric 
mirror with a high transmission of T = 96% for the pump light and a high reflectivity of R = 
99.8% for the laser light was directly butt-coupled to the endfacet with fluorinated oil 
(Fluorinert FC70). An outcoupling mirror with Tout = 70% at 1023 nm was attached to the 
other side. A schematic of the experimental setup is shown in Fig. 1(a). We obtained a 
maximum laser output power of 418 mW at 1023 nm, limited only by the available pump 
power, with a slope efficiency of 71% versus launched pump power; see Fig. 1(b). The 
threshold was 40 mW. Almost no residual pump light was observed at the output, as 99% of 
the launched pump power was absorbed in the slightly too long waveguide. 

To achieve broad wavelength tunability of the laser output, an incoupling mirror with 
~99.8% reflectivity from 980 nm to 1050 nm was attached to the incoupling side. The 
transmission of this mirror steeply increased below 932 nm, hence a short pump wavelength 
of 930 nm was chosen. The outcoupling mirror was removed and the cavity extended by 
collimating the output with a × 20 microscope objective and directing it onto a grating (576 
l/mm, blazed at 23.5°) in Littrow configuration to provide strongly wavelength-selective 
feedback. A schematic of the experimental setup is shown in Fig. 2(a). 
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Fig. 2. (a) Experimental setup for tuning the laser emission by extension of the cavity with a 
reflective grating in Littrow configuration; (b) measured emission spectra under pumping at 
930 nm when changing the angle of the reflective grating. 

By rotation of the grating the emission wavelength could be continuously tuned from 980 
nm to 1045 nm; see Fig. 2(b). With 120 mW of launched pump power at 930 nm, output 
powers of approximately 11 mW were measured from the 2nd order of the grating in the 
wavelength range 980-1033 nm. The emission dropped gradually when tuning the laser to 
1045 nm, followed by operation at 980 nm when further rotating the grating. The intracavity 
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loss in this experiment is estimated to be up to 50% due to non-optimal optical elements, 
therefore the threshold is high and the slope efficiency small. An even larger tuning range, 
extended towards longer wavelengths, is expected in cavities with lower loss [15]. 

In a third experiment, laser operation with a record-low quantum defect was 
demonstrated. The mirror at the incoupling side was removed, and a mirror with a reflectivity 
of 97% at 980 nm was butt-coupled to the other waveguide end. In this situation, laser 
emission at a wavelength of 980 nm was extracted from the pumped side. The experimental 
setup is shown in Fig. 3(a). Remarkably, the laser continuously oscillated at 980 nm while 
tuning the excitation wavelength from 910 nm to 973 nm. The spectrum in the latter pump-
wavelength setting is displayed in Fig. 3(b), resulting in a record-low quantum defect of only 
0.7%. 
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Fig. 3. (a) Experimental laser setup for the demonstration of low-quantum-defect lasing; (b) 
spectrum recorded during lasing with the smallest attained quantum defect. 

4. Conclusions 

The remarkable performance of such a rare-earth-ion-doped, microstructured channel 
waveguide laser demonstrated in this paper has enormous consequences. Firstly, the large 
bandwidth, combined with a short cavity length and very high laser intensity oscillating in the 
waveguide, make this device an excellent candidate for high-repetition-rate ultrashort-pulse 
generation on a chip. Secondly, when replacing a large part of the Lu3+ ions with Yb3+ ions of 
almost the same ionic radius in the active layer, the absorption length at 980 nm can be 
reduced to much less than 100 µm, allowing one to move from a single-mode-diode end-
pumping to a diode-array side-pumping configuration. Such a side-pumped scheme, 
combined with an ultra-low quantum defect and accordingly small heat generation, promises 
to be a great step forward toward efficient integrated waveguide lasers emitting large single-
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mode output powers far beyond 1 W. Thirdly, integrated distributed feedback (DFB) 
waveguide lasers without active wavelength stabilization have recently produced a linewidth 
of 1.7 kHz at 3 mW of output power [5]. The linewidth narrows linearly as the laser power 
increases, hence the output power obtained in this work would bring about a DFB laser with 
an ultra-narrow linewidth in the range of 10-20 Hz. The minimal thermal load is also of great 
advantage for the wavelength stability of such ultra-narrow linewidth lasers. 
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