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Errors and error sources occurring in rotating-analyzer ellipsometry are discussed. From general considerations it
is shown that a rotating-analyzer ellipsometer is inaccurate if applied at P = 00 and in cases when 0 = 0' or where A
is near 00 or 1800. Window errors, component imperfections, azimuth errors and all other errors may, to first order,
be treated independently and can subsequently be added. Explicit first-order expressions for the errors 6A and 36t'
caused by windows, component imperfections, and azimuth errors are derived, showing that all of them, except the
window errors, are eliminated in a two-zone measurement. Higher-order errors that are due to azimuth errors are
studied numerically, revealing that they are in general less than 0.10. Statistical errors are also discussed. Errors
caused by noise and by correlated perturbations, i.e., periodic fluctuations of the light source, are also considered.
Such periodic perturbations do cause random errors, especially when they have frequencies near 2

COA and 4
C0A.

1. INTRODUCTION

During the past decade automated ellipsometers have in
many cases superseded the traditional nulling ellipsometers.
These nulling ellipsometers are based on the so-called total-
extinction principle; A and i~ are obtained from the compo-
nent readings when the transmitted beam is totally extin-
guished. For a number of reasons, errors do occur in these
measurements; these errors are extensively discussed by Az-
zam and Bashara,1' 4 Aspens,5 Straaijer et al.,6 and
McCrackin7 The automation of the ellipsometer has re-
sulted in a number of different types8,'9 of which the rotat-
ing-analyzer ellipsometer 10 "11 (RAE) is the most important.
With this automation the total-extinction method has been
replaced by a total-intensity measurement. In the case of
the RAE the light flux as a function of the analyzer angle is
measured: 'det = Idet(A). From this intensity the two de-
sired quantities, A and i/, are calculated.

With the introduction of the automated ellipsometers of
the RAE type, the error analysis had to be repeated. Azzam
and Bashara' 2 presented such a study, showing that a two-
zone measurement, as known for the nulling ellipsometer,
existed, but they did not present explicit expressions for 65A
and 6~ as they did for the nulling ellipsometer. 2 Such ex-
plicit expressions should be of great value for deciding
whether a two-zone measurement is required or whether a
single-zone measurement suffices. Aspnes'3 discussed the
effect of noise in the RAE; noise introduces statistical errors
in A and 4~. However, other sources besides noise contribute
to statistical errors, as will be shown in this paper. Finally,
we should mention another paper of Aspnes,14 which is per-
haps a little outside the scope of this paper, on calibration
errors caused by imperfect polarizers.

All references mentioned concern first-order errors. The
effect of each error source is studied individually; the re-
maining part of the ellipsometer is assumed to be ideal.
Subsequently, all errors attributed to the different sources
are added up. In this paper we apply the same principle in
our derivation of simple expressions for first-order errors in

A and itt obtained by a RAE. Most of these errors appear to
be antisymmetric and consequently can be eliminated by a
two-zone measurement. When first-order errors are elimi-
nated in this way, the question arises about when second-
order errors, particularly those caused by azimuth errors,
can no longer be neglected. This problem cannot be solved
analytically and has to be approached numerically. For this
purpose we wrote a computer program that simulates the
optical part of the RAE. Subsequently we simulated the
usual calibrations and measurements. The errors in A and
t', 5A, and 5~ then were obtained from the difference be-
tween the A and i~ values introduced in the simulation part
and those resulting from the measurement.

In Section 2 we present a short introduction to the RAE.
Subsequently some considerations on general error propaga-
tion are discussed in Section 3, from which one arrives at the
conclusion that a RAE yields good results unless P, A, or ~
approaches 0 or ir. Section 4 contains an introduction of the
optics and our approach to the present problem, which is
based on the idea of Taylor expansions. In combination
with the result of Section 2, it gives us a formalism that
allows us to calculate, to first order, the errors 6A and t

31
'

caused by any source. Section 5 proceeds with the applica-
tion of this formalism to systematic errors, such as azimuth
errors, component imperfection, and windows. Apart from
these systematic errors, we also consider statistical errors.
This subject is discussed extensively in Section 6. Finally,
we conclude with a discussion of the currently obtained
results.

2. THE ROTATING-ANALYZER
ELLIPSOMETER

Figure 1 presents a diagram of a RAE. The optical system
contains a polarizer, a sample, a rotating analyzer, and, op-
tionally, a compensator. A detailed description of a RAE
can be found in Ref. 10. The ideal polarizer and analyzer are
completely characterized by the azimuth angles P and A,
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Fig. 1. Schematic diagram of an ideal ellipsometer. The optical
part of the system consists of a polarizer, an optional compensator,
the sample, and an analyzer. In the case of a RAE the analyzer
rotates with constant angular velocity. The angles P, C, and A are
the angles of the characteristic axes of the components measured
relative to the plane of incidence.

which their transmission axes make with the plane of inci-
dence. The compensator fast-axis azimuth from the plane
of incidence is denoted by C, and its phase retardation is
denoted by Q. In the ideal situation the compensator is
assumed to be positioned with its fast axis aligned with the
plane of incidence (C = 0).13 This configuration makes the
phase retardations of the sample (A) and of the compensator
directly additive, and A' remains unchanged.' 2 One may as
well omit the presence of the compensator if the sample is
characterized by A' = A + Q, 4" = 4'. For this ideal situation
the light flux transmitted by the rotating analyzer (A = WAt)
becomes

I = I[1 - C2pC2 + (C2P - C20,)cos 2 WAt

+ S2PS2 ,PCA sin 2WAt], (1)

where S and C are shorthand notation for sine and cosine,
respectively.

The light flux as a function of time, Idet(t), transmitted by
the analyzer is the actually measured quantity, having the
mathematical form

Idet(t) = ao + a, cos 2
WAt + as sin 2 cWAt. (2)

In measurement the coefficient a0 is obtained from Idet(t) by
averaging Idet over a number of analyzer cycles:

ao = (Idet), (3a)

while a, and a, are retrieved by the Fourier integral

=- N,
WA

The preceding discussion is correct only for the ideal RAE;
in practice things appear less ideal than assumed. One
should realize that the assumption of Eq. (2) on the detected
intensity is not realistic. Noise and intensity modulations
other than the 2 WA component will be present, causing ran-
dom errors. In Section 6 we present a quantitative treat-
ment of this subject. Apart from these random errors, a
number of systematic errors, hence less-noticeable errors, do
enter the measurement. The polarizers used are not per-
fect, they transmit slightly elliptically polarized light in-
stead of perfect linearly polarized light. In a number of
cases, for example, if the sample is situated inside an ultra-
high-vacuum system, windows are used, thus distorting the
state of polarization of the light beam. The plane of inci-
dence is assumed to be known exactly, and, if this is not the
case, azimuth errors in P, C, and A are introduced, ultimate-
ly causing systematic errors in A and 4.

3. GENERAL ERROR PROPAGATION

The accuracy with which A and A can be determined strongly
depends on the nature of the sample. To study this feature
and for later purposes, we first consider the propagation of
errors in general.

The light flux detected contains, in principle, a dc and a
2

WA component only, which are retrieved by averaging and
by Fourier analysis. Consequently all errors independent of
their origin propagate only through the coefficients ao, ao,
and as. It is for this reason mainly that we are interested in
what errors 6A and 6A are introduced by the shifts 6ao, bac,
and bas.

From Eqs. (4a) and (4b) we can derive the Jacobian ma-
trix, relating the errors in A and A' to those in the normalized
Fourier coefficients &i = aclao and &i = a,/ao:

E6A'1 1 - C2PC2P

[64' S2P2S 2A2SA

L (C 24 - C2 P)CA

'/2(l - C2PC2A)S 2,SA

- S2S2j [ :1.

(5)

A look at the denominator of the expression in front of the
matrix unambiguously shows that the RAE is insensitive if
used at small P or if applied to a sample with SA - 0 or small 4'.
Under these conditions, even small errors 6&, and M&, do cause
large errors in A and 4. It is for this reason that a compensa-
tor is advised in cases of A near 0, ir rad.13

Another Jacobian matrix relating M3c and oe& to bao, aoc,
and 6cea eliminates M,3& and bo&s from Eq. (5), thus yielding

F6A1 1 [ (1 - C2 PC2A,)Ca (C 2 A - C2 P)Ca

[64A -2P
2 s2 2 sA ['/ 2(C24 - C2p)S2 ,SA '/2(1 - C2PC2 0)S2 0SA

S2P b[eao]

0 J[ac J (6)

where N is the number of analyzer cycles.
Thus, having determined the coefficients ao, a,, and a,

from the measured light flux Idet, we find A and 4 by equat-
ing Eqs. (1) and (2):

C2P -C2,P = acd
1 - C2PC2% ao

S2PS20CA as

1 - C2PC 2 f ao

(4a)

which is the general first-order error-propagation matrix
expressed in terms of the variables A, 4, and P.

4. THEORETICAL FORMALISM CONCERNING
ERROR CALCULATIONS

In Section 3 we derived Eq. (6), which relates the errors in A
and 4 to those in the coefficients ao, ac, and as. An azimuth

(4b) error 6P of the polarizer resulting from the calibration, for
example, is a source for such systematic shifts of ao, a,, and
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a, + ia, = 2 f' Idet(t)exp(i2.,t)dt,
Ir 0



Vol. 5, No. 6/June 1988/J. Opt. Soc. Am. A 775

a,. These systematic errors bo3, b3a, and 6a, caused by
azimuth angle errors, component imperfection, and windows
can be calculated, to first-order, as is shown in this section.

The state of polarization of a monochromatic light beam
can be described by a Stokes vector S. 4 Together with
Mueller matrices we have a formalism well fitted for our
purpose; the second-order numerical calculations are easily
programmable, and the analytical manipulations are
straightforward. In the present treatment we distinguish
the transmission matrix of a component in its own frame of
reference (T) and the rotation matrix [4'?(0)] performing the
transformation of S from one frame of reference to another,
rotated over an angle 0. Concrete expressions for Y9 and T
can be found in the papers of Azzam and Bashara.1, 4 In this
way the response matrix of a component (k) in an arbitrary
frame of reference becomes J-i'TkIR. Denoting the Stokes
vector describing the light beam incident upon the ideal
optical system by Si', we obtain for the Stokes vector for
transmitted light beam (Sf') the equation

Sf = TA0 .?(Ao)TsoTcoS1?l(Po)TpoS'o (7)

where Ts and Tc are the Mueller matrices of the sample and
the compensator. All variables marked 0 indicate that we
consider the ideal components for the moment. Further-
more, we have suppressed the two matrices R(PO) and
Y?-'(AO) because it does not matter in which frame of refer-
ence Si and Sf are represented. Reminding ourselves that
the ellipsometer is not ideal, we introduce all real azimuth
angles, the entrance and exit windows, which are, respective-
ly, denoted by TY and Tm', and the imperfect components.
Then Sf becomes

S = TAB(A)T W 'TSTWSJ'(C)'TCR(C)S-1r'(P)TpSi. (8)

The real azimuth angles 0 are related to the ideal ones by 0 =
0P + 30. Introducing 00 + 60 in the rotation matrix JX, we can
make a Taylor expansion of 9? in the variable 50:

(O) = R(OO) + d Y? 0 + 1 d 2 / 60? (9)
dO 2 d0 2

The transmission matrices also can be expanded if we use a
variable t to describe the imperfection; for example, t can
represent the extinction coefficient of the nonideal polariz-
er:

T) = To + dT 6t + 1 d2T 6t2 +(10)
d~ 2 d~2 (0

If we now substitute Eqs. (9) and (10) into Eq. (8), we obtain,
for Sf,

SfSf= + ZE f Zk + Z6Sfk + E 6S kk + (11)
k k,1 k

kplt

where k and 1 correspond to the individual error sources.
Thus 6St is the perturbation caused solely by the first-order
imperfection of the kth component; the remaining optical
system is assumed to be ideal. Similarly, 6S/hl denotes the
extra distortion due to the perturbing action of the first-
order imperfection of the Ith component on the first-order
perturbation of the light beam already caused by the kth
component. 5Sik is the distortion to be attributed to the

second-order effects of the kth component. The second
term on the right-hand side of Eq. (11) is the linear one,
which we shall treat mainly. The nonlinear third and fourth
terms are negligible if the imperfections are small.

In this way we have arrived at a linear approximation of
error propagation in the RAE:

Sf ;; Sf + ESfk = Sf0
k

+[TA (A)TsSac J d (P -Thddp
+ TA"Y9?(A 0 )Ts 0 Tc 0 R (0 -5Y

+ CTA.R(A-)TS°TC° dR- 6,PTpo

+dTA '?A(A )TSTC!1? (P0)Tp0 So,

dYA J
(12)

where we have suppressed TW'0 and TWO because T.' 0 = TW°
= 1. Using this formalism, we can calculate every perturba-
tion BSk of the Stokes vector Sf. However, our interest is in
the coefficients ao, a,, and a,. For all error sources except
those attributed to the analyzer, we simply note that the
intensity [Sj]o is the detected quantity; multiplying Sf by h1
= [1, 0, 0, 0] on the left-hand side yields Idet:

5i* St = (S)o = Idet = 6,TA 0 - R(A 0 )SW, = (1, C2A, S2A, 0)SW',
(13)

where SW, corresponds with the light flux transmitted by the
exit window. From Eqs. (13) and (2), we identify

a 0

a,
SW=

a,

These results clearly show that a RAE measures the first
three elements of the Stokes vector representing the light
beam upon the analyzer. Any shift of these directly affects
A and 4 according to Eq. (6). Errors contributed by the
analyzer are excepted from Eq. (13); for those errors 6Sf has
to be calculated, after which we can perform an identifica-
tion similar to that which was done in obtaining Eq. (14).

It is shown in Section 5 that most errors are antisymmetric
in P and consequently can be eliminated by averaging two
measurements performed at P and -P. Then the third and
fourth terms on the right-hand side of Eq. (11) become
significant. In some cases it should be interesting to know
whether second-order errors of the fourth term in Eq. (11)
are negligible. We then might assume that the contribu-
tions of the third term are negligible also, and errors can be
ascribed mainly to sources that do not average, i.e., windows.
For this reason we shall study the fourth term of Eq. (11)-
the second-order effects of one component while the remain-
ing part is assumed ideal. However, in spite of the fact that
6S3 k,k is exact, its propagation up to A and 4 cannot be
studied by using Eq. (6) because Eq. (6) is first order only.
Consequently the problem has to be approached by a nu-

(14)
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merical method. Equation (8) is implemented in a numeri-
cal-simulation procedure for the optical part of the RAE.
Using this procedure, we can easily obtain the perturbed Sf
for the nonideal system and any particular A and 4' that
enter through Ts'. Subsequently Eqs. (3) and (4) are used
to calculate the experimental A' and 4'. The errors then are
obtained from the difference between the A and 4 entered in
the simulation part and the experimental A' and "'.

5. SYSTEMATIC ERRORS: POLARIZER
IMPERFECTION, AZIMUTH ERRORS, AND
WINDOWS

In this section we discuss a number of systematic errors. In
all cases we apply the same approach, outlined in the previ-
ous section. After a short introduction of a particular error
we present the proper Taylor expansion. The geometrical
calculations are quite tedious, although straightforward, and
are left out. We do present the intermediate [bao, Ocar, 8a8,
-] and the final [6A, 84] results, which are discussed below.
In this way we treat polarizer imperfections, azimuth errors
in the first- and second-order approximation, and, finally,
the window imperfections. To obtain a better overview, all
results of 6A and 68 were placed in Table 1.

A. Polarizer Imperfection
In the past some papers' 2 ,14 on polarizer imperfection have
appeared. It is generally assumed that the imperfect polar-
izer transmits a vibration with small ellipticity. Aspnes'4

used a simple Jones matrix for the imperfect polarizer; how-
ever, the transmitted beam was not represented in an or-
thogonal frame of reference and therefore cannot be used
here. In the present case we adopt an expression for an
elliptic ideal polarizer from Azzam and Bashara 4 :

1 + ~ 1 -il
l 2 _+j 2 _,

which, translated into the Mueller formalism,' becomes

1 + 2,y2 1 0 +2y

Tp = 1/2 O1 10-2 0y2 0 +2 *y (15)
0 0 4-y2 0

+2'y + 2 ,y 0 0

Retaining the coefficients of order y only, we get the per-
turbing matrix

0 0 0 1

6TP= 0 0 0 1 (16)

1 1 0 0_

Now let us first deal with the polarizer. Certainly when a
monochromator or laser is used as a light source, we should
not expect the light beam to be completely unpolarized or
completely polarized. However, from Eq. (15) it is seen that
the light beam (Sp) transmitted by the polarizer always is, to
first order, slightly elliptically polarized, independent of the
light source:

Sp = (1, 1, O. 0) + 2,yp(0, 0, 0, 1) + 0(,y2).

Obviously we should not care too much about the light
source, as long as the light flux passing the polarizer suffices.
On substitution of Eq. (16) into Eq. (12) we find that

bSf =- (1 C2A S2A O 'T °'T or-l p°w ..T

After we make the correct identification with Eq. (14), this
yields

[ao 0

= +2-yPS2,PS+ 

- ~~~A+Q

(17)

or, from Eq. (6), we obtain

[6 =1 [1/S 2 l
1= _2 -yp I

8 4'J 0 1

for the systematic errors in A and 4 caused by the imperfec-
tion -yp. We can directly notice that the imperfection does
not affect 4'. Furthermore, 6A depends only on the polarizer
angle P, not on A or 4', and is eliminated in a two-zone
measurement.

Next we consider the rotating analyzer. Substituting the
imperfect Mueller matrix and performing the product
6TAY(AO)TSOTcOY-l(PO)TpoSjo results in an intensity
shift of bIdet = -2 AS2PS2#SA+Q. Hence only the unmodu-
lated component a 0 is involved:

Table 1. First-Order Errors 6A and 684 Caused by Polarizer Imperfections, Azimuth Errors, and Windows
Source 6A 84

Polarizer imperfection yp - 2 -Yp/S2P
Analyzer imperfection _YA -

2
'YA(l - C2PC20)CA+Q/S2 PS2 k 'YA(C2P - C2#)SA+Q/S2P

Azimuth errors
Polarizer 5P 6PS2 0/S2P

Analyzer 6A 6A2(C2 P - C2s)SA+Q/S2PS2 6A(1 - C2PC 2,C)CA+Q/S2P
Compensator 6C -26C SQC2 P/S2P bC(1 - CQ)S 20/S2P

Windows

entrance olv, 6w S2PC2 0w - CQC2PS20w bw 2S2 w
5

2P~~~~~~~~~~2a
,CA+Q(C2- C2p)S2 0w' + S2 fS2PC2 0w , SA+QS24W (1 - C2PC20)bW'

exit 4'W', Ow' 5 2~%P 2wS 2 (1P
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Psi Edeg.]

90.0

which, with the help of Eq. (6), yields

F 1 A [2(1 - CPC 2 )CA+Q 1

[64 =2 SpS2, L(C2 , - C2P)S2,SA+QJ
(19)

Again we find expressions antisymmetric in P. From Eqs.
(18) and (19) it follows that these errors can be eliminated, to
first order, if we perform a two-zone measurement. This
procedure is strongly advised with respect to absolute ellip-
sometry or differential ellipsometry in cases when A and 4
change much because even good polarizers (i.e., Glan-
Thompson) exhibit extinction coefficients of 10-3 or greater,
causing errors of the order of 10.

F,
01

70
LI 

0
EL

67.5

45.0

22.5

0

0 22.5 45.0 67.5 90.0
90.0

67.5

.0 .0± 45.0 .02

01

0~

-22.5

0
0 22.5 45.0 67.5 90.0

B. Azimuth Errors
Azimuth errors are introduced mainly by the calibration.
Aspnes'3 already showed that imperfect polarizers disturb
the determination of the plane of incidence, and the same
may be expected from the windows. Once an offset has
entered the location of the plane of incidence, it shows up in
all angle settings of Po, A', and C0 , thus causing a number of
systematic errors. From Eq. (9) the perturbation matrix
MR(M) becomes

OI? (0)= 

0

-sin 0

-cos 0

0

0 01
'cos0 0

-sin0 0
0 0]

First we discuss the polarizer azimuth error OP. Using
Eqs. (12) and (14), we find that it causes the perturbation

bao C2 PS2P

bac TS°Tc°6Rl(P)Tp-Sj° = 25P - S2P,
6a, SA+QC2P

_-_sj c00fI?(P)TP050=2OPL S2PSA+QC2PJ

which, substituted into Eq. (6), yields

[6A] P [s 2 tiS 2 p] (20)

A is not shifted at all, and 04 is compensated for if measure-
ments at P and -P are performed and 4 is averaged. For
this case of two-zone measurement, we have studied the
second-order errors caused by OP by using the numerical
method. Theoretically, b04 and OA should be functions of P,
A, and 4'; fortunately, A turns out to have no influence on the
errors 6A and 04:

OA\ = OA\(P, 4')
04' = O4'(P, 4'.

In general, we should like to know both OA and 04'. This,
however, requires two graphs. For this reason we introduce
On = [(OA)2 + (6O)2]1/2, the largest distance between an actu-
ally measured (A, 4) point and the theoretical one in the (A,
4) plane. Subsequently we can make a plot of the contours
of contrast On7 in the (P, 4) plane. We have chosen a fixed OP

Psi [deg.]
Fig. 2. Errors caused by a polarizer azimuth error OP = 1°. If a
two-zone measurement is performed, errors OA and 04' caused by an
azimuth error of the polarizer OP are eliminated to first order. This
plot shows the remaining higher-order error [expressed as (6X)2 =
(5A)

2
+ (6O4)2] in the 41-P plane; A has no influence.

= 10. In Fig. 2, the contours were drawn for On = 0.00250,
0.010, 0.0250, 0.10°, and 10. Figure 2 shows that all errors
are eliminated on the diagonal P = 900 - and on the sides 4
= 0°,90° the sides of no importance because we already have
seen that, in general, errors increase for 4 near 00, 900.
However, if P is chosen between 25° and 650, the error is
largely eliminated by the two-zone average, and the remain-
ing error is <0.025°. It should be emphasized that these
errors are now dominated by the second-order contribution
of OP, thus exhibiting a Onq proportional to OP2

.

To obtain first-order (6A, 4) for an analyzer azimuth
error OA, we have to deviate a little from our formalism. The
light flux bIdet becomes

dA?01det = OlTwA dA OA4TsOTcO Cl (P0 )'Tp°5 °

- 20A(0, S2A, C2A, 0)TS0°TCoRtl(Po)TpoSjo.

Obviously the vector [ao, ac, as, -] is found by obtaining the
product of Ts 0 TcBR-'(P 0 )Tp0 Sj 0 and by some reordering
of the result:

c|= 20A SCA+QS2p]

Substitution of this equation into Eq. (6) yields

6Al = OA [2(C 2 P - C2 l)Sa+Q 1
L04 ' S2PS2# L(1 - C2 PC2,i)S2iCA+QJ

which again is antisymmetric in P. Logically we study the
behavior of 6n, which is the sum of squares of the remaining
errors when a two-zone average is used, as a function of A, 4,

(21)
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Delta [deg.]
Fig. 3. The error 6Oq caused by a badly aligned analyzer as a func-
tion of A and for some arbitrary values for 4' and P. All curves
clearly exhibit minima for A = 00, 900 and maxima for A = 450, 1350.

Psi [deg.]
0 22.5 45.0 67.5 90.090.0 , , , _,---A 90-0
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F,
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a,
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22.5
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XO~fJ (P Tosi"

=(1 CQ)C25S2P

= (1 -CQ)S2P AC.

(CA CA+Q)C2 P

From Eq. (6) we obtain

FoAl oc [ - 2 SQC2 P (22)

This error can also be eliminated if a two-zone measurement
is performed. Again, we study the second-order error of 6n,
which is in principle a many-variable function: On = On(P, Q,
A, 4). However, A is of no importance, while the influence of
4 becomes notable for Q values near 1800 only. Figure 5
shows the contours of constant On7 on the remaining Q-P
plane for OC = 10. The differences in the line types indicate
different 4' values (4' = 300, 450). Again, we see that P is
chosen safely between 250 and 65°, yielding errors of less
than 0.10 if a two-zone measurement is applied.

C. Windows
Birefringence is the main source for window errors, and the
window is therefore treated as a small-retardation wave
plate.2 6"2 In our Taylor formalism the expansion becomes

0 0 0 0 1
TW = 1 + ° o 0 ° S2,w Ow,

0 0 0 -2°°

LO 520w _C2q0w 0
0o

(23)

where bw and 4'w correspond to the (small) phase retarda-
tion and the azimuth of the fast axis, respectively.

We first consider the entrance window Tw. On substitu-
tion of Eq. (23) into our formalism, we obtain

Psi [deg.]
Fig. 4. Second-order errors 67 caused by bad alignment of the
analyzer (6A = 10). The picture presents the lower and upper
bounds for the error 671 in the '-P plane, denoted by the dashed and
solid lines, respectively.

and P: Onq = n(A, 4, P). We have plotted Onq as a function of
A with P =10, A= 10°, 25°,45°, and OA = 1° in Fig. 3. All
curves have a minimum at A = 00, 900 and a maximum at A
= 450 or 1350. For arbitrary values of P and 4 we always
find the minima and maxima thus located, and we may well
treat these values as bounds on Onq. Figure 4 shows these
bounds in the P-4' plane. The upper bounds are denoted by
the solid lines, and the lower bounds are denoted by the
dashed ones. The curves for bn = 0.01 and 6On = 0.10 are
drawn with 6A = 10. From this plot we may conclude that P
is safely chosen between 250 and 650.

The compensator is the last component whose misalign-
ment certainly has to be studied. Our formalism yields

bao F -SQC 2 #S2S 2 , 1
6Oa = SQS2PS20W 10
LasjLSASS24C2PS20w - SA+QS2AS2PC2,WJ w

-_ I_ - J_

(24)

We should note that the compensator Q distinguishes itself
from the sample A; we are not permitted simply to add them,
as in the previous cases. On substitution of Eq. (24) into Eq.
(6), we finally obtain

[OA] O [S2PC2 S - CQC2PS2,1

[0' S2P= SQS2S2 . (25)

60 averages out if a two-zone measurement is applied. Re-
garding OA, we notice that part of the error does not cancel.
This is expected because if the fast axis of the window is
aligned with the plane of incidence of the sample (0w = 0),
then the sample A and window retardation Ow should add
without even being distinguishable.
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Fig.5. Second-order errors be caused by a misaligned compensator (OC = 1°). 

0xi is independent of A and only slightly dependent on 4 and
consequently is depicted in the Q-P plane. Solid lines denote the results for 4' = 45°, and dashed lines correspond to 4' = 30°.

The perturbations caused by the exit window (6w', kw')
become

0a0 0

[-1 =]SA+QS2 PwS20w ', (26)

which yields

A1 Ow' [CA+Q(C 2P - C2P)S20, + S2#S 2pC2 t,1

04'] S2,PS2P 1/2SA+QS2#(1 - C2PC 2,)S 2 0, J
(27)

Again 04' and part of OA cancel out in the two-zone average.
In general we should realize that for samples with small SA
the windows are going to dominate the phase retardation of
the system Tw TTw, and we actually measure the effective
phase retardation of the windows. This situation can be
improved by a two-zone measurement, but the error in A can
never be completely eliminated because the contributions
bw cos(20w) of entrance and exit windows are indistinguish-
able from the A sample.

perturbation caused, for example, by sample vibrations or
power supplies (the main frequency). Uncorrelated noise
was already discussed by Aspnes.14 Concerning the corre-
lated perturbations, we present a totally new description.

Uncorrelated perturbations can be discussed only by us-
ing their standard deviations. The standard deviations of
ao, ac, and ce, due to noise are interrelated; denoting the
standard deviation of ao, a,, and a, by ao, aa, and a-s, respec-
tively, Aspnes14 derived

ac = a- = (2ao-)1/2. (28)

A quantitative expression for ao is difficult to derive; ao is
inversely proportional to the square root of the total acqusi-
tion time (T) and light intensity:

ACo (,Io)- 12. (29)

We should note that we cannot simply use Eq. (6) to relate
the standard deviation in A and 4 (at and ap) to ao, ac, and a-.
The standard deviation (of) of a function f(x, y, . . .) is calcu-
lated from

af X2f2 _ + (f) ay2 + . . .,

6. STATISTICAL ERRORS

Apart from all systematic errors, we should not neglect the
existence of statistical errors. Statistical errors can be at-
tributed to uncorrelated noise (detector noise or shot noise
of low-intensity light sources) and to correlated intensity

where ax and ay denote the standard deviations of the vari-
ables x and y, respectively. Hence, by squaring all matrix
elements of Eq. (5), we obtain a matrix that relates aA2 and
a-02 to the squared standard deviations of the normalized
Fourier coefficients &,c and &,, &,2 and &,2, respectively. A
similar matrix relates aC2 and &,2 to a-C2 , and a-2 . From the
.product of both matrices, we find that

[a] 5= S2P S2 4 SA [
(C2 p - C2 )4 + S 2P4S 24

(1 - C2 PC2A)2 CA

/4(C2 - C2P)2S2#2SA 2

(C2 f - C2A)2c,2

1/4 (1 - C2 PC2 #)2 S2 ,P2 SA2
S2S2P2] [c 92]

90.0

67.5

Fr
Dl
LD

1-4
0

IL

45.0

22.5

0

(30)
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After the substitution of Eq. (28) we get the same result as
was obtained by Aspnes.14 From Eqs. (28)-(30), we could
calculate optimum polarizer settings P at which measure-
ments should be performed. However, this subject has been
treated extensively by Aspnes, and we direct anyone inter-
ested to his work.' 4

The correlated intensity perturbation constitutes another
source of statistical errors. Suppose that one uses a light
source that shows periodic intensity fluctuations, that the
sample or polarizer vibrates, or that the main frequency is
picked up somewhere in the electronics. These frequencies
may be well known, but their actual phase at the moment the
measurement starts is unknown and changes from one mea-
surement to another, thus introducing arbitrary errors.
What mainly interests us is which frequencies do cause the
major perturbations. Here we present a treatment of a
fluctuating light source. All other kinds of fluctuation are
assumed to perturb ao, a,, and a, in a similar way.

Now let us assume that the light source produces the light
flux I(t):

I(t) = 1° + I(c)cos(Wt + 0), (31)

where we have introduced an arbitrary phase factor 0 at the
moment the measurement is started. The transmitted light
flux becomes

Idet(t) = [I + OI(co)cos(c.t + 04)][1 -C2PC2
+ (C 2 p - C2,)cos 2

WAt + S2pS2,CA sin 2WAt]-

(32)

The coefficients ao, ac, and a, are retrieved from Idet by using
Eqs. (3a) and (3b). Applying this formalism to Eq. (32),
performing the integrals, and retaining positive frequencies
w, we obtain

ao = (1 - C2PC2,)I0 + (1 - C2pC2,)6I(w)sinc(wr; ')
X (C 2 p - C2,)6I()sinc[(2WA - w)r; 4]

X S2PS2,PCAI(W)sinc[(2WA - W)T; 4 + 2] (33a)

,= (C2P- C2M)I + (1- C2pC0,)I(w)sinc[(2wA - )Tr;4]
X (C 2 p - C2 ,)OI(4)sinc(Wr; 0) + sinc[(4WcA w)T; 4]j

X S2PS20&CA6I(W)sinc[(4&A - w)-r; 0 + 2] (33b)

aS = S2pS2,CA + (1 - C2 PC20)OI( )sinc[(2WA - w)Tr; + 2

X (C2P - C20M)OI(C)Sinc[(4WA - W)T; 0 + 2]

X S2PS20CA6I(c)isinc[(4oA - W)r; 0] + sinc(wT; 0)}.

(33c)

-r is twice an integer number of analyzer periods (T = 47rN/
WA), and sinc(x; 0) is a generalization of the sinc function'

sinc(x; 4) = sin(x + 0) - sin ' (34)

In Fig. 6 we have plotted this generalized sinc function.
First, note that all coefficients ao, a,, and a8 are mixed. The
amount of mixing is related to the quotient OI(w)/I°, and
obviously all fluctuations OI(w) have to be strongly sup-
pressed. By studying sinc(x; 0), we can obtain more precise
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Fig. 6. The generalized sinc(x; 4) function as defined by Eq. (34)
for 0 = 0 and 4 = 7r/2 rad. The figure clearly shows the localized and
bounded character of the function.

conclusions. Our generalized sinc function is bounded and
strongly located near x = 0, as is shown in Fig. 6. We may
neglect any contribution for x < -87' and x > 87r:

sinc(x, 4) 0 if lxi > 87r.

Considering this localized and bounded character of sinc(x,
4), which still is completely arbitrary because of the phase
factor 4, we can conclude that the only frequency regions
involved are

2WA

°<<N'

2WA 2
2

WA2 WA - <w < 2WA + -
N N

4 2A- N<' (+ 2WA
N <N (5

Obviously these regions narrow with the increasing number
of cycles; however, it should be emphasized that only the
regions narrow and that possible errors, caused by a periodic
perturbation within a region, are not affected. Such pertur-
bations have to be avoided in all cases.

In principle we can substitute the deviations 0ao, Oa,, and
0ao obtained by Eqs. (33) into Eq. (6). However, we would
arrive at a complicated expression. Generally, it will be
sufficient to realize that the errors become dominant mainly
if SA 0 0 or P, 4 ' 0 or if the perturbation is localized near
2

WA or 4 WA. Slow variation of the light intensity (c - 0) may
be neglected because these perturbations do not cause a
mixing of the coefficients ao, a,, and a,, as can be seen from
Eqs. (33).

7. DISCUSSION

In this paper we tried to obtain a better understanding of the
main phenomena causing errors in RAE. We have consid-

J. M. M. de Nijs and A. van Silfhout

(35)



Vol. 5, No. 6/June 1988/J. Opt. Soc. Am. A 781

ered two kinds of errors: systematic errors and statistical
errors. In general we conclude that many errors do distort
the single-zone measurement, and absolute accuracy is not
obtained, especially if the ellipsometer is applied at small P
or if SA or S2# becomes small. In all these cases we should
expect errors in OA and 04' of the order of degrees. This
situation is much improved when a two-zone measurement
is applied; in this case, with the exception of window errors,
all first-order errors are eliminated. Apparently errors are
more easily eliminated in the RAE than in the traditional
nulling ellipsometer, which requires a four-zone measure-
ment to do so.2

One type of error, the azimuth error, directly emerges
from the calibration. We often see problems in this calibra-
tion, for instance, for SA - 0. The residuals do not exhibit a
pronounced minimum, thus obstructing the determination
of the plane of incidence. We should like to know how
accurately the plane of incidence has to be known if we are to
obtain good results. Figures 2, 4, and 5 show that when P is
chosen properly and a two-zone measurement is applied
these errors will be less than 0.10 with OP, OA, and BC = 1°.
Certainly these errors are much less than the errors caused
by windows, which introduce the main errors.

We emphasize that a badly chosen analyzer frequency WA

can increase statistical errors strongly. WA should be chosen
such that any periodic perturbation (w) does not lie in the
regions near 2

WA and 4
WA-
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