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Abstract

At singular points of a wave field, where the amplitude vanishes, the phase may become singular and wavefront dislocation may occur. In this
Letter we investigate for wave fields in one spatial dimension the appearance of these essentially linear phenomena. We introduce the Chu–Mei
quotient as it is known to appear in the ‘nonlinear dispersion relation’ for wave groups as a consequence of the nonlinear transformation of the
complex amplitude to real phase-amplitude variables. We show that unboundedness of this quotient at a singular point, related to unboundedness
of the local wavenumber and frequency, is a generic property and that it is necessary for the occurrence of phase singularity and wavefront
dislocation, while these phenomena are generic too. We also show that the ‘soliton on finite background’, an explicit solution of the NLS equation
and a model for modulational instability leading to extreme waves, possesses wavefront dislocations and unboundedness of the Chu–Mei quotient.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many studies in the literature are dedicated to phenomena re-
lated to phase singularity and wavefront dislocation. Since gen-
erally both phenomena occur simultaneously, the term phase
singularity is more often used in physical optics to describe
what we will refer to as wavefront dislocation, for instance
in [1]. Alternatively, phase singularities also called intensity
zeros, topological charges, or optical vortices [2–6]. In water
waves, the disappearance of waves in modulated train of sur-
face gravity waves was described in [7].

‘Dislocation’ is known for a long time in the field of mater-
ial science. There it is used to describe an irregularity within a
crystal structure, often responsible for the plastic deformation
of metals and other crystalline solids. The concept was intro-
duced as early as 1934 and proposed independently by [8–10].
Other references to dislocation in crystals are [11–14]. The
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above phenomena are also found in several other branches of
physics. A simple example of phase singularity is the singular
time zone at the north pole [15]. Experimental observations in
a neon discharge in two-dimensional space–time are reported
by Krása [16]. A study of it in the Aharonov–Bohm effect is
done by Berry [17]. An analysis for constructing a theory of
wavefront dislocation using catastrophe theory is developed by
Wright [18]. A study of the phenomenon in optics, particularly
in monochromatic light waves is reported in [19].

Extensive references about many topic related to disloca-
tions from theoretical to experimental observations and applica-
tions can be found in [20]. Line singularities in vector and elec-
tromagnetic waves, including the paraxial case, when waves
propagate in a certain direction and the general case, when
waves propagate in all directions, is discussed in [21]. A the-
oretical framework for understanding the local phase structure
and the motion of the most general type of dislocation in a
scalar wave, how this dislocation may be categorized and how
its structure in space and time is related, has been studied by
Nye [22]. Statistical calculations associated with dislocations
for isotropically random Gaussian ensembles, that is, super-
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positions of plane waves equidistributed in direction but with
random phases, are given in [3]. Knotted and linked phase sin-
gularities in monochromatic waves by constructing exact solu-
tions of the Helmholtz equation are given in [4].

Apparently, the same phenomenon is also observed in 3D
surfaces of constant phase (wavefronts) of a wave field. A new
concept of ‘wavefront dislocation’ was introduced in 1974 by
Nye and Berry [23] and is used to explain the experimentally
observed appearance and disappearance of crest or trough pairs
in a wave field. In their paper, the examples given are in two and
three space dimensions plus time. Other terminologies that are
also often used to describe the phenomenon are death and birth
of waves, and annihilation and creation of waves. When deal-
ing with waves, Nye and Berry [23] showed that dispersion is
not really involved when wavefront dislocation occurs, while,
on the other hand, Trulsen [24] explained that wavefront dislo-
cation is a consequence of linear dispersion alone and predicted
by the linear Schrödinger equation, an example of paramount
importance of a linear dispersive wave equation.

In this Letter we restrict to wave fields with one spatial and
one temporal variable. Even for this simplest case we sensed
some confusion in the cited references above about the equiva-
lence of the possibly different phenomena of phase singularity
and wavefront dislocation. Moreover, it was not very clear if
these phenomena are exceptional, rare events or should be ex-
pected at any point of vanishing amplitude. From a more practi-
cal point of view, we wanted to use the appearance of wavefront
dislocations that we had found in the theoretical expression of a
‘soliton on finite background’ as a check in measured signals of
waves that were generated in a hydrodynamic laboratory. Ro-
bustness of such a phenomenon for perturbations of various
kind is then required, a result that was not found in the cited
references.

This Letter is organized as follows. In Section 2, we present
the basic notions of phase singularity, wavefront dislocation
and the Chu–Mei quotient that will be used in this paper. Fur-
ther, we give the most trivial examples of surface wave fields,
namely superpositions of two and three monochromatic waves.
With these examples we will show that already for trichro-
matic waves phase singularity and wavefront dislocation will
be generic properties, but also that phase singularity is not nec-
essarily accompanied with wavefront dislocation. In Section 3
we study these aspects for wave groups. We will show that
unboundedness of the Chu–Mei quotient is a necessary condi-
tion for the occurrence of wavefront dislocation. A perturbation
analysis is done to show that boundedness of the Chu–Mei
quotient is an exceptional case. Although all these phenomena
are essentially linear, in Section 3.3 we investigate these phe-
nomena for the special solution of NLS, the soliton on finite
background, SFB. The final section concludes the Letter with
some conclusions and remarks.

2. Preliminaries

This section is devoted to collect preliminary definitions that
will be used in this Letter to study wavefront dislocation. We
also illustrate degenerate and generic cases of the phenomena
by using simple wave fields that consist of a superposition of a
few harmonic modes.

2.1. Basic notions

Let η(x, t) be a real-valued function that describes a surface
wave field in one space variable x and time t . The complex-
ification of η is defined by the Hilbert transform H[η], given
by ηc(x, t) = η(x, t) + iH[η(x, t)]. Written in polar form with
real-valued phase and amplitude variables we get ηc(x, t) =
a(x, t)eiΦ(x,t). The local wavenumber and local frequency are
defined respectively as k(x, t) = ∂xΦ and ω(x, t) = −∂tΦ .

The phase Φ is uniquely defined for smooth functions η for
all (x, t) ∈ R

2 for which the amplitude does not vanish. When
the wave field has vanishing amplitude, i.e. if a(x̂, t̂ ) = 0, we
call (x̂, t̂ ) ∈ R

2 a singular point. In the Argand diagram (the
complex plane), the time signal at a fixed position corresponds
to an evolution curve t �→ ηc(x, t); a singular point (x̂, t̂ ) corre-
sponds to an evolution curve that is at the origin of the complex
plane.

For nonzero amplitude, the phase of ηc has a well defined
value, but at a singular point the phase Φ may be undetermined
or even be singular. We will say that the wave field η(x, t)

has a phase singularity at the singular point (x̂, t̂ ) if Φ(x, t)

is not continuous. As is clear from the interpretation in the Ar-
gand diagram, in most cases the trajectory will cross the origin
and the phase will be discontinuous and have a π -jump. Only
in case the origin acts as a reflection point, the phase will be
continuous. Examples are easily constructed for both cases by
superposition of just a few waves.

Wavefront dislocation is observed when waves at a certain
point and time merge or split. Necessarily this can happen only
at a singular point, as we will see. Formally we will define
that the wave field η(x, t) has wavefront dislocation of strength
n �= 0 in the area of the xt-plane that is enclosed by a contour
if the following contour integral has the given integer multiple
of 2π [23,25,26]:

∮
dΦ =

∮
(kdx − ωdt) =

∫ ∫ (
∂ω

∂x
+ ∂k

∂t

)
dx dt = 2nπ,

(1)n �= 0.

Instead of taking an arbitrary closed curve, it is also possible
to investigate the property of a given singular point. Then, by
taking a circle of radius ε, and allowing the radius to shrink to
zero, the strength of the singular point is found from

(2)I = lim
ε→0

∮
C(ε)

dΦ = lim
ε→0

2π∫
0

dΦ

dθ
dθ,

where θ is the angle variable describing the circle. If I = 0
there is no wavefront dislocation, while if I = ±2π there is
wavefront dislocation. More specifically, splitting of waves for
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Fig. 1. At the left the evolution in the Argand diagram is shown for the trichromatic wave parameterized by τ and plots are given for different values of ξ :
ξ = 0 (dotted); ξ = ξ̂1 (solid); ξ = π/(2ν2) (dashed); ξ = ξ̂2 (dash-dot). The evolution curves are counterclockwise ellipses and follow a clockwise direction for
increasing τ . When the ellipse crosses the origin, a phase singularity and wavefront dislocation occurs. At the right the density plot is shown of the trichromatic
wave near a phase singularity where splitting and merging of waves can be seen.
progressing time will occur if for increasing x the value of
I = −2π ; for I = 2π , merging of waves will happen for in-
creasing x.

For a full description of the appearance of wavefront dis-
location it turns out to be useful to introduce another quantity.
This is the so-called ‘Chu–Mei quotient’1 defined for signalling
problems by

(3)CMq = ∂2
t a

a
;

for initial value problems the derivative with respect to x is used
instead of to t . This quotient appears in the dispersion relation
for both linear and nonlinear dispersive wave equations and has
a clear interpretation in this context, as we will show in Sec-
tion 3.

In the remainder of this Letter we will show the following
inclusive relations between the concepts introduced above. In
Section 3 we will show that unboundedness of the Chu–Mei
quotient is a necessary condition for wavefront dislocation to
occur in wave groups. Further, wavefront dislocation at a point
implies that there is phase singularity and phase singularity can
only occur at singular points. Although we give examples that
the reversed implications are not valid, this will only happen
for degenerate cases. Generically it will be the case that at a
singular point there is phase singularity, wavefront dislocation
and unboundedness of the Chu–Mei quotient.

A monochromatic wave will not have any singular point, and
therefore it is not interesting for our investigations. A bichro-
matic wave can have singular points, which may have phase
singularity. In that last case, there will be no wavefront dislo-
cation and the Chu–Mei quotient will be finite. A combination

1 Some authors call this quotient the ‘Fornberg–Whitham term’ [27], refer-
ring to [28]. However, throughout this Letter we call it the ‘Chu–Mei quotient’,
since they introduced it for the first time [29,30] when they derived the mod-
ulation equations of Whitham’s theory [31] for slowly varying Stokes waves.
However, the quotient already appeared earlier in [32,33] when they consider
modulated waves in nonlinear media.
of three monochromatic waves can show all the phenomena;
we will briefly describe these illustrative cases in the following
subsection.

2.2. Bichromatic and trichromatic wave fields

Consider the superposition of two monochromatic waves,
known as the bichromatic waves. A complexified form is
ηc(x, t) = |A+| exp(iθ+) + |A−| exp(iθ−), where A± =
|A±|eiφ± are the complex-valued amplitudes and where θ± =
k±x − ω±t + φ± are the phases of the constituent monochro-
matic waves. Assume that the waves satisfy a truly dispersive
equation so that their phase velocities are different. Inspection
of the real amplitude of the superposition, shows that singular
points can only, and will, happen for |A+| = |A−| and then for
θ+ − θ− = 1

2nπ , n ∈ Z.
The Chu–Mei quotient is bounded at a singular point:

CMq = limt→t̂
∂2
t a

a
(x = x̂, t) = −ν2. Using Proposition 1 be-

low, this implies that this wave field does not have wavefront
dislocation. Calculating the contour integral (2) around any sin-
gular point (x̂, t̂ ) it is found that indeed I (x̂, t̂ ) = 0.

Consider the superposition of three monochromatic waves.
Already in the case, generically phase singularity and wave-
front dislocation will occur whenever the amplitude vanishes.
An example is a solution of the linear version of the NLS equa-
tion (5). Namely, η(x, t) = ATC(ξ, τ )ei(k0x−ω0t)+ c.c., where
ξ = x, τ = t − x/V0, V0 is the group velocity, ATC(ξ, τ ) =∑2

n=0 bne
i(κnξ−νnτ), where bn �= 0, κ0 = 0 = ν0, ν1 = ν = −ν2

and κ1 = ν2 = κ2.
We illustrate some aspects for the case studied by Trulsen

[24], for which b0 = 2, b1 = −2, and b2 = 1, ν = 1/13 and
ω0 = 1. The motion of the amplitude in the complex plane,
shown in Fig. 1(a), makes it clear that there are singular points
with phase singularity. The appearance of wavefront dislocation
is shown in the density plot in Fig. 1(b), and can be investigated
in detail by counting the number of waves in one period. The
Chu–Mei quotient is unbounded at the singular points. This is
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Fig. 2. Plots of the local wavenumber k (horizontal axis) and the local frequency ω (vertical axis) in the dispersion plane of the considered trichromatic wave. In
the left plot, for fixed position some trajectories are shown parameterized by the time, showing that the local wavenumber becomes unbounded at the instance of
singularity; similarly, the right plot is for a fixed time with trajectories parameterized by position, showing the local frequency becoming unbounded at the singular
position.
related to the fact that the local frequency and local wavenum-
ber become unbounded, as shown in Fig. 2.

3. Wavefront dislocations in wave groups

In the previous section, we showed that already a super-
position of three monochromatic waves can show wavefront
dislocation at singular points. In this section, we will consider
linear and nonlinear dispersive wave equations and show that
a necessary condition for a wave group to have a wavefront
dislocation is that the Chu–Mei quotient is unbounded. More-
over, we will also show that the unboundedness of this term is
a generic property: if it is bounded at a singular point for an ex-
ceptional case, any perturbation of the waves will result into an
unbounded Chu–Mei quotient.

3.1. Linear and nonlinear dispersive wave equations

We consider a linear or nonlinear dispersive wave equation.
As a model for mainly unidirectional propagation, we can take
an evolution equation of KdV type:

(4)∂tη + iΩ(−i∂x)η + ∂xN(η) = 0.

Here k �→ Ω(k) determines the dispersion relation; the inverse
will be denoted by K : K = Ω−1. The weak nonlinearity is
given by N(η) = aη2 + bη3, but is of little relevance for the
following discussion about wavefront dislocation as we shall
see, so taking a linear equation for which a = 0 = b is possible.

When looking for a wave group with carrier frequency ω0,
the evolution is described with a complex amplitude A, and is
then given in lowest order by

η(x, t) = εA(ξ, τ )eiθ0 + c.c.,

where θ0 = k0x − ω0t , with k0 = K(ω0) and c.c. denotes the
complex conjugate of the preceding term. The amplitude is de-
scribed in a time delayed coordinate system: ξ = x and τ =
t − x/V0 where V0 = Ω ′(k0) = 1/K ′(ω0). This transformation
is suitable for studying the evolution in space, for the signalling
problem. The resulting equation for A is then the spatial non-
linear Schrödinger (NLS) equation, given by

(5)∂ξA + iβ∂2
τ A + iγ |A|2A = 0.

Here β = −Ω ′′(k0)/(2[Ω ′(k0)]3) is related to the group veloc-
ity dispersion, while γ is a transfer coefficient from the nonlin-
earity (γ = 0 for the linear equation).

By writing A in its polar form with the real-valued ampli-
tude a and the real-valued phase φ, A = a(x, t)eiφ(x,t), and
substituting into (5), we obtain the coupled phase-amplitude
equations. In the original physical variables, the ‘energy equa-
tion’ is given by

∂x

(
a2) + ∂t

[
K ′(ω)a2] = 0,

and the phase equation can be written as the nonlinear disper-
sion relation:

(6)K(ω) − k = β
∂2
t a

a
+ γ a2.

Even for a linear equation, the phase equation (6) contains an
additional nonlinear term which results from the fact that the
transformation A �→ (a,φ), A = aeiφ itself is nonlinear.

At vanishing amplitude, the term from nonlinearity of the
equation vanishes, γ a2 = 0, which shows that the nonlinear-
ity does not play an important role at vanishing amplitude and
hence for the phenomena to follow. Only the Chu–Mei quo-
tient plays a significant role in understanding phase singularity
and wavefront dislocation phenomena. Unboundedness of the
Chu–Mei quotient implies that K(ω) − k becomes unbounded,
and hence that the local wavenumber and the local frequency
become unbounded.

Now we will show that the wavefront dislocation can only
appear if the Chu–Mei quotient is unbounded.

Proposition 1. A necessary condition for a wave field to have
a wavefront dislocation at a singular point is that the Chu–Mei
quotient is unbounded.

Proof. The proposition means that if the contour integral dφ is
nonzero, then the Chu–Mei quotient is unbounded at the sin-
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Fig. 3. Plots of the local wavenumber k (horizontal axis) and the local frequency ω (vertical axis) in the dispersion plane for ν = 1
2 . At x = 0, the local wavenumber

becomes unbounded (left), and at τ = ζ1, the local frequency becomes unbounded (right).
gular points. We will show its contraposition, namely if the
Chu–Mei quotient is bounded at singular points, then the con-
tour integral vanishes and there is no wavefront dislocation. The
Chu–Mei quotient is bounded at a singular point means that ei-
ther both local wavenumber and local frequency are bounded
at the singular point or that the local wavenumber or local
frequency is unbounded, but |K(ω(x, t)) − k(x, t)| < ∞. For
the first case, since both quantities are bounded, the integrand
in the contour integral (1) is bounded, and hence vanishes in
the limit for vanishing contour around the point. For the lat-
ter case, it means that there exists a positive constant M such
that K(ω(x, t))−M � k(x, t) � K(ω(x, t))+M . Hence, since
K(ω) → ±∞ if and only if ω(x, t) → ±∞, both wavenumber
and frequency have to be unbounded. For evaluating the con-
tour integral (1), observe that
∮ (

K(ω)dx − ωdt
) −

∮
M dx

�
∮

(k dx − ωdt) �
∮ (

K(ω)dx − ωdt
) +

∮
M dx.

The contribution
∮

M dx vanishes in the limit for shrinking
contour, and the same holds for the integral

∮
(K(ω)dx −ωdt)

by selecting a limiting contour such as a rectangle for which
the length of the sides are chosen appropriately, for instance
dx = O(ω/K(ω))dt . Thus, also in this case the contour inte-
gral (1) vanishes, and there is no wavefront dislocation. �
3.2. The Chu–Mei quotient under perturbation

We will now show that the boundedness of the Chu–Mei
quotient at a singular point is exceptional: almost any pertur-
bation of the wave field will make the quotient to become un-
bounded. This is intuitively clear by looking at the trajectory in
the Argand diagram: at a singular point, the trajectory crosses
the origin, a = 0, and it will be exceptional if it does this with
vanishing ‘acceleration’ ∂2

t a = 0.
The translation of this result to complex valued functions

will give the required statement. Indeed, let F : R2 → C, and
denote by F ′ and F ′′ respectively the first and second deriva-
tive with respect to the parameter t or, actually, in any direction.
Then defining the amplitude a as a2 = |F |2, after some manip-
ulations we get

∂2
t a

a
= Re(F ′ · F ∗)

|F |2 + [Im(F ′ · F ∗)]2

|F |4 ,

where all quantities at the right-hand side should be evaluated
at a singular point for which a = |F | = 0. Boundedness of this
expression is highly exceptional, and a generic perturbation of
a function for which it is bounded, will lead to unboundedness.

3.3. SFB wave field

The NLS equation has many interesting special solutions.
One family is the so-called ‘soliton on finite background’,
SFB [34]. This is a remarkable family of solutions since they
describe the full nonlinear evolution of the linear instability of
surface water waves that is called after Benjamin–Feir [35], and
as such they are well-suited to study modulational instability in
full detail, and to use as a model for generating extreme waves
in a hydrodynamic laboratory [36,37]. We describe the main
characteristics, using normalized parameters β = γ = 1 and a
normalized background.

The ‘background’ is a uniform wave train, which corre-
sponds to the solution of NLS given by A = e−iξ . Then SFB
can be written in the form [38]

(7)A(ξ, τ ) = e−iξ · [G(ξ, τ)eiφ(ξ) − 1
]
,

where G(ξ, τ) and φ(ξ) are real ‘displaced’ amplitude and
phase variables. The phase φ is a monotone function of ξ given
by φ(ξ) = arctan[−(σ/ν2) tanh(σξ)], where σ = ν

√
2 − ν2

is the growth rate corresponding to the Benjamin–Feir in-
stability [35] and ν is the modulation frequency with 0 <

ν <
√

2. At each fixed position (phase) the dynamics τ �→
G(φ, τ) is described by an oscillator equation and given ex-
plicitly by G(ξ, τ) = P(ξ)/[Q(ξ) − σ cos(ντ )], with P(ξ) =
ν
√

2
√

2ν2 cosh2(σξ) − σ 2, and Q(ξ) = ν
√

2 cosh(σξ).
The fact that φ is independent of τ means that at each posi-

tion the trajectory in the Argand diagram is on a straight line
through the point −1 under an angle φ. Hence, only when
φ = 0, which means at ξ = 0, there can be a singular point.
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Fig. 4. Density plot of the SFB wave field with wavefront dislocations at the
left, and the corresponding wave signals for different positions in a moving
frame of reference at the right for ν = 1

2 . The number of waves decreases from

8 to 7 for the half period t ∈ [− 1
2 T ,0] and it increases from 7 to 8 for the next

half period t ∈ [0, 1
2 T ].

At that position singular points will occur if cos(ντ ) = 2(1 −
ν2)/

√
4 − 2ν2. Vanishing amplitude occurs for 0 < ν �

√
3/2

for which there is phase singularity. Such phase singularity oc-
cur at ξ = 0 for two instants in each temporal period. At the
phase singularities, the local wavenumber and local frequency
become unbounded, as shown in Fig. 3; this confirms the fact
that the Chu–Mei quotient is unbounded at the singular points.

At the singular points there are wavefront dislocations. Cal-
culation of the strength of the singular points shows that in each
period one singular point shows merging, the other one split-
ting of waves. Fig. 4 shows a density plot of the SFB wave
field around two phase singularities. We observe the splitting
and merging waves in pairs. In plots of the time signal at differ-
ent positions, we see the splitting and merging in more detail. In
this example, for half modulation period t ∈ [− 1

2T ,0], the num-
ber of waves decreases from 8 to 7, indicating that waves are
merging when passing the singularity. At another half modula-
tion period t ∈ [0, 1

2T ], it increases from 7 to 8, which indicates
that waves are splitting when passing the singularity. However,
the number of waves in one modulation period for x → ±∞
remains the same before and after undergoing the singular-
ity, namely ω0/ν. For a more detailed discussion of the SFB
and related special solutions of NLS on finite background see
[36–38].

An observation and investigation of wavefront dislocation in
modulated surface water waves has been done by Tanaka [7].
His investigation is based on the modulated gravity waves cor-
responding to Benjamin–Feir instability and is done numeri-
cally. By taking an analogy to our signalling problem, the cor-
responding envelope function experiences vanishing amplitude
at two different positions. He observed that between these two
vanishing amplitudes, the wave crests ‘disappear’, as is con-
firmed by the decrease in number of waves.

4. Conclusions

We discussed the phenomena of phase singularity and wave-
front dislocation that can happen at singular points of a wave
field where the amplitude vanishes. We used simple exam-
ples of trichromatic waves to see the relation between these
concepts. We also linked the unboudedness of the Chu–Mei
quotient to the unboundedness of the local wavenumber and
frequency at singular points. It is important to stress again that
the phenomena are essentially linear since nonlinear terms in
the equation are of higher order at a singular point. We showed
that for an interesting class of solutions of the NLS equation,
the solitons on finite background, that wavefront dislocations
occur there too.
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