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Abstract

Let Ln be the finite language of all n! strings that are permutations of n different
symbols (n ≥ 1). We consider context-free grammars Gn in Chomsky normal form
that generate Ln. In particular we study a few families {Gn}n≥1, satisfying L(Gn) =
Ln for n ≥ 1, with respect to their descriptional complexity, i.e. we determine
the number of nonterminal symbols and the number of production rules of Gn as
functions of n.

Key words: context-free grammar, Chomsky normal form, permutation,
descriptional complexity, unambiguous grammar.

1 Introduction

The set Ln of all permutations of n different symbols consists of n! elements
[9,14]. So being a finite language, Ln can be trivially generated by a context-
free grammar with a single nonterminal symbol and n! productions. However,
this is no longer true when we require that Ln is generated by a context-free
grammar Gn in Chomsky normal form.

In this paper we investigate a few families {Gn}n≥1 of context-free gram-
mars in Chomsky normal form that generate {Ln}n≥1. In particular we are
interested in the grammatical or descriptional complexity of these families.
As complexity measures we use the number of nonterminal symbols and the
number of production rules of Gn, both considered as functions of n. These
measures have been used frequently in investigating context-free grammars;
cf. e.g. [10,12,13,6,4,1,5].

This paper is organized as follows. After preliminaries on notation and termi-
nology (Section 2) we consider some elementary properties of grammars Gn in
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Chomsky normal form that generate Ln (Section 3). In Section 4 we consider
a straightforward approach based on the power set of the terminal alphabet
Σn of Gn. Looking at regular (i.e. right-linear) grammars to generate {Ln}n≥1

gives rise to a family of context-free grammars in Chomsky normal form in
Section 5 with less productions than the ones in Section 4 (provided n ≥ 3).

The families {Gn}n≥1 studied in Sections 6 and 7 are obtained in a differ-
ent way; viz. we exhibit G1 and G2 explicitly and then we proceed induc-
tively by means of a grammatical transformation to obtain Gn+1 from Gn

(n ≥ 2). Section 8 is devoted to a divide-and-conquer approach; although it
leads to “concise” grammars, determining their descriptional complexity is
less straightforward. Finally, Section 9 consists of some concluding remarks.

The present paper has been inspired by G. Satta who conjectured in 2002 [16]
that “any context-free grammar Gn in Chomsky normal form that generates
Ln must have a number of nonterminal symbols that is not bounded by any
polynomial in n”. Recently, this statement has been proved by K. Ellul, B.
Krawetz, J. Shallit and M.-w. Wang in [7]. However, in [7] it is not shown
how to generate the languages {Ln}n≥1 by context-free grammars {Gn}n≥1

in Chomsky normal form. The present paper provides some straightforward
approaches to obtain a few such families {Gi

n}n≥1 (1 ≤ i ≤ 7). None of these
approaches is surprising but their relative descriptional complexity (expressed
in terms of the number of nonterminal symbols and of the number of produc-
tions) is by no means obvious; cf. Section 9. In this way the paper is a taxonomy
of basic grammar families for {Ln}n≥1 and it might serve as a starting point
for more involved approaches as well as for the quest for optimal grammars,
i.e. grammars that are minimal with respect to these or other descriptional
complexity measures.

2 Preliminaries

For each set X, let P(X) denote the power set of X, and P+(X) the set of
nonempty subsets of X, i.e. P+(X) = P(X)−{∅}. For each finite set X, #X
denotes the cardinality (i.e. the number of elements) of X.

For background and elementary results on discrete mathematics, particularly
on combinatorics (counting, recurrence relations or difference equations), we
refer to texts like [9,14,15]. In order to save space we often use C(n, k) to denote
the binomial coefficient C(n, k) = n!/(k!(n − k)!); in displayed formulas we
apply the usual notation.

We assume familiarity with basic concepts, terminology and notation from
formal language theory; cf. e.g. [11]. We will denote the empty word by λ.
Recall that a λ-free context-free grammar G = (V, Σ, P, S) is in Chomsky

normal form if P ⊆ N × (N − {S})2 ∪ N × Σ where N = V − Σ. For each
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context-free grammar G = (V, Σ, P, S), let L(G, A) be the language over Σ
defined by L(G, A) = {w ∈ Σ⋆ | A ⇒⋆ w}. Then for the language L(G)
generated by G, we have L(G) = L(G, S). Note that, if G is in Chomsky
normal form, then L(G, A) is a nonempty language for each A in N .

Henceforth, we use Σn = {a1, a2, . . . , an} to denote an alphabet of n different
symbols (n ≥ 1). As mentioned earlier, Ln is the finite language over Σn that
consists of the n! permutations of a1, a2, . . . , an. Since Ln is finite, we have that
each context-free grammar Gn in Chomsky normal form that generates Ln,
possesses the property that each nonterminal symbol of Gn is not recursive.

The length of word w will be denoted by |w|, as usual. For each word w over
Σn, A(w) is the set of all symbols from Σn that really do occur in w. Formally,
A(λ) = ∅, and A(ax) = {a}∪A(x) for each a ∈ Σn and x ∈ Σ⋆

n. This mapping
is extended to languages L over Σn by A(L) =

⋃

{A(w) | w ∈ L}.

In the sequel we often restrict ourselves to context-free grammars Gn =
(Vn, Σn, Pn, Sn) in Chomsky normal form with the following property: if A →
BC is a production in Pn, then so is A → CB, and we abbreviate A →
BC | CB by A−◮BC. The underlying rationale is, of course, that we want
to keep the number of nonterminal symbols as low as possible. However, the
reader should always realize that A−◮BC counts for two productions.

3 Elementary Properties

In this section we discuss some straightforward properties of context-free gram-
mars in Chomsky normal form that generate Ln. Examples of these properties
will be given at appropriate places in subsequent sections. Throughout this
section Gn = (Vn, Σn, Pn, Sn) is a context-free grammar in Chomsky normal
form that generates Ln and Nn is defined by Nn = Vn − Σn.

For each word w over Σn in L(Gn, A), D(A, w) denotes a derivation tree for
w from A according to the rules of Gn.

Proposition 3.1. (1) For each nonterminal A in Nn, the language L(Gn, A)
is a nonempty subset of an isomorphic copy Mk of the language Lk for some k
(1 ≤ k ≤ n). Consequently, each string z in L(Gn, A) has length k, z consists

of k different symbols, and A(z) = A(L(Gn, A)) = A(Mk).

(2) Let A and B be nonterminal symbols in Nn. If L(Gn, A) ∩ L(Gn, B) 6= ∅,

then A(L(Gn, A)) = A(L(Gn, B)).

Proof. (1) Let w be a word in L(Gn) with derivation tree D(Sn, w) in which
the nonterminal symbol A occurs. Consider the subtree D(A, x) of D(Sn, w),
rooted by the nonterminal A, the leaves of which constitute a substring x of w;
so there exist words u and v with w = uxv. If |x| = k for some k (1 ≤ k ≤ n),
then A(x) has precisely k elements, since w is a permutation in Ln.
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Suppose that L(Gn, A) contains a string y with |y| 6= k: thus there is a deriva-
tion tree D(A, y) according to Gn for y. Replacing D(A, x) by D(A, y) in
D(Sn, w) yields a derivation of uyv with |uyv| 6= n and uyv /∈ Ln. Hence each
word in L(Gn, A) has length k.

By a similar argument we can conclude that L(Gn, A) is a language over the
alphabet A(x) with the property that for each word z in L(Gn, A), we have
A(z) = A(x). Consequently, L(Gn, A) is a subset of an isomorphic copy Mk

of Lk, i.e. L(Gn, A) ⊆ Mk.

(2) Suppose L(Gn, A) ∩ L(Gn, B) 6= ∅: so it contains a word of length k for
some k ≥ 1. Then by Proposition 3.1(1), we have that both L(Gn, A) and
L(Gn, B) are subsets of the same isomorphic copy Mk of Lk. Consequently,
A(L(Gn, A)) = A(L(Gn, B)) = A(Mk). 2

This result gives rise to an equivalence relation on Nn; viz.

Definition 3.2. Two nonterminal symbols A and B from Nn are called
equivalent if |x| = |y| for some x ∈ L(Gn, A) and some y ∈ L(Gn, B). The cor-
responding equivalence classes are {En,k}

n
k=1. The number of elements #En,k

of the equivalence class En,k will be denoted by D(n, k) (1 ≤ k ≤ n). 2

Next we consider the effect of a single rewriting step with respect to the
equivalence classes {En,k}

n
k=1.

Proposition 3.3. (1) If A → BC is a rule in Gn, then A(L(Gn, B)) ∩
A(L(Gn, C)) = ∅ and A(L(Gn, B)) ∪A(L(Gn, C)) = A(L(Gn, A)).

(2) If A → BC is a rule in Gn with A ∈ En,k, B ∈ En,i and C ∈ En,j, then

i + j = k. Consequently, 1 ≤ i < k and 1 ≤ j < k.

Proof. (1) Suppose that the intersection is nonempty: if it contains a symbol
a, then we have a subderivation A ⇒ BC ⇒⋆ x1ax2ax3 which cannot be a
subderivation of a derivation that yields a permutation.

The inclusion A(L(Gn, B))∪A(L(Gn, C)) ⊆ A(L(Gn, A)) is obvious. Suppose
that this inclusion is proper; so there exists a symbol a with a ∈ A(L(Gn, A))−
(A(L(Gn, B)) ∪ A(L(Gn, C))). Clearly, there is a rule A → DE with a ∈
A(L(Gn, D))∪A(L(Gn, E)). Consider the derivation Sn ⇒⋆ uAv ⇒ uBCv ⇒⋆

uxv with a ∈ A(uv) and a /∈ A(x), yielding the permutation uxv. Using this
alternative rule A → DE for A we obtain the derivation Sn ⇒⋆ uAv ⇒
uDEv ⇒⋆ uyv with a ∈ A(y); hence uyv is not a permutation. Consequently,
the inclusion cannot be proper; hence we have equality.

(2) follows from Propositions 3.1 and 3.3(1). 2

By Propositions 3.1 and 3.3 the set Nn inherits a partial order from the power
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set P(Σn) of the alphabet Σn. This partial order, induced by the inclusion
relation on P(Σn), is a more general notion than the linear order present in
the concept of sequential grammar; cf. [8,3].

We will now define this partial order relation formally as follows.

Definition 3.4. Let A and B be nonterminal symbols from Nn. Then the
partial order ⊑ on Nn and the correspondering strict order ⊏ are defined by:

A ⊑ B if and only if A(L(Gn, A)) ⊆ A(L(Gn, B)),

A ⊏ B if and only if A(L(Gn, A)) ⊂ A(L(Gn, B)). 2

As complexity measures of a context-free grammar Gn we use the number
ν(n) of nonterminal symbols and the number π(n) of productions of Gn; so
ν(n) = #Nn and π(n) = #Pn. As the notation suggests, we will view both
ν and π as functions of n. For a more general and thorough treatment of
descriptional complexity issues in relation to context-free grammars and their
languages we refer to [10,12,13,6,4,1,5].

4 A Simple Approach

In view of Section 3 a straightforward way to generate Ln is to define Gn in
terms of subsets of Σn: to each X of P+(Σn) we associate a nonterminal AX

that generates all permutations over X, i.e. if #X = k (1 ≤ k ≤ n), then
L(Gn, AX) ⊂ Xk and L(Gn, AX) is an isomorphic copy of Lk.

Definition 4.1. The family {G1
n}n≥1 is given by {(Vn, Σn, Pn, Sn)}n≥1 with

• Nn = Vn − Σn = {AX | X ∈ P+(Σn)},

• Pn = {A{a} → a |a ∈ Σn} ∪ {AX∪Y −◮AXAY |X, Y ∈ P+(Σn), X ∩ Y = ∅},

• Sn = AΣn
. 2

Clearly, AX ⊏ AY [AX ⊑ AY , respectively] holds if and only if X ⊂ Y [X ⊆ Y ]
for all X and Y in P+(Σn).

Example 4.2. We consider the case n = 3 in detail; instead of subsets of Σ3,
we use subsets of {1, 2, 3} as indices of nonterminals. Then we have G1

3 =
(V3, Σ3, P3, S3) with S3 = A123, N3 = {A123, A12, A13, A23, A1, A2, A3} and
P3 = {A123 −◮A12A3 | A13A2 | A23A1, A12 −◮A1A2, A13 −◮A1A3, A23 −◮A2A3,
A1 → a1, A2 → a2, A3 → a3}.

Now E3,3 = {A123}, E3,2 = {A12, A13, A23}, E3,1 = {A1, A2, A3}, D(3, 3) = 1,
D(3, 2) = D(3, 1) = 3, ν1(3) = 7 and π1(3) = 15. 2

Proposition 4.3. For the family {G1
n}n≥1 of Definition 4.1 we have

(1) D(n, k) = C(n, k) with 1 ≤ k ≤ n,
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(2) ν1(n) = 2n − 1,

(3) π1(n) = 3n − 2n+1 + n + 1.

Proof. (1) and (2) follow from Definition 4.1 and ν1(n) =
∑n

k=1 D(n, k) =
∑n

k=1 C(n, k) = 2n − 1 [9]. By the definition of Nn and Pn, we have π1(n) =
n + h(n) where h(n) = #{AX∪Y −◮AXAY | X, Y ∈ P+(Σn), X ∩ Y = ∅}.

If the set X ∪Y possesses k elements (k ≥ 2), then the set {AX∪Y −◮AXAY |
X, Y ∈ P+(Σn), X ∩ Y = ∅} contains 2k − 2 elements, because both X and
Y are nonempty. Then

h(n) =
n

∑

k=2







n

k





 (2k − 2) =
n

∑

k=1







n

k





 (2k − 2) =

=
n

∑

k=1







n

k





 2k − 2 ·
n

∑

k=1







n

k





 =
n

∑

k=1







n

k





 2k1n−k − 2 ·
n

∑

k=1







n

k





 =

=
n

∑

k=0







n

k





 2k1n−k − 201n − 2 ·







n
∑

k=0







n

k





 −







n

0











 =

= (2 + 1)n − 1 − 2 · (2n − 1) = 3n − 2n+1 + 1.

Consequently, we have π1(n) = n + h(n) = 3n − 2n+1 + n + 1. 2

5 An Improvement

As a kind of intermezzo we briefly discuss a way to generate {Ln}n≥1 by regular
grammars {GR

n }n≥1. Although regular grammars are by no means context-free
grammars in Chomsky normal form, Proposition 3.3 and Definition 4.1 suggest
the following family {GR

n}n≥1.

Definition 5.1. The family {GR
n }n≥1 is given by {(Vn, Σn, Pn, Sn)}n≥1 with

• Nn = Vn − Σn = {AX | X ∈ P+(Σn)},

• Pn = {A{a} → a | a ∈ Σn} ∪ {AX → aAX−{a} | X ⊆ Σn, a ∈ X, #X ≥ 2},

• Sn = AΣn
. 2

Notice that in each rule of the form A → BC from G1
n (Definition 4.1) we

first restricted B by some symbol Ai from En,1 and then we replaced Ai by
the right-hand side of the unique rule Ai → ai.

Example 5.2. Again we show the case n = 3: GR
3 = (V3, Σ3, P3, S3) with

S3 = A123, N3 = {A123, A12, A13, A23, A1, A2, A3} and P3 = {A123 → a1A23 |
a2A13 | a3A12, A12 → a1A2 | a2A1, A13 → a1A3 | a3A1, A23 → a2A3 |
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a3A2, A1 → a1, A2 → a2, A3 → a3}. The entities En,k and D(n, k) are as in
Example 4.2; νR(3) = 7 but now we have πR(3) = 12. 2

Proposition 5.3. For the family {GR
n}n≥1 of Definition 5.1 we have

(1) D(n, k) = C(n, k) with 1 ≤ k ≤ n,

(2) νR(n) = 2n − 1,

(3) πR(n) = n · 2n−1.

Proof. We proceed as in the proof of Proposition 4.3(3): so let πR(n) = n+h(n)
where h(n) = #{AX → aAX−{a} | X ⊆ Σn, a ∈ X, #X ≥ 2}.

If X has k (k ≥ 2) elements, then {AX → aAX−{a} |X ⊆ Σn, a ∈ X, #X ≥ 2}
contains k elements. Thus

h(n) =
n

∑

k=2







n

k





 k =
n

∑

k=1

n! · k

k! (n − k)!
−







n

1





 =

= n ·
n

∑

k=1

(n − 1)!

(k − 1)!(n − k)!
− n = n ·

n−1
∑

k=0

(n − 1)!

k!(n − 1 − k)!
− n =

= n ·
n−1
∑

k=0







n − 1

k





 − n = n · 2n−1 − n.

Hence, we have πR(n) = n + h(n) = n + n · 2n−1 − n = n · 2n−1. 2

From Definition 5.1 we can obtain a family of context-free grammars in Chom-
sky normal form that generates {Ln}n≥1 as follows.

Definition 5.4. The family {G2
n}n≥1 is given by {(Vn, Σn, Pn, Sn)}n≥1 with

• Nn = Vn − Σn = {AX | X ∈ P+(Σn)},

• Pn = {A{a} → a |a ∈ Σn}∪{AX → A{a}AX−{a} |X ⊆ Σn, a ∈ X, #X ≥ 2},

• Sn = AΣn
. 2

Clearly, we have substituted Ai for ai in all right-hand sides of rules from
Definition 5.1 with left-hand side in En,2 ∪ En,3 ∪ · · · ∪ En,n.

Example 5.5. For the case n = 3 we obtain: G2
3 = (V3, Σ3, P3, S3) with

S3 = A123, N3 = {A123, A12, A13, A23, A1, A2, A3} and P3 = {A123 → A1A23 |
A2A13 | A3A12, A12 → A1A2 | A2A1, A13 → A1A3 | A3A1, A23 → A2A3 |
A3A2, A1 → a1, A2 → a2, A3 → a3} with ν2(3) = 7 and π2(3) = 12. 2

Proposition 5.6. For the family {G2
n}n≥1 of Definition 5.4 we have

(1) D(n, k) = C(n, k) with 1 ≤ k ≤ n,
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(2) ν2(n) = 2n − 1,

(3) π2(n) = n · 2n−1.

Proof. The one-to-one correspondence between GR
n and G2

n for each n ≥ 1
also implies that Proposition 5.6 follows from the proof of Proposition 5.3. 2

Proposition 5.7. For each n ≥ 1, G2
n is an unambiguous context-free gram-

mar in Chomsky normal form.

Proof. By Definition 5.4, G2
n is a context-free grammar in Chomsky normal

form. The rules in Pn imply that for each word w = ai1ai2 · · ·ain in Ln, the
linearly ordered sequence (i1, i2, . . . , in) uniquely determines the order in which
the productions have to be applied in a leftmost way in order to obtain w; viz.

S = A{i1,i2,...,in} ⇒ Ai1A{i2,i3,...,in} ⇒ ai1A{i2,i3,...,in} ⇒ ai1Ai2A{i3,...,in} ⇒

⇒ ai1ai2A{i3,...,in} ⇒ ai1ai2Ai3A{i4,...,in} ⇒ · · · ⇒ ai1ai2ai3 . . . ain = w.

So there is exactly one leftmost derivation for each w in Ln; hence G2
n is

unambiguous. 2

With respect to the number of productions the grammars G2
n are superior

to the ones of Definition 4.1 since for n ≥ 3, we have π2(n) = n · 2n−1 <
3n − 2n+1 + n + 1 = π1(n).

6 Inserting an Additional Terminal Symbol — 1

In this section we provide a family {G3
n}n≥1 that —apart from the first two

elements which are given explicitly— is defined inductively by means of a
grammatical transformation. First, we have a look at the three most simple
grammars (n = 1, 2, 3).

Example 6.1. (1) (n = 1). Consider G3
1 with P1 = {S1 → a1}. Then

L(G3
1) = {a1} = L1, ν3(1) = 1 and π3(1) = 1.

(2) (n = 2). Let G3
2 be defined by P2 = {S2 −◮A1A2, A1 → a1, A2 → a2}.

Now we have L(G3
2) = {a1a2, a2a1} = L2, ν3(2) = 3 and π3(2) = 4.

(3) (n = 3). For G3
3 we define P3 = {S3 −◮A1A23 | A13A2, A1 → a1, A2 →

a2, A3 → a3, A13 −◮A1A3, A23 −◮A2A3}. Then L(G3
3) = {a1a2a3, a1a3a2,

a2a1a3, a2a3a1, a3a1a2, a3a2a1} = L3, ν3(3) = 6 and π3(3) = 11.

(4) Adding another nonterminal A12 together with rules S3 −◮A3A12 and
A12 −◮A1A2 to G3

3 does not affect the language L(G3
3); the resulting gram-

mar has 7 nonterminals and 15 productions. 2

Note that in both grammars G3
n (n = 2, 3) of Example 6.1(2–3) all nontermi-

nals are not recursive and that Pn ⊆ Nn × (Nn − {Sn})
2 ∪ (Nn − {Sn})×Σn.

Definition 6.2. The family {G3
n}n≥1 is given by {(Vn, Σn, Pn, Sn)}n≥1 with
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(1) G3
1 is as in Example 6.1(1).

(2) G3
2 is as in Example 6.1(2).

(3) G3
n+1 is obtained from G3

n (n ≥ 2) by the steps (a), (b), (c) and (d).

N.B. First, note that Ln with Ln = L(G3
n) is a language over Σn, whereas

Ln+1 is a language over Σn+1. More precisely, we obtain the elements of Ln+1

by inserting the new symbol an+1 at each available spot in the strings of Ln.
This observation is the crux of our grammatical transformation. We obtain
the new grammar G3

n+1 from G3
n as follows.

• (a) Each initial rule, e.g. Sn −◮AB, is replaced by two rules: Sn+1 −◮A′B |
AB′. A primed symbol indicates that in the subtree rooted by that primed
symbol still an occurrence of the new symbol an+1 should be inserted.

• (b) To each noninitial rule in G3
n of the form A−◮BC, there correspond

in G3
n+1 three rules: A−◮BC and A′ −◮B′C | BC ′. The latter two rules are

added “to propagate the primes”.

• (c) For each (noninitial) rule in G3
n of the form A → a, there are the

following associated rules in G3
n+1: A → a and A′ −◮AAn+1, where An+1 is

new nonterminal symbol not yet present in Nn. The last rule will place an+1

to the left or the right, respectively, of the a generated by A; cf. also the next,
final step in the construction.

• (d) Finally, we add the new rule An+1 → an+1 to Pn+1. 2

It is now a routine matter to verify that (i) L(G3
n+1) = Ln+1, (ii) each nonter-

minal symbol is not recursive in G3
n+1, and (iii) Pn+1 does not contain a rule

of the form Sn+1 → a (a ∈ Σn+1).

Example 6.3. (1) By the grammatical transformation of Definition 6.2(3)
we can obtain G3

3 of Example 6.1(3) from G3
2 from Example 6.1(2): A′

1 = A13

and A′
2 = A23.

(2) Next we apply this grammatical transformation to obtain G3
4 from G3

3; cf.
Example 6.1(3) for the definition of G3

3.

The first step (a) yields: S4 −◮A′
1A23 | A1A

′
23 | A′

13A2 | A13A
′
2.

From the second step (b) we get: A13 −◮A1A3 and A′
13 −◮A′

1A3 | A1A
′
3 as well

as A23 −◮A2A3 and A′
23 −◮A′

2A3 | A2A
′
3.

The last two steps (c) and (d) produce: A1 → a1, A2 → a2, A3 → a3 together
with A′

1 −◮A1A4, A′
2 −◮A2A4, A′

3 −◮A3A4 and A4 → a4.

It is now easy to show that L(G3
4) = L4, ν3(4) = 12 and π3(4) = 30. Of course,

we may rename the nonterminal symbols: e.g., A′
ij by Aij4 and A′

i by Ai4; cf.
Section 4. 2

Example 6.4. (1) Consider G3
3 of Example 6.1(3). Then E3,1 = {A1, A2, A3},

E3,2 = {A13, A23} and E3,3 = {S3}. The strict order of N3 is: A1 ⊏ A13 ⊏ S3,
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A3 ⊏ A13, A2 ⊏ A23 ⊏ S3 and A3 ⊏ A23.

(2) For the grammar G3
4 of Example 6.3(2), we have E4,1 = {A1, A2, A3, A4},

E4,2 = {A13, A23, A
′
1, A

′
2, A

′
3}, E4,3 = {A′

13, A
′
23} and E4,4 = {S4}. The strict

order of N4 is given by A1 ⊏ A′
1 ⊏ A′

13 ⊏ S4, A1 ⊏ A13 ⊏ A′
13, A2 ⊏ A′

2 ⊏

A′
23 ⊏ S4, A2 ⊏ A23 ⊏ A′

23, A3 ⊏ A′
3 ⊏ A′

23, A3 ⊏ A13, A3 ⊏ A23, A4 ⊏ A′
1,

A4 ⊏ A′
2 and A4 ⊏ A′

3 ⊏ A′
13. 2

Proposition 6.5. For the family {G3
n}n≥1 of Definition 6.2 we have

(1) D(n, 1) = n, D(n, n − 1) = 2 (n ≥ 2), D(n, n) = 1 and for each k with

2 ≤ k ≤ n − 2,

D(n, k) = D(n − 1, k) + D(n − 1, k − 1),

(2) ν3(1) = 1 and for n ≥ 2, ν3(n) = 3 · 2n−2,

(3) π3(1) = 1 and for n ≥ 2, π3(n) = 5

2
· 3n−2 + 2n−1 − 1

2
.

Proof. (1) Clearly, D(n, n) = 1 and D(n, 1) = n as En,n = {Sn} and En,1 =
{A1, . . . , An} because Ai → ai are the only rules in Pn with terminal right-
hand sides.

The other two equalities are easily established by induction over n using the
properties of G3

2 —particularly, the fact that E2,1 = {A1, A2}— and the effect
of the transformation given in Definition 6.2(3).

(2) From Definition 6.2(3) it follows that for the new set of nonterminal sym-
bols Nn+1 of G3

n+1 we have

Nn+1 = (Nn − {Sn}) ∪ {A′ | A ∈ Nn − {Sn}} ∪ {Sn+1, An+1}.

This implies that ν3(n + 1) = 2 · ν3(n). Solving this difference equation with
initial condition ν3(2) = 3 (Definition 6.2(2) and Example 6.1(2)) yields
ν3(n) = 3 · 2n−2 for n ≥ 2.

(3) We write π3(n) = f(n) + g(n) for n ≥ 2, where f(n) is the number of
initial productions and g(n) is the number of noninitial productions in G3

n.
By the transformation of Definition 6.2(3) we obtain the following recurrence
relations: f(n + 1) = 2 · f(n) with f(2) = 2, and g(n + 1) = 3 · g(n) + 1 with
g(2) = 2. Solving these equations yields f(n) = 2n−1 and g(n) = 5

2
· 3n−2 − 1

2

(n ≥ 2); hence the result. 2

Proposition 6.5(2)–(3) may be rewritten as ν3(n) = ⌊3 · 2n−2⌋ and π3(n) =
⌊5

2
· 3n−2 + 2n−1 − 1

2
⌋, respectively (n ≥ 1).

Note that the recurrence relation in Proposition 6.5(1) is identical to the one
for the binomial coefficients C(n, k), although the boundary conditions are
different. It results in the Pascal-like triangle of Table 1.
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D(n, k)

n k = 1 2 3 4 5 6 7 8 9 10

1 1

2 2 1

3 3 2 1

4 4 5 2 1

5 5 9 7 2 1

6 6 14 16 9 2 1

7 7 20 30 25 11 2 1

8 8 27 50 55 36 13 2 1

9 9 35 77 105 91 49 15 2 1

10 10 44 112 182 196 140 64 17 2 1

Table 1
D(n, k) for G3

n (1 ≤ n ≤ 10).

Finally, we remark that the grammatical transformation of Definition 6.2(3)
is of general interest in the following sense: given any context-free grammar
Gn in Chomsky normal form that generates Ln (thus not just G3

n), then it
produces a context-free grammar Gn+1 in Chomsky normal form for Ln+1. We
will apply this observation in Section 9.

7 Inserting an Additional Terminal Symbol — 2

The family {G3
n}n≥1 is rather efficient with respect to the number of nonter-

minals as compared to the family {G2
n}n≥1: ν3(n) = 3 · 2n−2 < 2n − 1 = ν2(n)

for n ≥ 3. The price we have to pay is an increase of the number of produc-
tions, since π3(n) = 5

2
· 3n−2 + 2n−1 − 1

2
> n · 2n−1 = π2(n) for n ≥ 5. In

addition the degree of ambiguity of G3
n is rather high as can been seen from

the following sample subderivations. Let A ⇒ BC ⇒⋆ wBwC with B ⇒⋆ wB

and C ⇒⋆ wC be a subderivation according to G3
n. From the new grammar

G3
n+1 the substring wBan+1wC can be obtained by A′ ⇒ B′C ⇒⋆ wBan+1wC

or by A′ ⇒ BC ′ ⇒⋆ wBan+1wC .

In this section we will modify the grammatical transformation of Definition
6.2 in such a way that the second subderivation is not possible, because the
occurrence of an+1 will always be introduced to the right of the terminal
symbols a1, a2, · · · , an. This results in a family of grammars {G4

n}n≥1 with
A′ → AAn+1 rather than A′−◮AAn+1 in G4

n+1. In order to derive permutations
from {an+1}Ln we need the rule Sn+1 → An+1Sn and to preserve Sn as well as
all rules from G4

n.

Definition 7.1. The family {G4
n}n≥1 is given by {(Vn, Σn, Pn, Sn)}n≥1 with

(1) G4
1 = G3

1 (as in Example 6.1(1)).
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(2) G4
2 = G3

2 (as in Example 6.1(2)).

(3) G4
n+1 is obtained from G4

n (n ≥ 2) by the steps (a), (b) and (c):

• (a) To each rule in G4
n of the form A → BC, there corresponds in G4

n+1

three rules: A → BC and A′ → B′C | BC ′. The latter two rules are added
“to propagate the primes”. The primed version S ′

n of Sn becomes the initial
symbol Sn+1 of G4

n+1; so Sn+1 = S ′
n.

• (b) We add the rules Sn+1 → An+1Sn and An+1 → an+1 to Pn+1, where An+1

is new nonterminal symbol not yet present in Nn.

• (c) For each (noninitial) rule in G4
n of the form A → a, there are the following

associated rules in G4
n+1: A → a and A′ → AAn+1. The last rule will place

an+1 to the right of the a generated by A. 2

Example 7.2. (1) We construct G4
3 from G4

2 (i.e. G3
2, Example 6.1(1)).

Definition 7.1(a)–(c) yields: S3 → A′
1A2 | A1A

′
2 | A′

2A1 | A2A
′
1 | A3S2,

S2 → A1A2 | A2A1, A′
1 → A1A3, A′

2 → A2A3, A1 → a1, A2 → a2, A3 → a3.
Then E3,3 = {S3}, E3,2 = {S2, A

′
1, A

′
2}, E3,1 = {A1, A2, A3}, and hence

D(3, 3) = 1, D(3, 2) = D(3, 1) = 3, ν4(3) = 7 and π4(3) = 12.

(2) Next we derive G4
4 from G4

3; but first we rename A′
i by Bi (i = 1, 2)

in G4
3 of Example 7.2.(1) in order to avoid two types of primes with differ-

ent meanings. Then we obtain: S4 → B′
1A2 | B1A

′
2 | A′

1B2 | A1B
′
2 | B′

2A1 |
B2A

′
1 | A′

2B1 | A2B
′
1 | A′

3S2 | A3S
′
2 | A4S3, S3 → B1A1 | A1B2 | B2A1 |

A2B1 | A3S2, S ′
2 → A′

1A2 | A1A
′
2 | A′

2A1 | A2A
′
1, S2 → A1A2 | A2A1, B1 →

A1A3, B′
1 → A′

1A3 | A1A
′
3, B2 → A2A3, B′

2 → A′
2A3 | A2A

′
3, A′

1 → A1A4,
A′

2 → A2A4, A′
3 → A3A4, A1 → a1, A2 → A2, A3 → a3 and A4 → a4.

Hence E4,4 = {S4}, E4,3 = {S3, S
′
2, B

′
1, B

′
2}, E4,2 = {S2, B1, B2, A

′
1, A

′
2, A

′
3},

E4,1 = {A1, A2, A3, A4}, ν4(4) = 15 and π4(4) = 35. 2

There is a one-to-one correspondence between the nonterminals of G4
n and

the elements of P+(Σn). E.g. in Example 7.2(2) we have S ′
2 ↔ {a1, a2, a4},

B1 ↔ {a1, a3} and B′
2 ↔ {a2, a3, a4}; cf. also Proposition 7.4(1)–(2) below.

Proposition 7.3. For each n ≥ 1, G4
n is an unambiguous context-free gram-

mar in Chomsky normal form.

Proof. Clearly, each G4
n is in Chomsky normal form. So it remains to show

that each G4
n is unambiguous; this will be done by induction on n.

Basis (n = 1, 2): Obviously, both G4
1 and G4

2 are unambiguous grammars.

Induction hypothesis: G4
n is an unambiguous grammar.

Induction step: Let w be a word from L(G4
n+1). Then we distinguish two cases:

(i) w ∈ {an+1} · L(G4
n), i.e. w = an+1v for some v ∈ L(G4

n). Since v does
not possess an occurrence of an+1, a leftmost derivation of w has the form
Sn+1 ⇒ An+1Sn ⇒ an+1Sn ⇒⋆ an+1v. By the induction hypothesis there is
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only one leftmost derivation according to Gn for v from Sn. And notice that
Pn ⊂ Pn+1, whereas rules from Pn+1−Pn cannot interfere in the subderivation
Sn ⇒⋆ v. Consequently, Sn+1 ⇒ An+1Sn ⇒ an+1Sn ⇒⋆ an+1v is the only
leftmost derivation of w in G4

n+1.

(ii) w /∈ {an+1} · L(G4
n), i.e. w = uaian+1v with uaiv ∈ L(G4

n) and ai ∈ Σn;
note that i 6= n + 1. As uai 6= λ, the occurrence of an+1 in w cannot be
introduced by the initial rule Sn+1 → An+1Sn, but it must be obtained by a
leftmost subderivation A′

i ⇒ AiAn+1 ⇒ aiAn+1 ⇒ aian+1 using the unique
rule Ai → ai from Pn and the unique rule An+1 → an+1 from Pn+1 − Pn.
Consider, the following leftmost derivation of w:

Sn+1 ⇒
+ uA′

iω ⇒ uAiAn+1ω ⇒ uaiAn+1ω ⇒ uaian+1ω ⇒+ uaian+1v = w.

Suppose there are two such derivations according to G4
n+1. Then we can obtain

two different leftmost derivations for uaiv according to G4
n as follows: (1)

replace the subderivation uA′
iω ⇒ uAiAn+1ω ⇒ uaiAn+1ω ⇒ uaian+1ω by

uAiω ⇒ uaiω, (2) remove all primes from primed symbols, and (3) change all
remaining occurrences of an+1 into λ.

However, the existence of two different leftmost derivations for uaiv in G4
n

contradicts the induction hypothesis, i.e. the unambiguity of G4
n. 2

Proposition 7.4. For the family {G4
n}n≥1 of Definition 7.1 we have

(1) D(n, k) = C(n, k) for 1 ≤ k ≤ n,

(2) ν4(n) = 2n − 1,

(3) π4(n) = 5

4
· 3n−1 + 1

2
n − 3

4
.

Proof. (1) From Definition 7.1(a)–(c) it follows that D(n, k) = D(n − 1, k) +
D(n − 1, k − 1) with D(n, n) = 1 and D(n, 1) = n (1 ≤ k ≤ n). Hence
D(n, k) = C(n, k); cf. [9,14].

(2) Obviously, ν4(n) =
∑n

k=1 D(n, k) =
∑n

k=1 C(n, k) = 2n − 1 for n ≥ 2 [9].
Alternatively, we have Nn+1 = Nn ∪ {A′ | A ∈ Nn − {Sn}} ∪ {Sn+1, An+1}
which yields the difference equation ν4(n + 1) = 2 · ν4(n) + 1 with ν4(2) = 3.
Solving this equation gives the same result.

(3) We write π4 as π4(n) = f(n) + g(n) where g(n) is the number of terminal
rules Ai → ai and f(n) the number of remaining rules. Then g(n) = n,
whereas f(n+1) = 3 ·f(n)+n+1 with f(2) = 2. Let fh be the solution of the
corresponding homogeneous equation fh(n + 1) = 3 · fh(n), i.e. fh(n) = c · 3n.
For a particular solution we try fp(n) = an + b which yields a = −1

2
and

b = −3

4
; thus fp(n) = −1

2
n − 3

4
. Finally, we use the initial condition f(2) = 2

to determine the constant c from f(n) = fh(n)+ fp(n) = c · 3n − 1

2
n− 3

4
. Then

c = 5

12
which implies π4(n) = f(n)+g(n) = 5

12
·3n− 1

2
n− 3

4
+n = 5

4
·3n−1+ 1

2
n− 3

4
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(n ≥ 2). Substituting n = 1 in this expression gives π4(1) = 1 as well. 2

Although we obtained unambiguous grammars (Proposition 7.3), the price we
have to pay for this is high (Proposition 7.4): viz. ν4(n) = 2n − 1 > 3 · 2n−2 =
ν3(n) and π4(n) = 5

4
· 3n−1 + 1

2
n − 3

4
> 5

2
· 3n−2 + 2n−1 − 1

2
= π3(n) for n ≥ 3.

The grammatical transformation of Definition 7.1(3) is as general as the one of
Definition 6.2(3): it is applicable to any context-free grammar Gn in Chomsky
normal form for Ln and it yields a context-free grammar Gn+1 in Chomsky
normal form with L(Gn+1) = Ln+1; cf. Section 9 for an application.

8 Divide and Conquer

The families of grammars considered in the previous sections all share the
property that En,k 6= ∅ for all k (1 ≤ k ≤ n). In this section we consider
a family of grammars {G5

n}n≥1 that is a divide-and-conquer modification of
{G1

n}n≥1 of Section 4 in the sense that —instead of dividing X ∪ Y in all
possible disjoint nonempty X and Y — we restrict the subdivisions of X ∪ Y
to almost equally sized X and Y . As a consequence we have that for some k,
the sets En,k are empty, whenever n ≥ 4.

En,1 := {A{a} | a ∈ Σn}; Nn := En,1; M := {AΣn
};

Pn := {A{a} → a | a ∈ Σn};

while M − En,1 6= ∅ [i.e. ∃AX ∈ M : X ⊆ Σn and #X ≥ 2] do

begin

S(X) := {(Y, Z) | Y ⊂ X, #Y = ⌈1

2
#X⌉, Z = X − Y };

Pn := Pn ∪ {AX → AY AZ | (Y, Z) ∈ S(X)};

Nn := Nn ∪ {AX};

M := (M − {AX}) ∪ {AY , AZ | (Y, Z) ∈ S(X)}

end

Fig. 1. Algorithm to determine Nn and Pn of G5
n.

Definition 8.1. The family {G5
n}n≥1 is given by {(Vn, Σn, Pn, Sn)}n≥1 with

• Sn = AΣn
, and

• the sets Nn and Pn are determined by the algorithm in Figure 1. 2

Example 8.2. (1) For n = 4 Definition 8.1 yields G5
4 with S4 = A1234,

N4 = E4,1 ∪ E4,2 ∪ E4,3 ∪ E4,4, E4,1 = {A1, A2, A3, A4}, E4,2 = {A12, A13,
A14, A23, A24, A34}, E4,3 = ∅, E4,4 = {A1234}, P4 = {A1234 −◮A12A34 | A13A24 |
A14A23, A12 −◮A1A2, A13 −◮A1A3, A14 −◮A1A4, A23 −◮A2A3, A24 −◮A2A4,
A34 −◮A3A4, A1 → a1, A2 → a2, A3 → a3, A4 → a4}, ν5(4) = 11 and
π5(4) = 22.

14



(2) Similarly, for n = 5 we obtain G5
5 with S5 = A12345, N5 = E5,5∪E5,4∪E5,3∪

E5,2∪E5,1, E5,5 = {A12345}, E5,4 = ∅, E5,3 = {A123, A124, A125, A134, A135, A145,
A234, A235, A245, A345}, E5,2 = {A12, A13, A14, A15, A23, A24, A25, A34, A35, A45},
E5,1 = {A1, A2, A3, A4, A5}, P5 = {A12345 → A123A45 | A124A35 | A125A34 |
A134A25 | A135A24 | A145A23 | A234A15 | A235A14 | A245A13 | A345A12, A123 →
A12A3 | A13A2 | A23A1, A124 → A12A4 | A14A2 | A24A1, A125 → A12A5 |
A15A2 | A25A1, A134 → A13A4 | A14A3 | A34A1, A135 → A13A5 | A15A3 |
A35A1, A145 → A14A5 | A15A4 | A45A1, A234 → A23A4 | A24A3 | A34A2, A235 →
A23A5 | A25A3 | A35A2, A245 → A24A5 | A25A4 | A45A2, A345 → A34A5 |
A35A4 | A45A3, A12 −◮A1A2, A13 −◮A1A3, A14 −◮A1A4, A15 −◮A1A5, A23 −◮

A2A3, A24 −◮A2A4, A25 −◮A2A5, A34 −◮A3A4, A35 −◮A3A5, A45 −◮A4A5, A1

→ a1, A2 → a2, A3 → a3, A4 → a4, A5 → a5}, ν5(5) = 26 and π5(5) = 65.

(3) For n = 8 the algorithm of Definition 8.1 produces a grammar G5
8 with

E8,7 = E8,6 = E8,5 = E8,3 = ∅. Similarly, the grammar G5
10 satisfies E10,9 =

E10,8 = E10,7 = E10,6 = E10,4 = ∅. 2

The next result follows from the structure of the algorithm in Definition 8.1;
cf. Figure 1.

Proposition 8.3. For the family {G5
n}n≥1 of Definition 8.1 we have

(1) D(n, k) = if k ∈ {⌈n/2i⌉, ⌊n/2i⌋ | 0 ≤ i ≤ ⌈log2 n⌉} then C(n, k) else 0,

(2) ν5(n) =
∑n

k=1 D(n, k),

(3) π5(n) =
∑n

k=1 D(n, k) · C(k, ⌈k/2⌉). 2

D(n, k)

n k = 1 2 3 4 5 6 7 8 9 10

1 1

2 2 1

3 3 3 1

4 4 6 0 1

5 5 10 10 0 1

6 6 15 20 0 0 1

7 7 21 35 35 0 0 1

8 8 28 0 70 0 0 0 1

9 9 36 84 126 126 0 0 0 1

10 10 45 120 0 252 0 0 0 0 1

Table 2
D(n, k) for G5

n (1 ≤ n ≤ 10).

The values of D(n, k) for 1 ≤ n ≤ 10 are given in Table 2. Unfortunately,
a closed form for ν5(n) and π5(n) is very hard or even impossible to obtain;
a situation very common in analyzing these divide-and-conquer approaches;
cf. e.g. pp. 62–78 in [17] or [20]. A numerical evaluation and a comparison
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with νi(n) and πi(n) (1 ≤ i ≤ 4) can be found in Section 9. These numerical
values suggest that both functions ν5 and π5 satisfy f(n + 2) > 2 · f(n)
and f(n + 1) > f(n), confirming the exponential growth of these complexity
measures; cf. Section 1 [16,7].

9 Concluding Remarks

In the previous sections we discussed a few ways to generate the set of all per-
mutations of an alphabet of n symbols by context-free grammars in Chomsky
normal form. For the resulting families of grammars {Gi

n}n≥1 (1 ≤ i ≤ 5) we
considered the values of the descriptional complexity measures νi(n) (i.e. the
number of nonterminal symbols) and πi(n) (i.e. the number of productions) of
Gi

n. A comparison of actual values for 1 ≤ n ≤ 16 of these measures is given
in Tables 3 and 4.

n ν1(n) ν2(n) ν3(n) ν4(n) ν5(n) ν6(n) ν7(n)

1 1 1 1 1 1 1 1

2 3 3 3 3 3 3 3

3 7 7 6 7 7 7 6

4 15 15 12 15 11 11 11

5 31 31 24 31 26 23 22

6 63 63 48 63 42 42 42

7 127 127 96 127 99 85 84

8 255 255 192 255 107 107 107

9 511 511 384 511 382 215 214

10 1023 1023 768 1023 428 428 428

11 2047 2047 1536 2047 1156 857 856

12 4095 4095 3072 4095 1223 1223 1223

13 8191 8191 6144 8191 4525 2447 2446

14 16383 16383 12288 16383 4903 4903 4903

15 32767 32767 24576 32767 14811 9807 9806

16 65535 65535 49152 65535 14827 14827 14827

Table 3
νi(n) (1 ≤ i ≤ 7; 1 ≤ n ≤ 16).

Note that, for instance, the grammars {G1
n}n≥1 and {G3

n}n≥1 from Sections 4
and 6 respectively, are ambiguous. Now let for each Gn = (Vn, Σn, Pn, Sn) that
generates Ln, δ(n) denote the total number of possible leftmost derivations
according to Pn; thus δ(n) ≥ n!. E.g. for G3

3 we have δ3(3) = 8 > 3!; so G3
3 is

not minimal with respect to this complexity measure. And the family of trivial
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n π1(n) π2(n) π3(n) π4(n) π5(n) π6(n) π7(n)

1 1 1 1 1 1 1 1

2 4 4 4 4 4 4 4

3 15 12 11 12 12 12 11

4 54 32 30 35 22 22 22

5 185 80 83 103 65 64 59

6 608 192 234 306 116 116 116

7 1939 448 671 914 399 344 317

8 6058 1024 1950 2737 554 554 554

9 18669 2304 5723 8205 2475 1556 1535

10 57012 5120 16914 24608 3232 3232 3232

11 173063 11264 50231 73816 14938 9688 9185

12 523262 24576 149670 221439 20208 20208 20208

13 1577953 53248 446963 664307 101413 60614 58577

14 4750216 114688 1336794 1992910 130846 130846 130846

15 14283387 245760 4002191 5978718 691890 392526 384347

16 42915666 524288 11990190 17936141 924946 924946 924946

Table 4
πi(n) (1 ≤ i ≤ 7; 1 ≤ n ≤ 16).

i 1 2 3 4 5

νi(n) A000225 A000225 A003945 A000225 A012272*

πi(n) A090326* A001787 A090327* A090328* A077277*

Table 5
Integer sequences.

grammars mentioned in Section 1 —viz. {G0
n}n≥1 with G0

n = (Vn, Σn, Pn, Sn),
Nn = {Sn} and Pn = {Sn → w | w ∈ Ln}, although not in Chomsky normal
form— satisfies ν0(n) = 1, and π0(n) = δ0(n) = n!. From Propositions 5.7
and 7.3 it follows that for the families {G2

n}n≥1 and {G4
n}n≥1, we have δ2(n) =

δ4(n) = n! as well. Quite generally, one may ask whether there exist trade-offs
between the complexity measures ν, π and δ. And, of course, the question
remains whether there exists a family of minimal grammars with respect to
the descriptional complexity measures ν(n) and π(n).

It is rather straightforward to show that the family of grammars {GR
n}n≥1 is

minimal with respect to both νR(n) and πR(n) for the class of regular (or
right-linear) grammars that generate {Ln}n≥1. But for the class of context-
free grammars in Chomsky normal form that generate {Ln}n≥1 the situation
is not that clear. For the families {Gi

n}n≥1 (1 ≤ i ≤ 5) studied in Sections 4–8,
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{G5
n}n≥1 happens to have the least number of nonterminals, whereas {G2

n}n≥1

has the least number of productions. Note that the family {G5
n}n≥1 is not

minimal with respect to ν. We can slightly improve upon {G5
n}n≥1 in the

following way:

(i) for even values of n we take Gn equal to G5
n, and

(ii) for odd values of n —i.e. in case n = 2k + 1— we take G5
2k and we apply

the grammatical transformation of Section 6 or 7 to obtain Gn; cf. the remarks
at the end of Sections 6 and 7.

Applying the grammatical transformation from Definition 7.1(3) in this way,
together with the recurrence relations ν4(n+1) = 2 ·ν4(n)+1 and π4(n+1) =
3 · π4(n) − n + 2, yields the family {G6

n}n≥1. Similarly, the family {G7
n}n≥1

is obtained by using the grammatical transformation of Definition 6.2(3) and
the recurrences ν3(n + 1) = 2 · ν3(n) and π3(n + 1) = 3 · π3(n) − 2n−1 + 1.
The resulting values of ν6(n), π6(n), ν7(n) and π7(n) for 1 ≤ n ≤ 16 are in
Tables 3 and 4. These modifications of {G5

n}n≥1 have a profitable effect on the
π(n)-values for odd n as well.

In Section 5 we defined a regular grammar GR
n for Ln (n ≥ 1). By standard

methods GR
n can be converted into a deterministic finite automaton for Ln. So

Proposition 5.3 or 5.6 determines the state complexity [21] (and the “transition
complexity”) of this automaton.

The construction of the grammar families in this paper has something in com-
mon with designing algorithms to generate permutations, although in our case
we are somewhat limited: we are unable to apply transpositions (“swapping
of symbols”) because a transposition —even in the simple case of swapping
adjacent elements— is a context-dependent rewriting step inherently. For a
classification of (functional) programs for generating permutations we refer
to [19]. The family {G3

n}n≥1 corresponds to Algorithm A in [19], whereas the
family {GR

n }n≥1 is more or less a “mirrored” instance of its Algorithm B.

In this paper we restricted ourselves to generating permutations. Of course,
there are other algebraic or combinatorial objects that —restricted to size
n or parameterized by n in an other way— can be represented as a finite
formal language Ln for which one may proceed as in the previous sections.
An example is in [2] where we restrict our attention to “circular shifts”; these
special permutations give rise to functions ν(n) and π(n) that are polynomially
bounded in n rather than the exponential functions of the present paper; cf.
Section 1 [16,7].

Finally, we mention that the result of evaluating functions like νi(n) and πi(n)
for n = 1, 2, 3, · · · (1 ≤ i ≤ 7) is a so-called integer sequence. Some of these
are well known, other ones seem to be new. In Table 5 we give an overview: the
codes in this table refer to N.J.A. Sloane’s “Database of Integer Sequences”
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[18]: the starred items have been added recently as being new, whereas the
sequences for i = 6, 7 have not been included because of their ad hoc character.
Tables 1 and 2 are known in [18] as A029635 and A090349*, respectively.

Acknowledgements. I am indebted to Giorgio Satta for suggesting the subject
and to Jeffrey Shallit for sending me a copy of [7].
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