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The Effect of Learning on Bursting
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Abstract—We have studied the effect that learning a new
stimulus-response (SR) relationship had within a neuronal net-
work cultured on a multielectrode array. For training, we ap-
plied repetitive focal electrical stimulation delivered at a low rate
(< 1/s). Stimulation was withdrawn when a desired SR success ra-
tio was achieved. It has been shown elsewhere, and we verified that
this training algorithm, named conditional repetitive stimulation
(CRS), can be used to strengthen an initially weak SR. So far, it
remained unclear what the role of the rest of the network during
learning was. We therefore studied the effect of CRS on sponta-
neously occurring network bursts. To this end, we made profiles of
the firing rates within network bursts. We have earlier shown that
these profiles change shape on a time base of several hours during
spontaneous development. We show here that profiles of summed
activity, called burst profiles, changed shape at an increased rate
during CRS. This suggests that the whole network was involved
in making the changes necessary to incorporate the desired SR
relationship. However, a local (path-specific) component to learn-
ing was also found by analyzing profiles of single-electrode-activity
phase profiles. Phase profiles that were not part of the SR rela-
tionship changed far less during CRS than the phase profiles of
the electrodes that were part of the SR relationship. Finally, the
manner in which phase profiles changed shape varied and could
not be linked to the SR relationship.

Index Terms—Cultured neuronal networks, electrical stimula-
tion, multielectrode arrays (MEAs), synaptic plasticity.

I. INTRODUCTION

LTERING the processing of information by (electrical)
A stimulation in cultured neuronal networks on multielec-
trode arrays (MEAs) is something that many groups have strug-
gled with, or still do [1]-[7]. This may have as much to do with
the inherent difficulty of observing changes as with the multi-
tude of culturing and maintenance methods. Apart from induc-
ing changes, where some activity-related measure is changed by
stimulation, we ultimately want to be able to predict and control
these changes.

The conditional repetitive stimulation (CRS) protocol, intro-
duced by Shahaf and Marom [8], strengthened one electrode’s
responsiveness to stimuli at another electrode. This kind of con-
trol has not been reported by other algorithms applicable to
dissociated cultures. Shahaf and Marom only reported on the
difference between series of test stimuli before and after the
experiment. Li et al. [9] recently used the CRS algorithm to
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study the contribution of various glutamate receptors on learn-
ing dynamics. They found that AMPA receptors were primarily
involved in altering temporal patterns, while NMDA receptors
were mostly responsible for altering spatial patterns.

We investigated the changes made within the network in or-
der to accommodate the desired stimulus—response (SR) rela-
tionship. These could be local (i.e., pathway-specific), involv-
ing only the stimulus and evaluation sites, or global, involving
many sites. Purely pathway-specific interactions would make the
CRS expandable to more SR relationships. We evaluated net-
work activity by calculating the relationship of each electrode to
spontaneously elicited network-wide synchronous events, i.e.,
bursts. These are short (50 ms—1 s) intervals in which most neu-
rons fire several action potentials, which develop spontaneously
in cultured networks and persist throughout the cultures’ life-
time [10]-[15]. Since action potentials within (single neuron)
bursts are transmitted reliably by otherwise unreliable synaptic
pathways [16], the network connectivity is reflected well by the
spatiotemporal structure of network bursts. We previously ana-
lyzed the natural development of bursts in vitro through profiles
of the instantaneous firing rate during bursts [17]. This revealed
that both burst profiles (based on activity summed across all
electrodes) and phase profiles (electrode-specific) changed with
an average time base of several hours. Furthermore, we showed
that phase profiles changed at different rates, indicating a de-
pendency on local interactions as well as global interactions.

The incorporation of a new SR relationship is probably the
result of interactions between many neurons. The latency at
which the SR is observed (up to 100 ms) and the fact that many
neurons are active at that time (a network burst is triggered
by the stimulus) support this. When training is successful, we
expect that it is the triggered network burst that has changed
such that the desired SR relationship is incorporated. Analysis
of bursts may reveal the spatial extent of the changes, if any,
caused by CRS training.

II. MATERIALS AND METHODS
A. Culturing

Cortices were taken from newborn Wistar rats. The cells
were dissociated mechanically by trituration and chemically by
trypsin. The centers of MEAs were coated with polyethylimine,
after which a drop of medium was applied. The plating concen-
tration was 1 million cells/ml, which resulted in a monolayer
of cells with a density of ~ 2500 cells/mm? after two days in
vitro. Cultures were stored in an incubator with 5% CO, to
air mixture, and near 100% humidity at 37 °C. Cultures were
refreshed twice a week with R12 culturing medium [18], supple-
mented with 5% bovine serum. The same medium was also used
during measurements. R12 is a minimum essential medium for
culturing neurons, but with added bovine serum the glial cells
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multiplied at a low rate. Pilot experiments indicate that the cul-
tures were more active when bovine serum was added, probably
due to better functioning of the glial cells (data not shown). Cul-
ture ages ranged from 10 to 55 days in vitro (DIV), with nine
out of a total of 12 experiments performed in the mature phase
(> 21 DIV).

B. Setup

We use MEAs and measurement setup (1060BC preampli-
fier and STG1002 stimulus generator) manufactured by Mul-
tiChannel Systems, Reutlingen, Germany. The MEAs had 60
electrodes that were either 10 or 30 ym in diameter, which were
spaced either 100 or 200 pum apart, respectively. During mea-
surements, the temperature at the bottom of the MEA was kept
at 36°C, and a humidified and heated stream of air with 5%
CO, was blown over the setup. Cultures were sealed with a
semipermeable membrane.

Measurements were controlled entirely by custom LabView
(National Instruments, Austin, TX) programs. Spikes were de-
tected whenever the signal crossed a threshold of 5.5 times
the rms noise level and were validated online using a scheme
adopted from Wagenaar et al. [19]. In this algorithm, a putative
spike is accepted when it is the highest amplitude of either po-
larity in a window of =1 ms. In addition, no spikes of the same
polarity and having an amplitude >50% as the putative spike
may exist in the same window. No spike sorting was attempted
in this study for several reasons. First, the shape of the extra-
cellular potential may change within network bursts. Second,
both the CRS algorithm and the profile analysis method work
well with signals from neural assemblies. Finally, the selection
criteria for the evaluation electrodes excluded multiunit activity.

C. CRS Algorithm

The CRS algorithm was introduced by Shahaf and Marom [8].
It was their observation that stimuli applied at a low rate (0.3—
1 Hz, such that burst could be triggered) to a single electrode
caused changes in functional connectivity within the network.
The responses to the stimuli were monitored, and when a desired
response appeared often enough (responsiveness), the stimuli
were stopped. A single response was defined as one or more
spikes detected on a single evaluation electrode within a certain
window after stimulus onset (e.g., from 40 to 60 ms). The re-
sponsiveness was calculated as the moving average of the last
ten responses. The target responsiveness was set at two out of
ten, where the initial responsiveness was about one out of ten.
When the target responsiveness was achieved, or after 10 min
of stimulation, the stimuli were withdrawn. This was repeated
with 5-min intervals. The number of stimuli required to elicit
the desired response was used as a measure for how well the
new SR relationship was learned. Our procedure was as follows.
1) Whenever possible, a long period (>6 h) of spontaneous
activity was measured before test stimuli were applied.
These spontaneous measurements were used to assess nor-

mal developmental changes in the absence of stimuli.
2) The culture was probed with stimuli of varying ampli-
tude (4-20 pA, biphasic, 200 us/phase, negative phase
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Fig. 1. Distribution of interburst intervals. Data from spontaneous measure-
ments before and after all CRS experiments were used. The distribution peaks
near 6 s, while the average IBI is 25 s. The bin size used is 1 s.

first) at a rate of 0.2/s. The poststimulus histograms of
array-wide activity (awPSTH) were visually examined to
select a small set of stimulus electrodes.

3) A second series of test stimuli was applied to each can-
didate stimulus electrode. At this point, the stimulation
rate was adjusted such that the ratio of evoked bursts to
stimuli was maximized. The stimulation rate was usually
1.5-3 times higher than the typical spontaneous interburst
interval (IBI). The IBI distribution is given in Fig. 2. In-
terstimulus intervals consequently varied between 1.5 and
5 s. The minimum stimulation rate was set at 0.1/s and the
ratio at which bursts were evoked had to be above 0.8 in
order to continue.

4) A third series of test stimuli was applied at the chosen
stimulus electrode and chosen rate. PSTHs of each elec-
trode were calculated, and the evaluation electrode and
response window had to be chosen. The criterion was that
the area of PSTH within the response window was 0.1.
Multiple spikes can be triggered by a single stimulus, so
this method may have overestimated the responsiveness.
However, for electrodes with this low responsiveness, it
was not problematic. Unlike Shahaf and Marom, who used
a fixed evaluation window (i.e., 40-60 ms), we varied the
response window such that the peak in the poststimulus
histogram of the evaluation electrode was within it. Win-
dow widths varied between 20 and 50 ms, with the earliest
starting at 10 ms after stimulus and the latest ending at
100 ms. This was done because: a) the network-wide re-
sponse varied between cultures and between ages and b) it
required connection strength rather than latency to change.

5) Between the test series and the start of CRS training, an
hour of spontaneous activity was measured (Fig. 1).

6) Start of the CRS experiment: A learning experiment was
stopped when a stable fast responsiveness was reached, or
when the network-wide response (i.e., number of spikes
within 300 ms after stimulus) to stimuli became lower than
80% of its initial value. The initial value was calculated by
taking the average of the first five iterations of the CRS al-
gorithm and the exact criterion was applied offline. Since
a (permanent) degradation in network response resulted
in CRS not reaching its goal within 10 min, these experi-
ments (four in total) were ended by the experimenter a few
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Fig. 2. Time line of a measurement. Control experiments of equal length as

CRS experiments were used for comparing rates of change during spontaneous
development with those during CRS. Control and CRS experiments were pre-
ceded and followed by 1-h measurements of spontaneous activity to compare
the effects of CRS with spontaneous development (hatched). Control and CRS
experiments were less than 8 h apart. Preparation for a CRS experiment con-
sisted of selecting a stimulus electrode (probes) and selecting an evaluation
electrode/window (test stimuli). Shaded boxes designate periods of stimulation.

iterations after degradation had set in. Testing for stability
of the awPSTH during CRS was not attempted because
of variability as iterations of the protocol may comprise
as few as three stimuli. Shahaf and Marom have already
stated that the network response (i.e., triggered network
burst) should be stable throughout the experiment, but did
not quantify this.

7) After the learning experiment was concluded, spontaneous

activity was once again recorded.

Next to the learning curve, which consists of the number of
stimuli required to reach the desired responsiveness, we calcu-
lated: 1) the average network (i.e., on all electrodes) response,
calculated by counting the average number of spikes in 500 ms
following a stimulus; 2) the average network response within
the desired window; and 3) the average evaluation electrode
response within the desired window. All responses were nor-
malized to the value in the first iteration (CRS) or to the average
of the first 5 min (spontaneous) to enable comparison between
experiments.

D. Profile Analysis

Profiles of the within-burst firing rate were calculated from
spontaneous activity measured before, during, and after CRS
experiments (Fig. 1). The procedure was described earlier [17].
Examples of burst and phase profiles can be found in Fig. 3.
The analysis consists of four steps: burst detection, burst pro-
file calculation, phase profile calculation, and profile averaging.
First, bursts were detected by dividing the summed activity in
100-ms bins and applying a threshold. The threshold was set at
two times the number of electrodes that showed action potential
activity (i.e., an average firing rate >0.1 spikes/s). Second, burst
profiles were calculated by convolving the spike times (summed
over all electrodes) in a burst with a Gaussian. The standard de-
viations (SDs) were between 5 and 15 ms, depending on the
activity. Smooth burst profiles near the main peak were neces-
sary for further processing. The profile was calculated from 200
ms before the main peak in the burst profile to 600 ms after the
peak. Third, 60 phase profiles were calculated by convolving
the spike times within the above-defined window of each indi-
vidual electrode with a Gaussian with the same SD as used for
the burst profile. Fourth, we aligned burst profiles to their main
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Fig. 3. (A) Average learning curve. The number of stimuli required to elicit
the desired response decreased. Slope: —0.749 = 0.157 per iteration (mean =+
standard error); Kendall’s 7: —0.450 (p < 0.001). Curves show mean + stan-
dard error. The right y-axis and the gray line show the number of experiments
that the curves are based on. (B) Development of the array-wide response.
Slope: 0.010 £ 0.002; Kendall’s 7: 0.466 (p < 0.001). Individual curves were
scaled to the response in the first iteration before averaging. (C) Development of
the array-wide response within evaluation windows. Evaluation windows differ
between experiments. Slope: 0.017 £0.003; Kendall’s 7: 0.546 (p < 0.001).
(D) Normalized response on the evaluation electrode. This response consists of
spikes on the evaluation electrode within the evaluation window, again normal-
ized to the value in the first iteration. Slope: 0.068 + 0.023; Kendall’s T: 0.282
(p = 0.004). In gray, the normalized array-wide response is reproduced. (E) and
(H) Same curves for two example experiments.

peak and made 5-min averages. This was done because there
may be very few spikes elicited by some electrodes in a single
burst. Averaging reduced the variability of phase profiles. An
alternative would be to use Gaussians with a large SD, but do-
ing so would lose timing information. We treated the resulting
average profiles as if they were profiles from individual bursts.

We used the rms value of the difference between two profiles
to quantify change. We normalized the rms value to the area of
the profile (i.e., the number of spikes)

D1 _ rms (p7 7pr0f) (1)

rms (pref )

N
1 2
rms () = sqrt N nz::l x; )
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(Left panel) Example of changes in burst profiles immediately before and after CRS (top two traces, black equals before, gray after). The lower two traces

are immediately before and after an equal period of spontaneous development. All curves are 45-min averages. (Right panels) Phase profiles of the most active part
of the MEA in the same experiment, shown in the same layout as the electrodes. The hatched plot is at the location of the stimulus electrode (i.e., 74); evaluation
was at electrode 73. Significantly changed profiles are denoted by black asterisks, left for CRS and right for control.

where D; is the normalized distance between profile p; and a
reference profile p,f, and each profile consists of N samples.
The width of the profiles was 600 ms, containing 601 data points.
This distance measure is sensitive to changes in profile shape
and to changes in overall firing rate and was applied to both burst
and phase profiles. The rate of change of D during CRS experi-
ments was calculated using the 5 min of spontaneous activity be-
tween iterations. The reference profile that we used within CRS
was the average profile during the first 5-min pause. For con-
trol measurements, we used the average profile during the first
5 min as a reference. When one of the spontaneous measure-
ments before the CRS experiment was of equal length (or longer)
than the CRS experiment (N = 4), the change in profiles dur-
ing the experiment was directly compared to the change over
an equal length of time of spontaneous activity. Significance of
changes was determined using two-sided Student’s ¢-tests. The
significance of slopes was tested using the following data:

yi — b
T

3)

a; =

where b is the intercept calculated by normal linear regression
and (z;, y;) are the original data points.

III. RESULTS

A. Learning Experiments

Fig. 3(A) shows the average learning curve of 12 experi-
ments performed on nine different cultures. The averaged curve
has a negative slope, indicating successful learning. Individual

learning curves [Fig. 3(E)] could be quite erratic and were qual-
itatively described by fast initial learning, followed by a relapse
starting somewhere between the 10th and 20th iteration before
a stable (low) value was reached. During the experiment, the
array-wide number of spikes elicited by stimulation increased
slightly, as seen in Fig. 3(B) and (C). Since the experiments
were of various lengths, the last two data points are averages
of only two experiments, which may account for the discrep-
ancy between these values and the general trend. In contrast, the
number of spikes elicited on the evaluation electrode within the
response window [Fig. 3(D)] increased fast during the first three
iterations, stabilized around a value of 2.2, and then increased
once more. The examples in Fig. 3(D)—(F) show that during
the relapse, in these examples between iterations 13 and 28, the
response on the evaluation electrode momentarily reached pre-
learning levels, while the array-wide response did not change
during this period.

B. Profiles

Profiles of spontaneous bursts before and after learning were
compared with measurements separated by the same amount of
time as the learning protocol (control). These were taken either
before or after learning. Fig. 4 shows an example of a learning
experiment and controls taken before learning. During the con-
trol measurement, the burst profile remained unchanged, and
nine out of 25 phase profiles were changed. During learning,
20 out of 25 phase profiles changed significantly, and this re-
sulted in the significant change of the burst profile as well. The
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Fig. 5. Development of distance D of change of burst profiles. (A) Devel-
opment of D of burst profiles in control experiments (N = 4). Slope: 0.012
40.004/h; Kendall’s 7: 0.220 (p = 0.011). Graphs show mean + standard er-
ror. (B) Development of D of burst profiles during CRS (/N = 12). The first
5-min pause, which is after the first stimulation round, was taken as a reference.
Slope: 0.036 £0.005/h (mean =+ standard error); Kendall’s 7: 0.585 (p < 0.001).
The difference between the two slopes was significant (p = 0.0015).

right panels in Fig. 4 also illustrate the complexity that phase
profiles can have, most notably a second or even third phase of
firing. In the four experiments in which controls were possible,
all burst profiles changed during CRS compared to two spon-
taneous burst profiles changes (Student’s t-test; p < 0.01). For
phase profiles, 57% changed during CRS, while 46% changed
spontaneously. On average, there were 13 active electrodes per
culture in these experiments.

The distances between burst profiles are shown in Fig. 5.
Variability in the burst profiles is represented by a baseline (the
average value in the first hour) of about 0.2. The sensitivity of
the profile method to profile changes is given by the baseline.
Of greater importance is the presence of a positive slope, which
indicates a progressive change from the initial profile. An in-
crease in distance can be observed in the CRS experiments
after 150 min, which roughly corresponds to the 22nd itera-
tion. Even though the standard errors are high, a positive slope
(0.036/h) can be seen during the CRS protocol. During spon-
taneous measurements, a positive slope of only 0.012/h is less
visible. Calculations of Kendall’s 7 correlation coefficient show
a clear positive correlation during CRS and a smaller correlation
during spontaneous development.

The distances between phase profiles are shown in Fig. 6.
Again, a baseline can be seen around 0.34 during spontaneous
measurements (top panel) and 0.41 during CRS (lower panels).
These baselines are higher than their burst profile counterparts
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Fig. 6. Development of distance D of phase profiles. (A) Development

of phase profiles during control (N = 4). Slope: 0.009 £0.004/h; Kendall’s
7:0.203 (p = 0.019). (B) Development of phase profiles on all electrodes ex-
cept those used for evaluation during CRS (N = 12). Slope: 0.008 £0.003/h;
Kendall’s 7: 0.283 (p = 0.005). (C) Change of the phase profiles of evaluation
electrodes during CRS (N = 12). Slope: 0.021 +0.004/h; Kendall’s 7: 0.473
(p < 0.001). Graphs show mean + standard error. The difference between
curves A and B was not significant (p = 0.6161), while curve C differed signif-
icantly from both A and B (p = 0.0203; p = 0.0069).

in Fig. 5, indicating the higher variability of phase profiles, and
thus, also a decreased sensitivity to changes. In this case, the cal-
culated slopes for spontaneous development and electrodes not
used by CRS are comparable, while the slope for electrodes used
for evaluation show a much higher slope. Kendall’s 7 correlation
coefficients show that phase profiles on electrodes not used by
CRS are more strongly correlated (with time) than phase profiles
during spontaneous development. Phase profiles on electrodes
used for CRS have the highest correlation coefficient (0.021/h).
Next to the rate of change, a change was also seen between
profiles immediately before and after CRS (Fig. 7). The average
duration of CRS, 5 h, was longer than the typical time base
of spontaneous change, which is several hours [17]. Therefore,
a change was observed during control measurements in which
no stimulation was applied. However, Fig. 6 shows that the
rate of change of burst profiles during CRS exceeded the spon-
taneous rate. The phase profiles showed the same, in that all
phase profiles showed a small but significant increase in the rate
of change during CRS. The increase was considerably larger
on evaluation electrodes than on other electrodes, indicating a
pathway-specific component in training using CRS.
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Fig. 7. (A) Changes between burst profiles immediately before and immedi-
ately after control (small arrow) and CRS experiments (bold arrows). Distances
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bars). Bars show mean + standard error of mean. (B) Changes between phase
profiles. All means were statistically different (all p < 0.005, Student’s ¢-test).
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Fig. 8. Four examples illustrate the types of changes between phase profiles

at the start of CRS (black) and at the end (gray). We observed shifts of the main
peak in three cases, an increase in peak firing rate in four cases, a decrease in
peak firing rate in six cases, and an increase in second phase amplitude in five
cases.

How did the phase profiles change then? Phase profiles from
four CRS experiments are shown in Fig. 8. A decrease in peak
firing rate was observed in most cases, but also shifts in the
position of the main peak and in some cases an increasing sec-
ond phase were observed. The decrease in firing rate of phase
profiles was often accompanied with a decrease in firing rate of
burst profiles. We have observed such changes during sponta-
neous activity as well, albeit it is rare to observe an increase in
second phase spontaneously. It should be noted that out of the
eight cases in which the stimulation electrode was also spon-
taneously active, there were six cases in which phase profiles
on the evaluation electrode increased in size relative to phase
profiles on the stimulation electrode. Therefore, a decrease in
size of a phase profile on evaluation electrode may reflect an
overall decrease in activity and does not exclude strengthening
of the relationship between stimulus and evaluation electrode.
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IV. DISCUSSION
A. CRS Protocol

The selection procedure before starting the learning experi-
ment itself was critical for the success of the experiment. For
instance, the CRS paradigm was designed to enhance connec-
tivity strength of initially low-strength connections, but not to a
very high responsiveness (from 1/10 to 2/10). Using CRS to in-
crease responsiveness from ~3/20 to 3/12, or from 1/10 to 3/10,
was never successful (data not shown). This limits the general
usefulness of CRS. Next to cultures that did not have a stable
network response at interstimulus intervals smaller than 10 s,
we also had to discontinue experiments (4 out of 12) because
the network-wide response to stimuli (i.e., awPSTH) deterio-
rated during the course of an experiment. Such deterioration
in awPSTH was seen when spontaneous bursts started occur-
ring in between stimuli, which also increased the variability of
the response. Whether all this was due to changes in the entire
network or locally at the stimulus site is subject of further in-
vestigation. When observing 80% criterion, the awPSTH area
steadily increased [Fig. 3(B)]. However, the (relative) increase
of PSTH area on the evaluation electrode [Fig. 3(D)] was far
greater.

In a number (i.e., 14) of cases, we found that the criterion was
reached very quickly in the first iterations of CRS, despite our
efforts to select an evaluation electrode with a low responsive-
ness. Changes that may have occurred during the test stimuli or
during the spontaneous activity that separated test stimuli from
the start of CRS may be the cause of this. These experiments
were aborted, as there was no further learning possible. Shahaf
and Marom did not report on the number of cultures that did
not fulfill the boundary conditions, but in our investigation, only
nine out of 22 (otherwise active and easy to stimulate) cultures
met the prerequisites [8]. Initial learning curves (first ten iter-
ations) resembled the examples given by Shahaf and Marom.
Further iterations of the CRS protocol often showed a period
with a relapse in learning, something that was not reported ear-
lier. Consequently, a stable low value was reached much later.
We found it necessary to adjust the evaluation window to a value
that corresponded to a latency at which the activity was elicited.
The larger differences in latency that we found may be due to the
fact that we used MEAs with two different electrode spacings
or due to a larger spread in culture age (10-55 DIV). However,
more subtle differences in preparation and maintenance cannot
be excluded. Despite the erratic learning rates, we found that
the cultures that met all the prerequisites were trainable. One
possibility to reduce variability in responses, which may result
in smoother learning curves, is to create a pool of evaluation
neurons [20]. However, it is not known what impact this may
have on learning.

B. Profile Change

The rate at which both burst and phase profiles (of evalua-
tion electrodes) changed during CRS stimulation was higher
than during spontaneous development. However, phase pro-
files on electrodes that were not used during CRS changed
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at a rate comparable to spontaneous development (judged by
slope). Since the burst profiles did change, and a burst profile is
essentially a summation of phase profiles, this result was unex-
pected. However, the changes in phase profiles are normalized
to the area of the profile (i.e., the activity of the electrode). On
the other hand, the influence of electrodes on the burst profile
is activity-dependent. Therefore, the results indicate that highly
active sites changed more rapidly. Also, given the relatively large
rate of change of burst profiles, it is likely that a number of phase
profiles changed in the same general direction. Such convergent
changes are commonly seen during spontaneous development
only on a larger time scale. From this point of view, the stimu-
lation accelerated, but did not alter the normal development.

In contradiction to this view, we observed that phase profile
on electrodes used for evaluation during CRS changed at a very
high rate. This result is surprising because the phase profiles on
evaluation electrodes were always small (low spiking activity),
and large phase profiles generally had a higher rate of change.
This cannot be explained merely by a speeding up of normal
development. Instead, by withdrawing stimuli when the desired
response is achieved, the changes occurring on the evaluation
electrodes were “cultivated,” while changes on other electrodes
may go back and forth and negate each other. The CRS algo-
rithm thus relies on accelerating changes by means of stimuli
(i.e., induction exploratory behavior [8]), and preserving these
changes on the evaluation electrodes.

The coupling between phase profiles on evaluation electrodes
and SR relationships is complex. A phase profile shows one
electrode’s contribution to network collective bursts, while an
SR relationship only involves two electrodes. It is through the
fact that stimulation elicits bursts, that the two are coupled. The
complexity of this coupling is probably also the reason why no
correlation between the stimulation—evaluation electrode pair
and the changes in phase profiles could be found. Comparing
phase profiles immediately before CRS to phase profiles im-
mediately after CRS showed a small increase in the number of
phase profile changes and also an increase in distance D.

The results suggest that the whole network was involved dur-
ing training in a lesser degree and that stimulation and evaluation
electrodes were particularly involved. Assuming that a change
in phase profile (site-specific) is related to the change in respon-
siveness (pathway-specific), it is not clear whether changes in
evaluated phase profile depend on the changes in other phase
profiles or even burst profiles. Since only one SR relationship
is controlled, it may simply be that the rest of the network
incorporates this change in a way that requires the least mod-
ifications. Conversely, it may also be that changes throughout
the whole of network are driving the SR relationship toward a
higher efficacy. Whatever the case, expanding the CRS algo-
rithm to multiple SR relationships will not be straightforward,
partly due to global network interactions and partly due to the
selection criteria for trainable SR relationships.
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